首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Bacillus cereus ATCC 14579 was cultured in microcolonies on Anopore strips near its minimum growth temperature to directly image and quantify its population heterogeneity at an abusive refrigeration temperature. Eleven percent of the microcolonies failed to grow during low-temperature incubation, and this cold-induced population heterogeneity could be partly attributed to the loss of membrane integrity of individual cells.Bacillus cereus is a food poisoning- and food spoilage-causing organism that can be found in a large variety of foods (4, 23). There are two illnesses associated with B. cereus, namely, emetic and diarrheal intoxication (17, 24). Most of the strains related to cases or outbreaks of B. cereus food-borne poisoning were shown to be unable to grow at 7°C (1, 12). The average temperatures of domestic refrigerators have been investigated in various surveys around the world and often ranged from 5°C to 7°C, but extreme values exceeded 10°C to 12°C (5, 16). Inadequate chilling was indeed reported in various incidents of B. cereus food-borne illness (7, 8, 18, 19), pointing to the importance of appropriate refrigeration of foods contaminated with B. cereus to control its growth and toxin production in foods (9).Several studies have demonstrated that microorganisms can show diversity in their population stress response, even in an apparently homogeneous stress environment (6, 11, 21, 22). However, only very limited data describing the heterogeneity in growth performance of individual cells from food-borne pathogens cultured at low temperatures are available (10). Because inadequate chilling of food is one of the factors that contribute to the number of incidents of B. cereus food-borne illness, there is a need for better understanding of its growth performance at lowered incubation temperatures. In this study, we used the direct-imaging-based Anopore technology (6, 13-15) to quantitatively describe the population heterogeneity of B. cereus ATCC 14579 cells at 12°C. The minimum temperature for the growth of B. cereus ATCC 14579 in brain heart infusion (BHI) broth is 7.5°C (personal communication from F. Carlin), but various food-borne-associated B. cereus isolates were shown to be unable to grow at 10°C (1). Therefore, in this study, a culturing temperature of 12°C was chosen, to mimic temperature abuse of refrigerated foods. In addition, the membrane integrity of individual cells was assessed using both membrane permeant and impermeant nucleic acid dyes in order to get more insight into cellular characteristics that may contribute to heterogeneity in growth response.  相似文献   

2.
Control of biofilms requires rapid methods to identify compounds effective against them and to isolate resistance-compromised mutants for identifying genes involved in enhanced biofilm resistance. While rapid screening methods for microtiter plate well (“static”) biofilms are available, there are no methods for such screening of continuous flow biofilms (“flow biofilms”). Since the latter biofilms more closely approximate natural biofilms, development of a high-throughput (HTP) method for screening them is desirable. We describe here a new method using a device comprised of microfluidic channels and a distributed pneumatic pump (BioFlux) that provides fluid flow to 96 individual biofilms. This device allows fine control of continuous or intermittent fluid flow over a broad range of flow rates, and the use of a standard well plate format provides compatibility with plate readers. We show that use of green fluorescent protein (GFP)-expressing bacteria, staining with propidium iodide, and measurement of fluorescence with a plate reader permit rapid and accurate determination of biofilm viability. The biofilm viability measured with the plate reader agreed with that determined using plate counts, as well as with the results of fluorescence microscope image analysis. Using BioFlux and the plate reader, we were able to rapidly screen the effects of several antimicrobials on the viability of Pseudomonas aeruginosa PAO1 flow biofilms.Bacterial biofilms are surface-attached communities that are encased in a polymeric matrix, which exhibit a high degree of resistance to antimicrobial agents and the host immune system (12, 16). This makes them medically important; diseases with a biofilm component are chronic and difficult to eradicate. Examples of such diseases are cystitis (1), endocarditis (31), cystic fibrosis (35), and middle-ear (17) and indwelling medical device-associated (20) infections. Biofilms also play important environmental roles in, for example, wastewater treatment (38), bioremediation (29, 30), biofouling (7), and biocorrosion (2). Better control of biofilms requires elucidation of the molecular basis of their superior resistance (by identifying resistance-compromised mutants) and identification of compounds with antibiofilm activity. While our understanding of these aspects of biofilms has increased (11, 15, 25-27, 36), further work, including development of accurate high-throughput (HTP) methods for screening biofilm viability, is needed.Two major biofilm models are studied in the laboratory, biofilms grown without a continuous flow of fresh medium and biofilms grown with a continuous flow of fresh medium; examples of these two models are microtiter well biofilms and flow cell biofilms, respectively. Methods have been developed for HTP screening of the viability of static biofilms (6, 28, 32, 33), but there are no methods for HTP screening of flow biofilms. The latter biofilms are typically grown in flow cells, which have to be examined individually to determine viability and thus cannot be used for rapid screening. An HTP screening method for flow biofilms is desirable, as these biofilms more closely approximate natural biofilms and can differ from static biofilms evidently due to hydrodynamic influences on cell signaling (22, 34). For example, the ability of rpoS-deficient Escherichia coli (lacking σS) to form flow biofilms is impaired, but its capacity to form biofilms under static conditions is enhanced (18).We describe here a new application of a recently developed device (8-10, 13), the “BioFlux” device consisting of microfluidic channels for biofilm growth. Other microfluidic devices have recently been used for biofilm formation (14, 19, 21, 23), but none of them has been used for HTP screening. The BioFlux device permits rapid measurement of the fluorescence of flow biofilms with a plate reader, which permits initial HTP screening of the viability of such biofilms.  相似文献   

3.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

4.
The asymptomatic, chronic carrier state of Salmonella enterica serovar Typhi occurs in the bile-rich gallbladder and is frequently associated with the presence of cholesterol gallstones. We have previously demonstrated that salmonellae form biofilms on human gallstones and cholesterol-coated surfaces in vitro and that bile-induced biofilm formation on cholesterol gallstones promotes gallbladder colonization and maintenance of the carrier state. Random transposon mutants of S. enterica serovar Typhimurium were screened for impaired adherence to and biofilm formation on cholesterol-coated Eppendorf tubes but not on glass and plastic surfaces. We identified 49 mutants with this phenotype. The results indicate that genes involved in flagellum biosynthesis and structure primarily mediated attachment to cholesterol. Subsequent analysis suggested that the presence of the flagellar filament enhanced binding and biofilm formation in the presence of bile, while flagellar motility and expression of type 1 fimbriae were unimportant. Purified Salmonella flagellar proteins used in a modified enzyme-linked immunosorbent assay (ELISA) showed that FliC was the critical subunit mediating binding to cholesterol. These studies provide a better understanding of early events during biofilm development, specifically how salmonellae bind to cholesterol, and suggest a target for therapies that may alleviate biofilm formation on cholesterol gallstones and the chronic carrier state.The serovars of Salmonella enterica are diverse, infect a broad array of hosts, and cause significant morbidity and mortality in impoverished and industrialized nations worldwide. S. enterica serovar Typhi is the etiologic agent of typhoid fever, a severe illness characterized by sustained bacteremia and a delayed onset of symptoms that afflicts approximately 20 million people each year (14, 19). Serovar Typhi can establish a chronic infection of the human gallbladder, suggesting that this bacterium utilizes novel mechanisms to mediate enhanced colonization and persistence in a bile-rich environment.There is a strong correlation between gallbladder abnormalities, particularly gallstones, and development of the asymptomatic Salmonella carrier state (47). Antibiotic regimens are typically ineffective in carriers with gallstones (47), and these patients have an 8.47-fold-higher risk of developing hepatobiliary carcinomas (28, 46, 91). Elimination of chronic infections usually requires gallbladder removal (47), but surgical intervention is cost-prohibitive in developing countries where serovar Typhi is prevalent. Thus, understanding the progression of infection to the carrier state and developing alternative treatment options are of critical importance to human health.The formation of biofilms on gallstones has been hypothesized to facilitate enhanced colonization of and persistence in the gallbladder. Over the past 2 decades, bacterial biofilms have been increasingly implicated as burdens for food and public safety worldwide, and they are broadly defined as heterogeneous communities of microorganisms that adhere to each other and to inert or live surfaces (17, 22, 67, 89, 102). A sessile environment provides selective advantages in natural, medical, and industrial ecosystems for diverse species of commensal and pathogenic bacteria, including Streptococcus mutans (40, 92, 104), Staphylococcus aureus (15, 35, 100), Escherichia coli (21, 74), Vibrio cholerae (39, 52, 107), and Pseudomonas aeruginosa (23, 58, 73, 105). Bacterial biofilms are increasingly associated with many chronic infections in humans and exhibit heightened resistance to commonly administered antibiotics and to engulfment by professional phagocytes (54, 55, 59). The bacterial gene expression profiles for planktonic and biofilm phenotypes differ (42, 90), and the changes are likely regulated by external stimuli, including nutrient availability, the presence of antimicrobials, and the composition of the binding substrate.Biofilm formation occurs in sequential, highly ordered stages and begins with attachment of free-swimming, planktonic bacteria to a surface. Subsequent biofilm maturation is characterized by the production of a self-initiated extracellular matrix (ECM) composed of nucleic acid, proteins, or exopolysaccharides (EPS) that encase the community of microorganisms. Planktonic cells are continuously shed from the sessile, matrix-bound population, which can result in reattachment and fortification of the biofilm or systemic infection and release of the organism into the environment. Shedding of serovar Typhi by asymptomatic carriers can contaminate food and water and account for much of the person-to-person transmission in underdeveloped countries.Our laboratory has previously reported that bile is required for formation of mature biofilms with characteristic EPS production by S. enterica serovars Typhimurium, Enteritidis, and Typhi on human gallstones and cholesterol-coated Eppendorf tubes (18, 78). Cholesterol is the primary constituent of human cholesterol gallstones, and use of cholesterol-coated tubes creates an in vitro uniform surface that mimics human gallstones (18). It was also demonstrated that Salmonella biofilms that formed on different surfaces had unique phenotypes and required expression of specific EPS (18, 77), yet the factors mediating Salmonella binding to gallstones and cholesterol-coated surfaces during the initiation of biofilm formation remain unknown. Here, we show that the presence of serovar Typhimurium flagella promotes binding specifically to cholesterol in the early stages of biofilm development and that the FliC subunit is a critical component. Bound salmonellae expressing intact flagella provided a scaffold for other cells to bind to during later stages of biofilm growth. Elucidation of key mechanisms that mediate adherence to cholesterol during Salmonella bile-induced biofilm formation on gallstone surfaces promises to reveal novel drug targets for alleviating biofilm formation in chronic cases.  相似文献   

5.
The stochastic Ricker population model was used to investigate the generation and maintenance of genetic diversity in a bacterial population grown in a spatially structured environment. In particular, we showed that Escherichia coli undergoes dramatic genetic diversification when grown as a biofilm. Using a novel biofilm entrapment method, we retrieved 64 clones from each of six different depths of a mature biofilm, and after subculturing for ∼30 generations, we measured their growth kinetics in three different media. We fit a stochastic Ricker population growth model to the recorded growth curves. The growth kinetics of clonal lineages descendant from cells sampled at different biofilm depths varied as a function of both the depth in the biofilm and the growth medium used. We concluded that differences in the growth dynamics of clones were heritable and arose during adaptive evolution under local conditions in a spatially heterogeneous environment. We postulate that under nutrient-limited conditions, selective sweeps would be protracted and would be insufficient to purge less-fit variants, a phenomenon that would allow the coexistence of genetically distinct clones. These findings contribute to the current understanding of biofilm ecology and complement current hypotheses for the maintenance and generation of microbial diversity in spatially structured environments.The mechanisms that lead to the genesis and maintenance of diversity in communities have intrigued geneticists and ecologists alike for decades (6, 17, 27, 33, 39, 49). This is particularly challenging for microbial communities, in which ecological and evolutionary processes occur on roughly the same time scale (3, 16, 38) and where the outcome of these processes may be affected by the spatial structure in which these communities grow.Bacterial biofilms are examples of spatially structured communities that have been the subject of intense research in medical and engineering contexts in recent years (3, 8, 20, 48, 56). Previous work has shown that the phenotypic characteristics of bacterial populations in biofilms are distinct from those of their free-swimming counterparts (8). These bacterial assemblages form physically and chemically heterogeneous structures (20) whose complex architecture strongly influences mass transfer (56). This results in the formation of steep gradients of nutrients, waste products, pH, redox potential, and electron acceptors, which results in the creation of distinct and perhaps unique niches on a microscale. This places selective pressure on variants that have enhanced fitness and are well adapted to local conditions. From a theoretical perspective, this would be expected to increase genetic diversity within a population by precluding competitive exclusion, yet this has not previously been demonstrated empirically.The degree of diversification that occurs within populations growing in biofilms is not well understood, nor are the spatial and temporal dynamics of bacterial species succession in biofilms. However, it is known that the physical and chemical heterogeneity of microbial biofilms has profound effects on microbial growth and activity. Most bacterial cells in biofilms are not highly active and grow slowly if at all. For example, active protein synthesis occurs only in the uppermost zone (32 ± 3 μm) of Pseudomonas aeruginosa biofilms (4). Likewise, in Klebsiella pneumoniae biofilms, fast growth occurs near the interface of the biofilm and bulk fluid, and cells inside the biofilm show little growth (55). The near absence of growth in interior regions of biofilms may lead to an increased tempo of diversification, since numerous studies have shown that mutation frequencies are elevated in slowly growing cells (28). If this occurs within a biofilm, then clones might exhibit a high genotypic variability that could have significant practical implications in terms of yielding spontaneous mutants that are resistant to antimicrobial agents.Experimental evolution has contributed greatly to our understanding of the causes and consequences of genetic diversity in populations (reviewed in references 23, 29, and 42). Initially, research focused on characterizing diversity within populations that evolved in spatially homogenous environments (e.g., chemostat and batch systems) (13, 15, 19, 30-32, 45, 47, 50-53). Several studies have highlighted a role for spatial heterogeneity in the emergence and maintenance of genetic diversity (25, 26, 43). Korona and colleagues (25, 26) compared populations that evolved in batch cultures to populations that evolved with a spatial structure and demonstrated that phenotypic diversity was greatest with spatial structure. In other work, Rainey and Travisano (43) showed that populations of Pseudomonas grown in static broth microcosms diversified so that some ecotypes occupied a floating biofilm on the surface of the broth while others occupied the liquid phase or glass surface of the culture. Boles et al. (2, 3) investigated the extent of diversification of Pseudomonas using biofilms that evolved in flow-cell systems. They reported that genetic changes produced by a recA-dependent mechanism affected multiple traits, with some biofilm-derived variants being better able to disseminate while others were better able to form biofilms (3). Further study showed that in some cells, endogenous oxidative stress caused double-stranded DNA breaks that when repaired by recombinatorial DNA repair genes gave rise to mutations (2). These previous studies demonstrate the pivotal role of spatial structure in the generation and maintenance of diversity in evolving bacterial populations.In this study, we extended this work by using novel techniques to characterize diversity in Escherichia coli biofilms that allowed us to recover clones from specific depths within a biofilm. The growth kinetics of clones from six different biofilm depths were measured and modeled using an analysis-of-variance formulation of the stochastic Ricker model of population dynamics with environmental noise (11, 40). Rigorous statistical methods were used to show that after 1 month of cultivation, the extant diversity in E. coli biofilms was extraordinarily high and varied with depth.  相似文献   

6.
Human dental biofilm communities comprise several species, which can interact cooperatively or competitively. Bacterial interactions influence biofilm formation, metabolic changes, and physiological function of the community. Lactic acid, a common metabolite of oral bacteria, was measured in the flow cell effluent of one-, two- and three-species communities growing on saliva as the sole nutritional source. We investigated single-species and multispecies colonization by using known initial, early, middle, and late colonizers of enamel. Fluorescent-antibody staining and image analysis were used to quantify the biomass in saliva-fed flow cells. Of six species tested, only the initial colonizer Actinomyces oris exhibited significant growth. The initial colonizer Streptococcus oralis produced lactic acid but showed no significant growth. The early colonizer Veillonella sp. utilized lactic acid in two- and three-species biofilm communities. The biovolumes of all two-species biofilms increased when Veillonella sp. was present as one of the partners, indicating that this early colonizer promotes mutualistic community development. All three-species combinations exhibited enhanced growth except one, i.e., A. oris, Veillonella sp., and the middle colonizer Porphyromonas gingivalis, indicating specificity among three-species communities. Further specificity was seen when Fusobacterium nucleatum (a middle colonizer), Aggregatibacter actinomycetemcomitans (a late colonizer), and P. gingivalis did not grow with S. oralis in two-species biofilms, but inclusion of Veillonella sp. resulted in growth of all three-species combinations. We propose that commensal veillonellae use lactic acid for growth in saliva and that they communicate metabolically with initial, early, middle, and late colonizers to establish multispecies communities on enamel.The human oral cavity contains a widely diverse community of resident bacteria composed of several hundred species (1, 18). They organize into multispecies communities through a recurrent sequence of colonization that occurs after each oral hygiene treatment; for example, dental plaque development on enamel starts with the initial colonizers streptococci and actinomyces (7, 15), which are followed by early-colonizing veillonellae (7, 11, 14), middle-colonizing porphyromonads (7) and fusobacteria (7, 10, 11), and late-colonizing aggregatibacters (9).During the initial stage of biofilm formation, streptococci and actinomyces bind to host-derived receptors in the salivary pellicle coating of enamel. In turn, other species bind to already-adherent cells, a process called coadhesion (2). This process and coaggregation (10), defined as specific cell-to-cell recognition between genetically distinct cells, as well as growth of adherent cells contribute to dental plaque development. While it is known that pure cultures of oral bacteria metabolize dietary sugars to lactic acid, little is known about the importance of lactic acid to community growth on saliva as a sole nutrient source. Most pure cultures and many combinations of species are unable to grow on whole saliva, which is a complex nutritional source. Growth might, in fact, require spatial organization and mutualistic interactions among selected species that collectively possess a combination of metabolic properties that are capable of converting latent nutrition into usable nutrition. In succession, groups of other selected species with other combined metabolic capabilities can further process this complex nutritional source, with a resultant assembling and disassembling of constantly changing oral biofilm communities.Streptococci make up 60 to 90% of the supragingival plaque biomass in the first 24 h of colonization (12, 15). They catabolize carbohydrates to short-chain organic acids, such as lactic acid and pyruvic acid (4). Veillonellae constitute as much as 5% of the initial plaque biomass but are unable to catabolize sugars. They rely on the fermentation of organic acids such as lactic acid (6) and thus set up a convenient metabolic food chain in dental plaque.In vivo studies using gnotobiotic rats demonstrated that veillonellae were unable to establish monoinfections. Yet when a strain of Veillonella was inoculated into rats already monoinfected with a strain of Streptococcus mutans that coaggregates with that Veillonella strain, the number of veillonellae on the teeth of the coinfected animals was 1,000-fold higher than the number when a noncoaggregating Veillonella strain was used (13). Also, in gnotobiotic rats, lower caries and plaque scores were obtained for two-species biofilms than for single-species colonization by streptococci, and inclusion of veillonellae reduced caries activity and demineralization of the enamel by streptococci (13). Streptococcus-Veillonella communities containing coaggregation partners were micromanipulated from 8-h human dental plaque, providing additional evidence of the close association of these two species in vivo (3). Further, Veillonella spp. are juxtaposed with coaggregation receptor polysaccharide-bearing streptococci in early communities in vivo, and a rapid succession of veillonella phylotypes occurs in these communities (16). These reports offer broad-based evidence that veillonellae and streptococci are linked in oral biofilms.The focus of the current investigation was to explore Veillonella-based mixed-species communities in saliva-fed flow cells. The concentration of lactic acid in the effluent of flow cells containing biofilm communities was determined. We hypothesize that spatiotemporal metabolic interactions and coaggregation of Veillonella sp. with Streptococcus oralis and early, middle, and late colonizers allow these organisms to form three-species biofilm communities. We show high specificity of community partnerships among the six species examined, suggesting that successions of species in naturally recurring dental plaque in vivo are centered on metabolic and physical interactions of the community participants which support the nonrandom sequential appearance of species in the development of oral biofilms.  相似文献   

7.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

8.
9.
Planktonic Listeria monocytogenes cells in food-processing environments tend most frequently to adhere to solid surfaces. Under these conditions, they are likely to encounter resident biofilms rather than a raw solid surface. Although metabolic interactions between L. monocytogenes and resident microflora have been widely studied, little is known about the biofilm properties that influence the initial fixation of L. monocytogenes to the biofilm interface. To study these properties, we created a set of model resident Lactococcus lactis biofilms with various architectures, types of matrices, and individual cell surface properties. This was achieved using cell wall mutants that affect bacterial chain formation, exopolysaccharide (EPS) synthesis and surface hydrophobicity. The dynamics of the formation of these biofilm structures were analyzed in flow cell chambers using in situ time course confocal laser scanning microscopy imaging. All the L. lactis biofilms tested reduced the initial immobilization of L. monocytogenes compared to the glass substratum of the flow cell. Significant differences were seen in L. monocytogenes settlement as a function of the genetic background of resident lactococcal biofilm cells. In particular, biofilms of the L. lactis chain-forming mutant resulted in a marked increase in L. monocytogenes settlement, while biofilms of the EPS-secreting mutant efficiently prevented pathogen fixation. These results offer new insights into the role of resident biofilms in governing the settlement of pathogens on food chain surfaces and could be of relevance in the field of food safety controls.Listeria monocytogenes is a food pathogen that has been implicated in numerous food-borne disease outbreaks (5, 58). This organism is found not only in food products but also on surfaces in food-processing plants (18). It is well documented that L. monocytogenes is able to adhere and form persistent biofilms on a variety of solid materials, such as stainless steel, glass, or polymers (18, 48, 51, 52). However, in food-manufacturing plants (and particularly in fermented-food-processing environments), it is most likely that the first contact between a pathogen and a surface will concern a resident microbial biofilm covering the solid surface (10, 35, 46). In this context, such a resident biofilm may be regarded as a “conditioning film” that modifies the topographic and physicochemical characteristics of the surface and hence the adhesion capability of planktonic microorganisms coming into contact with this substratum (6).Once the pathogens are immobilized on the surface, interactions between the pathogens and their environment (physiological interactions with resident flora, nutrient availability, pH, water activity, temperature, and cleaning and disinfection procedures) govern the long-term settlement and persistence of the pathogens on the surface. Various studies have demonstrated the inhibition of L. monocytogenes development by natural “protective” biofilms (10, 66). Competition for nutrients has been demonstrated as a major mechanism underlying the inhibition of pathogen development (25, 27). The production of antimicrobial agents (bacteriocins, acids, and hydrogen peroxide) has also been reported as being of importance to such interactions (13, 20, 36). For example, Lactococcus lactis has been described as being exceptionally efficient in controlling the development of L. monocytogenes on food-processing surfaces by means of competitive exclusion (66) or bacteriocin production (35). It has been reported that treating a surface with a bacterial polysaccharide prevented the adhesion of different nosocomial pathogens (60). Furthermore, alginate-overexpressing Pseudomonas aeruginosa biofilms reduced the retention of Cryptosporidium parvum oocysts (54). Other recent studies have shown that the composition and quantity of specific exopolysaccharides (EPS) in Pseudomonas biofilms can inhibit the fixation of Escherichia coli or Erwinia chrysanthemi planktonic cells in porous media (37, 38).The present study investigated those properties of resident biofilms that could affect the settlement of L. monocytogenes. L. lactis was used as a model resident biofilm strain, as this is widely used in dairy fermentations and its cell wall properties have been the subject of considerable study (22, 23). Cell wall mutants of L. lactis MG1363 were used to create a set of model biofilms that differed in terms of their architecture, EPS synthesis, and cell surface hydrophobicity. These biofilms were used to evaluate the attachment of fluorescent inert polystyrene microbeads and of two reference strains of L. monocytogenes (LO28 and EGDe) using in situ confocal fluorescence imaging.  相似文献   

10.
The biofilm matrix contributes to the chemistry, structure, and function of biofilms. Biofilm-derived membrane vesicles (MVs) and DNA, both matrix components, demonstrated concentration-, pH-, and cation-dependent interactions. Furthermore, MV-DNA association influenced MV surface properties. This bears consequences for the reactivity and availability for interaction of matrix polymers and other constituents.The biofilm matrix contributes to the chemistry, structure, and function of biofilms and is crucial for the development of fundamental biofilm properties (46, 47). Early studies defined polysaccharides as the matrix component, but proteins, lipids, and nucleic acids are all now acknowledged as important contributors (7, 15). Indeed, DNA has emerged as a vital participant, fulfilling structural and functional roles (1, 5, 6, 19, 31, 34, 36, 41, 43, 44). The phosphodiester bond of DNA renders this polyanionic at a physiological pH, undoubtedly contributing to interactions with cations, humic substances, fine-dispersed minerals, and matrix entities (25, 41, 49).In addition to particulates such as flagella and pili, membrane vesicles (MVs) are also found within the matrices of gram-negative and mixed biofilms (3, 16, 40). MVs are multifunctional bilayered structures that bleb from the outer membranes of gram-negative bacteria (reviewed in references 4, 24, 27, 28, and 30) and are chemically heterogeneous, combining the known chemistries of the biofilm matrix. Examination of biofilm samples by transmission electron microscopy (TEM) has suggested that matrix material interacts with MVs (Fig. (Fig.1).1). Since MVs produced in planktonic culture have associated DNA (11, 12, 13, 20, 21, 30, 39, 48), could biofilm-derived MVs incorporate DNA (1, 39, 40, 44)?Open in a separate windowFIG. 1.Possible interactions between matrix polymers and particulate structures. Shown is an electron micrograph of a thin section through a P. aeruginosa PAO1 biofilm. During processing, some dehydration occurred, resulting in collapse of matrix material into fibrillate arrangements (black filled arrows). There is a suggestion of interactions occurring with particulate structures such as MVs (hollow white arrow) and flagella (filled white arrows) (identified by the appearance and cross-dimension of these highly ordered structures when viewed at high magnification), which was consistently observed with other embedded samples and also with whole-mount preparations of gently disrupted biofilms (data not shown). The scale bar represents 200 nm.  相似文献   

11.
A conjugative plasmid from the catheter-associated urinary tract infection strain Escherichia coli MS2027 was sequenced and annotated. This 42,644-bp plasmid, designated pMAS2027, contains 58 putative genes and is most closely related to plasmids belonging to incompatibility group X (IncX1). Plasmid pMAS2027 encodes two important virulence factors: type 3 fimbriae and a type IV secretion (T4S) system. Type 3 fimbriae, recently found to be functionally expressed in E. coli, played an important role in biofilm formation. Biofilm formation by E. coli MS2027 was specifically due to expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027 and enabled a non-biofilm-forming strain to grow as part of a mixed biofilm following acquisition of this plasmid. Thus, the importance of conjugation as a mechanism to spread biofilm determinants was demonstrated. Conjugation may represent an important mechanism by which type 3 fimbria genes are transferred among the Enterobacteriaceae that cause device-related infections in nosocomial settings.Bacterial biofilms are complex communities of bacterial cells living in close association with a surface (17). Bacterial cells in these protected environments are often resistant to multiple factors, including antimicrobials, changes in the pH, oxygen radicals, and host immune defenses (19, 38). Biofilm formation is a property of many bacterial species, and a range of molecular mechanisms that facilitate this process have been described (2, 3, 11, 14, 16, 29, 33, 34). Often, the ability to form a biofilm is dependent on the production of adhesins on the bacterial cell surface. In Escherichia coli, biofilm formation is enhanced by the production of certain types of fimbriae (e.g., type 1 fimbriae, type 3 fimbriae, F1C, F9, curli, and conjugative pili) (14, 23, 25, 29, 33, 39, 46), cell surface adhesins (e.g., autotransporter proteins such as antigen 43, AidA, TibA, EhaA, and UpaG) (21, 34, 35, 40, 43), and flagella (22, 45).The close proximity of bacterial cells in biofilms creates an environment conducive for the exchange of genetic material. Indeed, plasmid-mediated conjugation in monospecific and mixed E. coli biofilms has been demonstrated (6, 18, 24, 31). The F plasmid represents the best-characterized conjugative system for biofilm formation by E. coli. The F pilus mediates adhesion to abiotic surfaces and stabilizes the biofilm structure through cell-cell interactions (16, 30). Many other conjugative plasmids also contribute directly to biofilm formation upon derepression of the conjugative function (16).One example of a conjugative system employed by gram-negative Enterobacteriaceae is the type 4 secretion (T4S) system. The T4S system is a multisubunit structure that spans the cell envelope and contains a secretion channel often linked to a pilus or other surface filament or protein (8). The Agrobacterium tumefaciens VirB-VirD4 system is the archetypical T4S system and is encoded by 11 genes in the virB operon and one gene (virD4) in the virD operon (7, 8). Genes with strong homology to genes in the virB operon have also been identified on other conjugative plasmids. For example, the pilX1 to pilX11 genes on the E. coli R6K IncX plasmid and the virB1 to virB11 genes are highly conserved at the nucleotide level (28).We recently described identification and characterization of the mrk genes encoding type 3 fimbriae in a uropathogenic strain of E. coli isolated from a patient with a nosocomial catheter-associated urinary tract infection (CAUTI) (29). The mrk genes were located on a conjugative plasmid (pMAS2027) and were strongly associated with biofilm formation. In this study we determined the entire sequence of plasmid pMAS2027 and revealed the presence of conjugative transfer genes homologous to the pilX1 to pilX11 genes of E. coli R6K (in addition to the mrk genes). We show here that biofilm formation is driven primarily by type 3 fimbriae and that the T4S apparatus is unable to mediate biofilm growth in the absence of the mrk genes. Finally, we demonstrate that conjugative transfer of pMAS2027 within a mixed biofilm confers biofilm formation properties on recipient cells due to acquisition of the type 3 fimbria-encoding mrk genes.  相似文献   

12.
13.
Most microbes, including the fungal pathogen Cryptococcus neoformans, can grow as biofilms. Biofilms confer upon microbes a range of characteristics, including an ability to colonize materials such as shunts and catheters and increased resistance to antibiotics. Here, we provide evidence that coating surfaces with a monoclonal antibody to glucuronoxylomannan, the major component of the fungal capsular polysaccharide, immobilizes cryptococcal cells to a surface support and, subsequently, promotes biofilm formation. We used time-lapse microscopy to visualize the growth of cryptococcal biofilms, generating the first movies of fungal biofilm growth. We show that when fungal cells are immobilized using surface-attached specific antibody to the capsule, the initial stages of biofilm formation are significantly faster than those on surfaces with no antibody coating or surfaces coated with unspecific monoclonal antibody. Time-lapse microscopy revealed that biofilm growth was a dynamic process in which cells shuffled position during budding and was accompanied by emergence of planktonic variant cells that left the attached biofilm community. The planktonic variant cells exhibited mobility, presumably by Brownian motion. Our results indicate that microbial immobilization by antibody capture hastens biofilm formation and suggest that antibody coating of medical devices with immunoglobulins must exclude binding to common pathogenic microbes and the possibility that this effect could be exploited in industrial microbiology.Cryptococcus neoformans is a fungal pathogen that is ubiquitous in the environment and enters the body via the inhalation of airborne particles. The C. neoformans cell is surrounded by a layer of polysaccharide that consists predominantly of glucuronoxylomannan (GXM), which forms a protective capsule around the microbe. The capsule has been shown to be essential for virulence in murine models of infection (5-7) and, thus, is considered a key virulence factor. C. neoformans is the causative agent of cryptococcosis, a disease that primarily affects individuals with impaired immune systems, and is a significant problem in AIDS patients (21, 31). The most common manifestation of cryptococcosis is meningoencephalitis.Biofilms are communities of microbes that are attached to surfaces and held together by an extracellular matrix, often consisting predominantly of polysaccharides (8, 10). A great deal is known about bacterial biofilms (3, 9, 24, 30), but fungal biofilm formation is much less studied. Candida albicans is known to synthesize biofilms (11, 28, 29), as is C. neoformans. Biofilm-like structures consisting of innumerable cryptococcal cells encased in a polysaccharide matrix have been reported in human cases of cryptococcosis (32). Biofilm formation confers upon the microbe the capacity for drug resistance, and microbial cells in biofilms are less susceptible to host defense mechanisms (2, 4, 9, 12). In this regard, cells within C. neoformans biofilms are significantly less susceptible to caspofungin and amphotericin B than are planktonic cells (19). The cells within the biofilm are also resistant to the actions of fluconazole and voriconazole and various microbial oxidants and peptides (17, 19).Bacterial and fungal biofilms form readily on prosthetic materials, which poses a tremendous risk of chronic infection (10, 13, 15, 27). C. neoformans biofilms can form on a range of surfaces, including glass, polystyrene, and polyvinyl, and material devices, such as catheters (16). C. neoformans can form biofilms on the ventriculoatrial shunts used to decompress intracerebral pressure in patients with cryptococcal meningoencephalitis (32).The polysaccharide capsule of C. neoformans is essential for biofilm formation (18), and biofilm formation involves the shedding and accumulation of large amounts of GXM into the biofilm extracellular matrix (16). Previously, we reported that antibody to GXM in solution could inhibit biofilm formation through a process that presumably involves interference with polysaccharide shedding (18, 20). However, the effect of antibody-mediated immobilization of C. neoformans cells on cryptococcal biofilm formation has not been explored. In this paper, we report that the monoclonal antibody (MAb) 18B7, which is specific for the capsular polysaccharide GXM, can capture and immobilize C. neoformans to surfaces, a process that promotes biofilm formation. Interestingly, we identified planktonic variant C. neoformans cells that appeared to escape from the biofilm, but whose functions are not known. The results provide new insights on biofilm formation.  相似文献   

14.
15.
16.
Biofilms are considered to be highly resistant to antimicrobial agents. Several mechanisms have been proposed to explain this high resistance of biofilms, including restricted penetration of antimicrobial agents into biofilms, slow growth owing to nutrient limitation, expression of genes involved in the general stress response, and emergence of a biofilm-specific phenotype. However, since combinations of these factors are involved in most biofilm studies, it is still difficult to fully understand the mechanisms of biofilm resistance to antibiotics. In this study, the antibiotic susceptibility of Escherichia coli cells in biofilms was investigated with exclusion of the effects of the restricted penetration of antimicrobial agents into biofilms and the slow growth owing to nutrient limitation. Three different antibiotics, ampicillin (100 μg/ml), kanamycin (25 μg/ml), and ofloxacin (10 μg/ml), were applied directly to cells in the deeper layers of mature biofilms that developed in flow cells after removal of the surface layers of the biofilms. The results of the antibiotic treatment analyses revealed that ofloxacin and kanamycin were effective against biofilm cells, whereas ampicillin did not kill the cells, resulting in regrowth of the biofilm after the ampicillin treatment was discontinued. LIVE/DEAD staining revealed that a small fraction of resistant cells emerged in the deeper layers of the mature biofilms and that these cells were still alive even after 24 h of ampicillin treatment. Furthermore, to determine which genes in the biofilm cells are induced, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. The results showed that significant changes in gene expression occurred during biofilm formation, which were partly induced by rpoS expression. Based on the experimental data, it is likely that the observed resistance of biofilms can be attributed to formation of ampicillin-resistant subpopulations in the deeper layers of mature biofilms but not in young colony biofilms and that the production and resistance of the subpopulations were aided by biofilm-specific phenotypes, like slow growth and induction of rpoS-mediated stress responses.Reduced susceptibility of biofilm bacteria to antimicrobial agents is a crucial problem for treatment of chronic infections (11, 29, 48). It has been estimated that 65% of microbial infections are associated with biofilms (11, 29, 37), and biofilm cells are 100 to 1,000 times more resistant to antimicrobial agents than planktonic bacterial cells (11, 29, 32).The molecular nature of this apparent resistance has not been elucidated well, and a number of mechanisms have been proposed to explain the reduced susceptibility, such as restricted antibiotic penetration (47), decreased growth rates and metabolism (7, 52), quorum sensing and induction of a biofilm-specific phenotype (8, 29, 35, 39, 49), stress response activation (7, 52), and an increase in expression of efflux pumps (14). Biofilm resistance has generally been assumed to be due to the fact that the cells in the deeper layers of thick biofilms, which grow more slowly, have less access to antibiotics and nutrients. However, this is not the only reason in many cases. Familiar mechanisms of antibiotic resistance, such as modifying enzymes and target mutations, do not seem to be responsible for the biofilm resistance. Even sensitive bacteria that do not have a known genetic basis for resistance can exhibit profoundly reduced susceptibility when they form biofilms (48).It was reported previously that changes in gene expression induced a biofilm-specific phenotype (5, 13, 22, 35, 41, 42). Several genes have been proposed to be particularly important for biofilm formation, and the importance of the rpoS gene in Escherichia coli biofilm formation was suggested recently (1, 10, 22, 42). It has been suggested that induction of an rpoS-mediated stress response results in physiological changes that could contribute to antibiotic resistance (29). Although several mechanisms and genes have been proposed to explain biofilm resistance to antibiotics, this resistance is not still fully understood because these mechanisms seem to work together within a biofilm community. In addition, the physiology of biofilm cells is remarkably heterogeneous and varies according to the location of individual cells within biofilms (33, 34, 46).In this study, susceptibility of E. coli cells in biofilms to antibiotics was investigated. The E. coli cells in the deeper layers of mature biofilms were directly treated with three antibiotics with different molecular targets, the β-lactam ampicillin, the aminoglycoside kanamycin, and the fluoroquinolone ofloxacin. The biofilm biomass was removed before antibiotic treatment, and only the cells located in the deeper layers of the mature biofilms were directly exposed to antibiotics; thus, the effects of restricted antibiotic and nutrient penetration, as well as heterogeneous physiological states in biofilms, were reduced. Although ofloxacin and kanamycin effectively killed the biofilm cells, ampicillin could not kill the cells, which led to regrowth of biofilms. However, the cells in young colony biofilms were completely killed by ampicillin. Therefore, to determine which genes are induced in the mature biofilm cells, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. Based on the experimental data obtained, possible mechanisms of the increased biofilm resistance to ampicillin are discussed below.  相似文献   

17.
18.
19.
The microaerophilic human pathogen Campylobacter jejuni is the leading cause of food-borne bacterial gastroenteritis in the developed world. During transmission through the food chain and the environment, the organism must survive stressful environmental conditions, particularly high oxygen levels. Biofilm formation has been suggested to play a role in the environmental survival of this organism. In this work we show that C. jejuni NCTC 11168 biofilms developed more rapidly under environmental and food-chain-relevant aerobic conditions (20% O2) than under microaerobic conditions (5% O2, 10% CO2), although final levels of biofilms were comparable after 3 days. Staining of biofilms with Congo red gave results similar to those obtained with the commonly used crystal violet staining. The level of biofilm formation by nonmotile aflagellate strains was lower than that observed for the motile flagellated strain but nonetheless increased under aerobic conditions, suggesting the presence of flagellum-dependent and flagellum-independent mechanisms of biofilm formation in C. jejuni. Moreover, preformed biofilms shed high numbers of viable C. jejuni cells into the culture supernatant independently of the oxygen concentration, suggesting a continuous passive release of cells into the medium rather than a condition-specific active mechanism of dispersal. We conclude that under aerobic or stressful conditions, C. jejuni adapts to a biofilm lifestyle, allowing survival under detrimental conditions, and that such a biofilm can function as a reservoir of viable planktonic cells. The increased level of biofilm formation under aerobic conditions is likely to be an adaptation contributing to the zoonotic lifestyle of C. jejuni.Infection with Campylobacter jejuni is the leading cause of food-borne bacterial gastroenteritis in the developed world and is often associated with the consumption of undercooked poultry products (19). The United Kingdom Health Protection Agency reported more than 45,000 laboratory-confirmed cases for England and Wales in 2006 alone, although this is thought to be a 5- to 10-fold underestimation of the total number of community incidents (20, 43). The symptoms associated with C. jejuni infection usually last between 2 and 5 days and include diarrhea, vomiting, and stomach pains. Sequelae of C. jejuni infection include more-serious autoimmune diseases, such as Guillain-Barré syndrome, Miller-Fisher syndrome (18), and reactive arthritis (15).Poultry represents a major natural reservoir for C. jejuni, since the organism is usually considered to be a commensal and can reach densities as high as 1 × 108 CFU g of cecal contents−1 (35). As a result, large numbers of bacteria are shed via feces into the environment, and consequently, C. jejuni can spread rapidly through a flock of birds in a broiler house (1). While well adapted to life in the avian host, C. jejuni must survive during transit between hosts and on food products under stressful storage conditions, including high and low temperatures and atmospheric oxygen levels. The organism must therefore have mechanisms to protect itself from unfavorable conditions.Biofilm formation is a well-characterized bacterial mode of growth and survival, where the surface-attached and matrix-encased bacteria are protected from stressful environmental conditions, such as UV radiation, predation, and desiccation (7, 8, 28). Bacteria in biofilms are also known to be >1,000-fold more resistant to disinfectants and antimicrobials than their planktonic counterparts (11). Several reports have now shown that Campylobacter species are capable of forming a monospecies biofilm (21, 22) and can colonize a preexisting biofilm (14). Biofilm formation can be demonstrated under laboratory conditions, and environmental biofilms, from poultry-rearing facilities, have been shown to contain Campylobacter (5, 32, 44). Campylobacter biofilms allow the organism to survive up to twice as long under atmospheric conditions (2, 21) and in water systems (27).Molecular understanding of biofilm formation by Campylobacter is still in its infancy, although there is evidence for the role of flagella and gene regulation in biofilm formation. Indeed, a flaAB mutant shows reduced biofilm formation (34); mutants defective in flagellar modification (cj1337) and assembly (fliS) are defective in adhering to glass surfaces (21); and a proteomic study of biofilm-grown cells shows increased levels of motility-associated proteins, including FlaA, FlaB, FliD, FlgG, and FlgG2 (22). Flagella are also implicated in adhesion and in biofilm formation and development in other bacterial species, including Aeromonas, Vibrio, Yersinia, and Pseudomonas species (3, 23, 24, 31, 42).Previous studies of Campylobacter biofilms have focused mostly on biofilm formation under standard microaerobic laboratory conditions. In this work we have examined the formation of biofilms by motile and nonmotile C. jejuni strains under atmospheric conditions that are relevant to the survival of this organism in a commercial context of environmental and food-based transmission.  相似文献   

20.
Biofilms are composed of bacterial cells encased in a self-synthesized, extracellular polymeric matrix. Poly-β(1,6)-N-acetyl-d-glucosamine (PNAG) is a major biofilm matrix component in phylogenetically diverse bacteria. In this study we investigated the physical and chemical properties of the PNAG matrix in biofilms produced in vitro by the gram-negative porcine respiratory pathogen Actinobacillus pleuropneumoniae and the gram-positive device-associated pathogen Staphylococcus epidermidis. The effect of PNAG on bulk fluid flow was determined by measuring the rate of fluid convection through biofilms cultured in centrifugal filter devices. The rate of fluid convection was significantly higher in biofilms cultured in the presence of the PNAG-degrading enzyme dispersin B than in biofilms cultured without the enzyme, indicating that PNAG decreases bulk fluid flow. PNAG also blocked transport of the quaternary ammonium compound cetylpyridinium chloride (CPC) through the biofilms. Binding of CPC to biofilms further impeded fluid convection and blocked transport of the azo dye Allura red. Bioactive CPC was efficiently eluted from biofilms by treatment with 1 M sodium chloride. Taken together, these findings suggest that CPC reacts directly with the PNAG matrix and alters its physical and chemical properties. Our results indicate that PNAG plays an important role in controlling the physiological state of biofilms and may contribute to additional biofilm-associated processes such as biocide resistance.Biofilms are composed of bacterial cells encased in a self-synthesized, extracellular polymeric matrix (7). The main function of the biofilm matrix is to provide a structural framework that holds the cells together in a mass and firmly attaches the bacterial mass to the underlying surface. In addition to having a structural role, the matrix provides biofilm cells with a protected microenvironment containing dissolved nutrients, secreted enzymes, DNA, and phages. The matrix may also contribute to the increased antimicrobial resistance exhibited by biofilm cells, either by providing a diffusion barrier or by directly binding to antimicrobial agents and preventing their penetration into the biofilm (19).Polysaccharides are a major matrix component in most bacterial biofilms (26). Poly-β(1,6)-N-acetyl-d-glucosamine (PNAG) is an extracellular polysaccharide that mediates biofilm cohesion in numerous gram-negative members of the Proteobacteria family, including Escherichia coli, Yersinia pestis, Pseudomonas fluorescens, Bordetella spp., Xenorhabdus nematophila, Aggregatibacter actinomycetemcomitans, and Actinobacillus pleuropneumoniae (4, 8, 15, 22), and in the gram-positive species Staphylococcus aureus and Staphylococcus epidermidis (3, 17). Specific biofilm-related functions ascribed to PNAG include abiotic surface attachment (1), epithelial cell attachment (23, 28), intercellular adhesion (15, 17), and resistance to killing by antibiotics, detergents, antimicrobial peptides, and mammalian phagocytic cells (9, 10, 16, 27, 29).In the present study we investigated the physical and chemical properties of the PNAG matrix in biofilms produced by the porcine respiratory pathogen A. pleuropneumoniae and the device-associated pathogen S. epidermidis. By using a novel centrifugal filter device assay, we obtained evidence that PNAG significantly inhibits fluid convection and solute transport through A. pleuropneumoniae and S. epidermidis biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号