首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transplantation is useful for elucidating the functions of structural modules and for engineering enzyme properties. Unexpectedly, transplanting a hyper-thermophilic carbohydrate-binding module, CBM9_1-2, into the mesophilic Aspergillus niger GH11 xylanase (Xyn) slightly decreased the thermal inactivation half-life of Xyn. This effect was further investigated by dividing the CBM9_1-2 module into two smaller parts, C1 and C2, which were transplanted into Xyn to create the chimeras Xyn-C1 and Xyn-C2. Both chimeras exhibited higher catalytic activities on xylan than native Xyn. Xyn-C2 exhibited higher binding affinities for both oat spelt and birch wood xylans, and its thermal inactivation half-life (69.3 min) was 4 or 5 times longer than that of Xyn (17.6 min), Xyn-C1 (13.4 min), and the original chimera containing CBM9_1-2 (13.8 min). In contrast, Xyn-C1 exhibited higher binding affinity for oat spelt xylan, but not for birch wood xylan. Through this rational engineering of the fungal xylanase, the C2 sub-module was shown to have a different thermostabilizing effect than the C1 sub-module. The different functions of the smaller parts of a large module can play pivotal roles in transplantation.  相似文献   

2.
《Process Biochemistry》2014,49(3):451-456
An extracellular and cellulase-free xylanase (EX624) was produced by Streptomyces sp. CS624 using an agricultural residue (wheat bran) as a growth substrate. EX624 was purified from culture supernatant using ammonium sulfate precipitation, ion exchange and gel filtration chromatography. The SDS-PAGE and the zymogram analysis of the purified xylanase indicated molecular mass of 40 kDa. Biochemical characterization of the purified EX624 revealed its highest activity at a temperature of 60 °C and pH 6.0. The xylanase was adequately stable in the pH range 4.5–10.0 and at temperatures ≤50 °C. EX624 displayed enhanced activity in the presence of several metal ions including Fe2+, Co2+ and Ca2+. HPLC results showed that EX624 was not only able to hydrolyze commercially available pure beechwood xylan to xylose, xylobiose and xylotriose, but also abundantly available lignocellulosic agricultural residues in nature such as wheat bran to xylooligosaccharides.  相似文献   

3.
To improve the thermostability of Trichoderma reesei xylanase 2 (Xyn2), the thermostabilizing domain (A2) from Thermotoga maritima XynA were engineered into the N-terminal region of the Xyn2 protein. The xyn2 and hybrid genes were successfully expressed in Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from S. cerevisiae (α-factor). The transformants expressed the hybrid gene produced clearly increased both the thermostability and substrate-binding capacity compared to the corresponding strains expressed the native Xyn2 gene. The activity of the hybrid enzyme was highest at 65 °C that was 10 °C higher than the native Xyn2. The hybrid enzyme was stable at 60 °C and retained more than 85% of its activity after 30-min incubation at this temperature. The hybrid enzyme was highly specific toward xylan and analysis of the products from birchwood xylan degradation confirmed that the enzyme was an endo-xylanase with xylobiose and xylotriose as the main degradation products. These attributes should make it an attractive applicant for various applications. Our results also suggested that the N-terminal domain A2 is responsible for both the thermostability and substrate-binding capacity of T. maritima XynA.  相似文献   

4.
Novel xylanase (EC 3.2.1.8) is in great demand due to its industrial significance. In this study, we have developed and characterized a novel xylanase-producing yeast strain. This mature xylanase gene xyn11A consists of 870 base pairs and belongs to GH11 family. The gene sequence was optimized and synthesized, and was then cloned into yeast vector pGAPZαA under the control of the constitutive GAP promoter. SDS-PAGE analysis indicates that Xyn11A is extracellularly expressed as a glycosylated protein in P. pastoris. Xyn11A is optimally active at 70 °C and pH 7.4. This xylanase retained more than 90% of its activity after incubation at 50 °C and 60 °C for up to 1 h. Xyn11A is also stable over a wide range of pH (2.0–11.0). Most metal ions tested such as copper (Cu2+) and lead (Pb2+) have little inhibitory effects on Xyn11A. It is also resistant to pepsin and proteinase K digestion, retaining 80% and 90% of its activity after digestion at 37 °C for 1 h, respectively. Those superior properties make Xyn11A a robust xylanase with great potential for industrial use. To the best of our knowledge, this is the first report of xylanase from the fungus Corynascus thermophilus.  相似文献   

5.
《Process Biochemistry》2010,45(3):419-424
Two xylanases were purified to electrophoretic homogeneity from the thermophilic fungus Sporotrichum thermophile grown in a submerged liquid culture using wheat straw as carbon source. The enzymes, StXyn1 and StXyn2, have molecular masses of 24 kDa and 48 kDa, respectively, and are optimally active at pH 5 and at 60 °C. Both enzymes displayed remarkable stability up to 50 °C for 1 h, exhibiting a half-life of 60 min (StXyn1) and 115 min (StXyn2) at 60 °C. Biochemical characterization of the two xylanases against poly- and oligosaccharides indicated that StXyn1 and StXyn2 hydrolytic profiles match those of xylanase family 11 and family 10, respectively. LC–MS/MS analysis provided peptide mass and sequence information that assisted the identification of the corresponding xylanase genes from the S. thermophile genome and the classification of the two purified StXyn1 and StXyn2 as a family GH11 and GH10 endo-1,4-β-xylanases, respectively.  相似文献   

6.
《Process Biochemistry》2014,49(1):77-83
Endo-xylanases play a key role in the hydrolysis of xylan and recently they have attracted much attention due to their potential applications on the biofuel and paper industries. We isolated a Pseudozyma brasiliensis sp. nov. strain from the intestinal tract of Chrysomelidae larvae that parasitize sugarcane roots. This basidiomycetous yeast produces a xylanase designated PbXynA which was purified and characterized. The molecular weight of PbXynA is 24 kDa, it belongs to the GH11 family and its optimum pH and optimum temperature are 4.0 and 55 °C, respectively. PbXynA has as secondary structure predominantly β-sheets and sigmoidal kinetic behavior with elevated speed conversion from substrate-to-products (Vmax = 2792.0 μmol product/min/mg protein). It is highly activated by bivalent cations such as Ca2+, however in the presence of Cu2+ xylanase activity was inhibited. It has a high specific activity and produces xylooligosaccharides that have a variety of industrial applications, indicating PbXynA has a great biotechnological potential.  相似文献   

7.
Paenibacillus curdlanolyticus B-6 Xyn10C is a single module xylanase consisting of a glycoside hydrolase family-10 catalytic module. The recombinant enzyme, rXyn10C, was produced by Escherichia coli and characterized. rXyn10C was highly active toward soluble xylans derived from rye, birchwood, and oat spelt, and slightly active toward insoluble wheat arabinoxylan. It hydrolyzed xylooligosaccharides larger than xylotetraose to produce xylotriose, xylobiose, and xylose. When rye arabinoxylan and oat spelt xylan were treated with the enzyme and the hydrolysis products were analyzed by thin layer chromatography (TLC), two unknown hydrolysis products, U1 and U2, were detected in the upper position of xylose on a TLC plate. Electrospray ionization mass spectrometry and enzymatic analysis using Bacillus licheniformis α-l-arabinofuranosidase Axh43A indicated that U1 was α-l-Araf-(1  2)-[α-l-Araf-(1  3)]-d-Xylp and U2 was α-l-Araf-(1  2)-d-Xylp, suggesting that rXyn10C had strong activity toward a xylosidic linkage before and after a doubly arabinose-substituted xylose residue and was able to accommodate an α-1,2- and α-1,3-linked arabinose-substituted xylose unit in both the −1 and +1 subsites. A molecular docking study suggested that rXyn10C could accommodate a doubly arabinose-substituted xylose residue in its catalytic site, at subsite −1. This is the first report of a xylanase capable of producing α-l-Araf-(1  2)-[α-l-Araf-(1  3)]-d-Xylp from highly arabinosylated xylan.  相似文献   

8.
This study aimed to obtain xylanase exhibiting improved enzyme properties to satisfy the requirements for industrial applications. The baxA gene encoding Bacillus amyloliquefaciens xylanase A was mutated by error-prone touchdown PCR. The mutant, pCbaxA50, was screened from the mutant library by using the 96-well plate high-throughput screening method. Sequence alignment revealed the identical mutation point S138T in xylanase (reBaxA50) produced by the pCbaxA50. The specific activity of the purified reBaxA50 was 9.38 U/mg, which was 3.5 times higher than that of its parent expressed in Escherichia coli BL21 (DE3), named reBaxA. The optimum temperature of reBaxA and reBaxA50 were 55 °C and 50 °C, respectively. The optimum pH of reBaxA and reBaxA50 were pH 6 and pH 5, respectively. Moreover, reBaxA50 was more stable than reBaxA under thermal and extreme pH treatment. The half-life at 60 °C and apparent melting temperature of reBaxA50 were 9.74 min and 89.15 °C, respectively. High-performance liquid chromatography showed that reBaxA50 released xylooligosaccharides from oat spelt, birchwood, and beechwood xylans, with xylotriose as the major product; beechwood xylan was also the most thoroughly hydrolyzed. This study demonstrated that the S138T mutation possibly improved the catalytic activity and thermostability of reBaxA50.  相似文献   

9.
One mannanase and one of the three xylanases produced by Ceriporiopsis subvermispora grown on Pinus taeda wood chips were characterized. A combination of ion exchange chromatography and SDS-PAGE data revealed the existence of a high-molecular-weight mannanase of 150 kDa that was active against galactoglucomannan and xylan. Its activity was optimal at pH 4.5. The Km value with galactoglucomannan as substrate was 0.50 mg ml?1. One xylanase with molecular mass of 79 kDa was also purified and characterized. Its activity was optimal at 60 °C and pH 8.0. Its Km value with birchwood xylan as substrate was 1.65 mg ml?1. Both the mannanase and the 79 kDa xylanase displayed relatively high activity on carboxymethyl cellulose. The sensitivity of the xylanase and mannanase to various salts was evaluated. None of the tested salts inhibited the xylanase, but Mn+2, Fe+3, and Cu+2 were strong inhibitors for the mannanase.  相似文献   

10.
A xylanase-producing, Gram-positive, aerobic, and spore-forming bacterium was isolated from a soil sample collected from Jeju Island and was classified as a novel subspecies of Streptomyces thermocarboxydus on the basis of 16S rRNA gene sequence similarity, the results of DNA–DNA hybridization analysis, and phenotypic characteristics. The novel strain was named as S. thermocarboxydus subsp. MW8 (=KCTC29013 = DSM52054). This strain produced extracellular xylanase. Xylanase from the strain was purified to homogeneity and had an apparent molecular weight of 52 kDa. The NH2-terminal sequence (Ala-Glu-Ile-Arg-Leu) was distinct from those of previously reported xylanases. The purified xylanase produced xylobiose as the end-product of birchwood xylan hydrolysis. The Km and Vmax values of the purified xylanase on birchwood xylan were 1.71 mg/ml and 357.14 U/mg, respectively. The optimum pH and temperature for the enzyme were found to be 7.0 and 50 °C, respectively, and the enzyme exhibited significant heat stability. In addition, the enzyme was active over broad pH ranges: 84% of the maximum activity at pH 5.0, 84–88% at pH 6.0, 88% at pH 8.0, and 75–81% (pH 9.0). These enzymatic properties may be very useful for use in bio-industrial applications.  相似文献   

11.
《Process Biochemistry》2010,45(10):1730-1737
An aerobic xylanolytic Gracilibacillus sp. TSCPVG growing at moderate to extreme salinity (1–30%) and neutral to alkaline pH (6.5–10.5) was isolated from the salt fields near Sambhar district of Rajasthan, India. β-xylanase (18.44 U/ml) and β-xylosidase (1.01 U/ml) were produced in 60 h in the GSL-2 mineral base medium with additions of (in g/l) Birchwood xylan (7.5), yeast extract (10.0), tryptone (8.0), proline (2.0), thiamine (2.0), Tween-40 (2.0) and NaCl (35) at pH 7.5, 30 °C and 180 rpm. The β-xylanase was active within a broad salinity range (0–30% NaCl), pH (5.0–10.5) and temperature (50–70 °C). It exhibited maximal activity with 3.5% NaCl, pH 7.5 at 60 °C. It was extremely halotolerant retaining more than 80% of activity at 0 and 30% NaCl and alkali-tolerant retaining 76% of activity at pH 10.5. The acetone precipitated xylanase was highly stable (100%) at variable salinities of 0–30% NaCl, pH of 5.0–10.5 and temperatures of 0–60 °C for 48 h. HPLC analysis showed xylose, arabinose and xylooligosaccharides as hydrolysis products of xylan. This is the first report on hemi-cellulose degrading halo-alkali-thermotolerant enzyme from a moderately halophilic Gram-positive Gracilibacillus species.  相似文献   

12.
ThxynA, an extracellular xylanase of T. halotolerans YIM 90462T, was purified to homogeneity from a fermentation broth by ultra-filtration, ammonium sulphate precipitation, hydrophobic chromatography and ion exchange chromatography. The purified xylanase has a molecular mass of 24 kDa and is optimally active at 80 °C and pH 6.0. The enzyme is stable over a broad pH range (pH 6.0–10.0) and shows good thermal stability when incubated at 70 °C for 1 h. The Km and Vmax values of the enzyme are 11.6 mg/mL and 434 μmol mg?1 min?1, respectively, using oat spelt xylan as a substrate. Moreover, the enzyme seemingly has both xylanase activity and cellulase activity. These unique properties suggest that it may be useful for industrial applications.  相似文献   

13.
《Process Biochemistry》2010,45(10):1638-1644
An open reading frame (XylX) with 1131 nucleotides from Paenibacillus campinasensis BL11 was cloned and expressed in E. coli. It encodes a family 11 endoxylanase, designated as XylX, of 41 kDa. The homology of the amino acid sequence deduced from XylX is only 73% identical to the next closest sequence. XylX contains a family 11 catalytic domain of the glycoside hydrolase and a family 6 cellulose-binding module. The recombinant xylanase was fused to a His-tag for affinity purification. The XylX activity was 2392 IU/mg, with a Km of 6.78 mg/ml and a Vmax of 4953 mol/min/mg under optimal conditions (pH 7, 60 °C). At pH 11, 60 °C, the activity was still as high as 517 IU/mg. Xylanase activities at 60 °C under pH 5 to pH 9 remained at more than 69.4% of the initial activity level for 8 h. The addition of Hg2+ at 5 mM almost completely inhibited xylanase activity, whereas the addition of tris-(2-carboxyethyl)-phosphine (TCEP) and 2-mercaptoethanol stimulated xylanase activity. No relative activities for Avicel, CMC and d-(+)-cellobiose were found. Xylotriose constitutes the majority of the hydrolyzed products from oat spelt and birchwood xylan. Broad pH and temperature stability shows its application potentials for biomass conversion, food and pulp/paper industries.  相似文献   

14.
《Process Biochemistry》2014,49(3):386-394
The screening and selection of the culture variables followed by optimization using statistical approaches led to a 23-fold enhancement in thermo-alkali-stable xylanase production by the polyextremophilic Bacillus halodurans TSEV1. The optimization of crucial parameters involved in the extraction of xylanase from the bacterial bran led to a high enzyme recovery. The purified xylanase produced in submerged fermentation (SmF) and solid state fermentation (SSF) was visualized as a single band on SDS-PAGE with a molecular mass of 40 kDa. The SSF-xylanase is optimally active at 78 °C and pH 9.0 and stable in the pH range between 7.0 and 12.0 with a T1/2 of 65 min at 90 °C, which is higher than that of SmF-xylanase. The higher activation energy, enthalpy of deactivation (ΔH*), free energy change of deactivation (ΔG*) and T1/2 of SSF-xylanase than these of SmF xylanase further confirmed higher thermostability of the former than the latter. The combination of commercial cellulase and TSEV1 xylanase was highly effective in deinking of waste paper at alkaline pH and elevated temperatures.  相似文献   

15.
New β-1,4-d-xylan xylanohydrolase (XAn11) belonging to the xylanase 11 family was purified to homogeneity from a newly soil-isolated Aspergillus niger US368 strain. The pure xylanase is a glycosylated monomer having a molecular mass of about 26 kDa. The N-terminal sequence of the purified enzyme was determined and compared to some Aspergillus xylanases N-terminal ones. The gene encoding the XAn11 was cloned and sequenced.The maximal xylanase activity was obtained at pH 5.0 and 55 °C. The XAn11 was found to be stable in a wide range of pH (3–9) and in presence of some detergents and organic solvents. A specific activity of about 805.6 U/mg or 334 U/mg was measured using birchwood xylan or oatspelt xylan as substrate, respectively. A structural explanation of the difference between experimental and theoretical molecular mass as well as the stability of the enzyme against acidic pH was proposed by molecular modeling.  相似文献   

16.
The functional properties of extremophilic Dictyoglomus thermophilum xylanase (XYNB) and the N-terminal disulphide-bridge mutant (XYNB-DS) were studied at high pressure and temperature. The enzymes were quite stable even at the pressure of 500 MPa at 80 °C. The half-life of inactivation in these conditions was over 30 h. The inactivation at 80 °C in atmospheric pressure was only 3-times slower. The increase of pressure up to 500 MPa at 80 °C decreased only slightly the enzyme's stability, whereas in 500 MPa the increase of temperature from 22 to 80 °C decreased significantly more the enzyme's stability. While the high temperature (80–100 °C) decreased the enzyme reaction with short xylooligosaccharides (xylotetraose and xylotriose), the high pressure (100–300 MPa) had an opposite effect. The temperature of 100 °C strongly increased the Km but did not affect the kcat to the same extent, thus indicating that the interaction of the substrate with the active site suffers before the catalytic reaction begins to decrease as the temperature rises. Circular dichroism spectroscopy showed the high structural stability of XYNB and XYNB-DS at 93 °C.  相似文献   

17.
The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 was isolated and characterised in birchwood xylan cultures. The predominant activity in the crude culture was xylanase activity, but the crude culture also displayed Avicelase, carboxymethylcellulase (CMCase), mannanase, and pectinase activity. Most of the xylanase activity was found in the culture supernatant, but some activity was cell-associated. Using Sepharose 4B size exclusion chromatography, a 2000 kDa multi-enzyme complex (MEC) was purified. The MEC contained predominantly xylanase activity, as well as significant levels of mannanase and CMCase activity, but no Avicelase activity. SDS-PAGE revealed up to eight visible bands in the MEC while zymograms of the MEC displayed two xylanase active bands at 21 kDa and 45 kDa, and two CMCase active bands at 25 kDa and 30 kDa. More active bands were visible in the crude supernatant with an additional xylanase active band at 40 kDa and an additional CMCase active band at 55 kDa. Using thin layer chromatography (TLC), it was established that the crude fraction could release xylose from insoluble birchwood xylan, while the MEC was only able to produce xylobiose from this substrate. The MEC was further able to bind to insoluble xylan, but was unable to bind to crystalline cellulose. This MEC lacks many of the characteristic features of a cellulosome and is most likely a different type of complex. The presence of both high xylanase and mannanase activity makes this MEC unusual.  相似文献   

18.
The novel termite gut metagenomic-derived GH11 xylanase gene xyl7 was expressed in Escherichia coli BL21, and the purified XYL7 enzyme exhibited high specific activity (6340 U/mg) and broad pH active range of 5.5–10.0. Directed evolution was employed to enhance the thermostability of XYL7; two mutants (XYL7-TC and XYL7-TS) showed a 250-fold increase in half-life at 55 °C, with a 10 °C increase in optimal temperature compared to that of wild-type XYL7. A truncated enzyme (XYL7-Tr3) acquired by protein engineering showed similar catalytic properties as the wild-type, with a tenfold increase in soluble protein yield by the mutant. The reducing sugar produced by XYL7-TC was about fourfold greater than that produced by their parents when incubated with xylan at 60 °C for 4 h. The engineered novel xylanase exhibited superior enzymatic performance and showed promise as an excellent candidate for industrial application due to its high specific activity, stability and soluble protein yield.  相似文献   

19.
A xylanase gene (xyl11B) was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris. xyl11B, with a 66-bp intron, encodes a mature protein of 219 residues with highest identity (57.1%) to the Trichoderma reesei xylanase of glycoside hydrolase family 11. The purified recombinant XYL11B was acidophilic, exhibiting maximum activity at pH 2.6 and 65 °C. The enzyme was also thermostable, pH stable, and was highly resistant to both pepsin and trypsin, suggesting good performance in the digestive tract as a feed supplement to improve animal nutrition. The activity of XYL11B was enhanced by most metal ions but was inhibited weakly by Hg2+, Pb2+and Cu2+, which strongly inhibit many other xylanases. The specific activity of XYL11B for oat spelt xylan substrate was 2049 U mg?1. The main hydrolysis products of xylan were xylose and xylobiose.  相似文献   

20.
《Process Biochemistry》2014,49(9):1422-1428
A β-xylosidase gene (xylA4) was identified in the genome sequence of thermoacidophilic Alicyclobacillus sp. A4. The deduced amino acid sequence was highly homologous with the β-xylosidases of family 52 of the glycoside hydrolases (GH). The full-length gene consisted of 2097 bp and encoded 698 amino acids without a signal peptide. The gene product was successfully expressed in Escherichia coli with an activity of 564.9 U/mL. Recombinant XylA4 was purified by Ni2+-NTA affinity chromatography with a molecular mass of 78.5 kDa. The enzyme showed optimal activity at pH 6.0 and 65 °C, and remained stable over the pH range of 5.0–9.0. The thermostability of XylA4 is noteworthy, retaining almost all of the activity after 1 h incubation at 65 °C. Using p-nitrophenyl-β-d-xylopyranoside (pNPX) as the substrate, XylA4 had the highest specific activity (261.1 U/mg) and catalytic efficiency (601.5/mM/s) known so far for GH52 xylosidases. The enzyme displayed high tolerance to xylose, with a Ki value of approximately 88.7 mM. It also had synergy with xylanase XynBE18 from Paenibacillus sp. E18 in xylan degradation, releasing more xylose (up to 1.43 folds) than XynBE18 alone. Therefore, this thermostable xylose-tolerant β-xylosidase may have a great application potential in many industrial fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号