首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(3-hydroxybutyrate) (PHB) granule formation in Azotobacter vinelandii was investigated by laser scanning fluorescence microscopy after staining the cells with Nilered and Baclight. Cells that had been starved for a carbon source for > or =3 days were almost free of PHB granules. Formation of visible PHB granules started within 1-2 h after transfer of the cells to a medium permissive for PHB accumulation. Fluorescent PHB granules at the early stages of formation were exclusively found in the cell periphery of the 2-3 mum ovoid-shaped cells. After 3 h of PHB accumulation or later, PHB granules were also found to be detached from the cell periphery. Our results indicate that PHB granule formation apparently begins at the inner site of the cytoplasmic membrane. This finding is different from previous assumptions that PHB granule formation occurs randomly in the cytoplasm of PHB-accumulating bacteria.  相似文献   

2.
Aims:  A two-stage fermentation strategy, based on batch cultures conducted first under non-oxygen-limited conditions, and later under oxygen-limited conditions, was used to improve alginate production by Azotobacter vinelandii (AT6), a strain impaired in poly-β-hydroxybutyrate (PHB) production.
Methods and Results:  The use of sucrose as carbon source, as well as a high oxygen concentration (10%), allowed to obtain a maximum biomass concentration of 7·5 g l−1 in the first stage of cultivation. In the second stage, the cultures were limited by oxygen (oxygen close to 0%) and fed with a sucrose solution at high concentration. Under those conditions, the growth rate decreased considerably and the cells used the carbon source mainly for alginate biosynthesis, obtaining a maximum concentration of 9·5 g l−1, after 50 h of cultivation.
Conclusion:  Alginate concentration obtained from the AT6 strain was two times higher than that obtained using the wild-type strain (ATCC 9046) and was the highest reported in the literature. However, the mean molecular mass of the alginate produced in the second stage of the process by the mutant AT6 was lower (400 kDa) than the polymer molecular mass obtained from the cultures developed with the parental strain (950 kDa).
Significance and Impact of the Study:  The use of a mutant of A. vinelandii impaired in the PHB production in combination with a two-stage fermentation process could be a feasible strategy for the production of alginate at industrial level.  相似文献   

3.
4.
The influence of oxygen transfer rate (OTR) on the molecular mass of alginate was studied. In batch cultures without dissolved oxygen tension (DOT) control and at different agitation rates, the DOT was nearly zero and the OTR was constant during biomass growth, hence the cultures were oxygen-limited. The OTR reached different maximum levels (OTRmax) and enabled to establish various relative respiration rates. Overall, the findings showed that OTR influences alginate molecular mass. The mean molecular mass (MMM) of the alginate increased as OTRmax decreased. The molecular mass obtained at 3.0 mmol l−1 h−1 was 7.0 times higher (1,560 kDa) than at 9.0 mmol l−1 h−1 (220 kDa). An increase in molecular mass can be a bacterial response to adverse nutritional conditions such as oxygen limitation.  相似文献   

5.
AIMS: The aim of this study was to characterize the influence of 3-(N-morpholino)-propane-sulfonic acid (MOPS) on alginate production by Azotobacter vinelandii and its chemical composition (particularly its acetylation degree), as well as on the rheological behaviour of alginate-reconstituted solutions. METHODS AND RESULTS: Cultures were grown in 500-ml flasks containing 90 ml of medium supplemented with MOPS in concentrations ranging from 0 to 13.6 mmol l(-1). The acetylation degree of the alginate was significantly influenced by the MOPS concentration, obtaining an alginate with an acetylation degree of 1.4% when 13.6 mmol l(-1) of MOPS was added to the medium. This value was twice as high as that obtained when no MOPS was used. The higher acetylation of the polymer resulted in higher viscosity of alginate solutions, having a more pronounced pseudoplastic behaviour. CONCLUSIONS: MOPS added to the culture medium determines the acetyl content of the alginate and thus, the physico-chemical properties of the polymer. SIGNIFICANCE AND IMPACT OF THE STUDY: These changes in the functional properties of the polymer can be very valuable in specific applications of alginate in the food and pharmaceutical fields.  相似文献   

6.
Polyhydroxyalkanoates (PHA) are intracellularly accumulated as inclusion bodies. Due to the limitation of the cell size, PHA accumulation is also limited. To solve this problem, Escherichia coli was enlarged by over-expression of sulA gene to inhibit the cell division FtsZ ring assembly, leading to the formation of filamentary E. coli that have larger internal space for PHA accumulation compared with rod shape E. coli. As a result, more than 100% increases on poly(3-hydroxybutyrate) (PHB) contents and cell dry weights (CDW) were achieved compared with its control strain under same conditions. The enlarged cell strategy was applied to the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) or P(3HB-co-4HB) by sad, gabD, essential genes ispH and folK knockout E. coli harboring two addictives and thus stable plasmids consisting of P(3HB-co-4HB) producing genes, including phaCAB operon, orfZ, 4hbD, sucD, essential genes ispH and folK as well as the sulA. The so constructed E. coli grew in glucose to form filamentary shapes with an improved P(3HB-co-4HB) accumulation around 10% more than its control strain without addition of 4HB precursor, reaching over 78% P(3HB-co-4HB) in CDW. Importantly, the shape changing E. coli was able to precipitate after 20 min stillstand. Finally, the filamentary recombinant E. coli was not only able to produce more P(3HB-co-4HB) from glucose but also allow convenient downstream separation from the fermentation broth.  相似文献   

7.
Two inexpensive substrates, starch and whey were used to produce poly(3-hydroxybutyrate) (PHB) in fed-batch cultures of Azotobacter chroococcum and recombinant Escherichia coli, respectively. Oxygen limitation increased PHB contents in both fermentations. In fed-batch culture of A. chroococcum, cell concentration of 54 g l−1 with 46% PHB was obtained with oxygen limitation, whereas 71 g l−1 of cell with 20% PHB was obtained without oxygen limitation. The timing of PHB biosynthesis in recombinant E. coli was controlled using the agitation speed of a stirred tank fermentor. A PHB content of 80% could be obtained with oxygen limitation by increasing the agitation speed up to only 500 rpm.  相似文献   

8.
Growth of and hydrogen production by wild-type (WT) Rhodovulum sulfidophilum were compared with those by one of its mutants lacking the poly(3-hydroxybutyrate) (PHB) biosynthesis ability (PNM2). During phototrophic growth under aerobic conditions with fixed illumination, changes in the extinction coefficient and PHB content of WT and PNM2 cells revealed interference of light penetration by PHB. WT cells synthesized PHB at an early stage of the cultivation. PHB degradation after exhaustion of acetate during the cultivation of WT resulted in a decrease of the extinction coefficient. The hydrogen production rate under anaerobic conditions with fixed illumination was examined in WT and PNM2 cell suspensions at different densities. The hydrogen production rate was determined not by the light penetration but by the kinds of hydrogen donors and the density of suspension. The highest value of the rate of hydrogen production from PHB, 33.0 ml/l/h, was improved compared with 26.6 ml/l/h, which was the highest value in hydrogen production from succinate. Under the same illumination, conversion to hydrogen from PHB is more efficient than that from succinate, which is one of the best substrates for hydrogen production. These results suggest that the hydrogen production rate can be maximized in the hydrogen production system based on PHB degradation, which is achieved in high-density suspension under external-substrate-depleted conditions after aerobic cultivation in the presence of an excess amount of acetate.  相似文献   

9.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.  相似文献   

10.
Aims: To search for new bacteria for efficient production of polyhydroxyalkanoates (PHAs) from glycerol. Methods and Results: Samples were taken from different environments in Germany and Egypt, and bacteria capable of growing in mineral salts medium with glycerol as sole carbon source were enriched. From a wastewater sediment sample in Egypt, a Gram‐negative bacterium (strain MW1) was isolated that exhibited good growth and that accumulated considerable amounts of polyhydroxybutyrate (PHB) from glycerol and also from other carbon sources. The 16S rRNA gene sequence of this isolate exhibited 98·5% and 96·2% similarity to Zobellella denitrificans strain ZD1 and to Zobellella taiwanensis strain ZT1 respectively. The isolate was therefore affiliated as strain MW1 of Z. denitrificans. Strain MW1 grows optimally on glycerol at 41°C and pH 7·3 and accumulated PHB up to 80·4% (w/w) of cell dry weight. PHB accumulation was growth‐associated. Although it was not an absolute requirement, 20 g l?1 sodium chloride enhanced both growth (5 g cell dry weight per litre) and PHB content (87%, w/w). Zobellella denitrificans strain MW1 is also capable to accumulate the poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) copolymer if sodium propionate was used as cosubstrate in addition to glycerol. Conclusions: A new PHB‐accumulating strain was isolated and identified. This strain is able to utilize glycerol for growth and PHB accumulation to high content especially in the presence of NaCl that will enable the utilization of waste glycerol from biodiesel industry. Significance and Impact of the Study: This study is the first report on accumulation of PHA in a member of the new genus Zobellella. Furthermore, utilization of glycerol as the sole carbon source for fast growth and PHB biosynthesis, growth in the presence of NaCl and high PHB contents of the cells will make this newly isolated bacterium a potent candidate for industrial production of PHB from crude glycerol occurring as byproduct during biodiesel production.  相似文献   

11.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.  相似文献   

12.
In the present work, an integrated dynamic metabolic/polymerization kinetic model is developed for the prediction of the intracellular accumulation profile and the molecular weight distribution of poly(3-hydroxybutyrate) (P(3HB) or PHB) produced in microbial cultures. The model integrates two different length/time scales by combining a polymerization kinetic model with a metabolic one. The bridging point between the two models is the concentration of the monomer unit (i.e. 3-hydroxybutyryl-CoA) produced during the central aerobic carbon metabolism. The predictive capabilities of the proposed model are assessed by the comparison of the calculated biopolymer concentration and number average molecular weight with available experimental data obtained from batch and fed-batch cultures of Alcaligenes eutrophus and Alcaligenes latus. The accuracy of the proposed model was found to be satisfactory, setting this model a valuable tool for the design of the process operating profile for the production of different polymer grades with desired molecular properties.  相似文献   

13.
4-Hydroxybutyrate (4HB) was produced by Aeromonas hydrophila 4AK4, Escherichia coli S17-1, or Pseudomonas putida KT2442 harboring 1,3-propanediol dehydrogenase gene dhaT and aldehyde dehydrogenase gene aldD from P. putida KT2442 which are capable of transforming 1,4-butanediol (1,4-BD) to 4HB. 4HB containing fermentation broth was used for production of homopolymer poly-4-hydroxybutyrate [P(4HB)] and copolymers poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-4HB)]. Recombinant A. hydrophila 4AK4 harboring plasmid pZL-dhaT-aldD containing dhaT and aldD was the most effective 4HB producer, achieving approximately 4 g/l 4HB from 10 g/l 1,4-BD after 48 h of incubation. The strain produced over 10 g/l 4HB from 20 g/l 1,4-BD after 52 h of cultivation in a 6-L fermenter. Recombinant E. coli S17-1 grown on 4HB containing fermentation broth was found to accumulate 83 wt.% of intracellular P(4HB) in shake flask study. Recombinant Ralstonia eutropha H16 grew to over 6 g/l cell dry weight containing 49 wt.% P(3HB-13%4HB) after 72 h.  相似文献   

14.
Optimization was carried out for the recovery of microbiol poly(3-hydroxybutyrate) (PHB) from Alcaligenes eutrophus. This process involved the use of a dispersion made of sodium hypochlorite solution and chloroform. The dispersion enabled us to take advantage of both differential digestion by hypochlorite and solvent extraction by chloroform. The PHB recovery (%) from cell powder was maximized using a 30% hypochlorite concentration, a 90-min treatment time, and a 1:1 (v/v) chloroform-to-aqueous-phase ratio. Under these optimal conditions, the recovery was about 91% and the purity of recovered PHB was higher than 97%. The number average molecular weight, M(n) of recovered PHB was about 300,000 and the weight average molecular weight M(w) was about 1,020,000, compared to the original M(n) of 530,000 and M(w) of 1,272,000. The moderate decrease in both M(n) and M(w) might be ascribed to the shielding effect of chloroform. In addition, the relatively small decrease in M(w) probably resulted from the loss of short PHB chains which might be water soluble. The crystallinity of recovered PHB was in the range of 60 to 65%although a slightly higher crystallinity was observed when the dispersion was used. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.

Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF Avin07920 encoding a hypothetical protein. Avin07910, located immediately downstream and predicted to form an operon with Avin07920, encodes an inner membrane multi-domain signaling protein here named mucG. Insertional inactivation of mucG resulted in a phenotype of increased alginate production of higher molecular mass similar to that of mutant GG9. The MucG protein contains a periplasmic and putative HAMP and PAS domains, which are linked to GGDEF and EAL domains. The last two domains are potentially involved in the synthesis and degradation, respectively, of bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP), a secondary messenger that has been reported to be essential for alginate production. Therefore, we hypothesized that the negative effect of MucG on the production of this polymer could be explained by the putative phosphodiesterase activity of the EAL domain. Indeed, we found that alanine replacement mutagenesis of the MucG EAL motif or deletion of the entire EAL domain resulted in increased alginate production of higher molecular mass similar to the GG9 and mucG mutants. To our knowledge, this is the first reported protein that simultaneous affects the production of alginate and its molecular mass.

  相似文献   

16.
arcA codes for a central regulator in Escherichia coli that responds to redox conditions of growth. Mutations in this gene, originally named dye, confer sensitivity to toluidine blue and other redox dyes. However, the molecular basis for the dye-sensitive phenotype has not been elucidated. In this work, we show that toluidine blue redirects electrons to O2 and causes an increase in the generation of reactive O2 species (ROS). We also demonstrate that synthesis of poly (3-hydroxybutyrate) suppresses the Dye phenotype in E. coli recombinants, as the capacity to synthesize the polymer reduces sensitivity to toluidine blue, O2 consumption and ROS production levels.  相似文献   

17.
A Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterial strain was isolated from compost. This organism, identified as Bacillus megaterium N-18-25-9, produced a clearing zone on opaque NB-PHB agar, indicating the presence of extracellular PHB depolymerase. A PHB depolymerase gene, PhaZ(Bm), of B. megaterium N-18-25-9 was cloned and sequenced, and the recombinant gene product was purified from Escherichia coli. The N-terminal half region of PhaZ(Bm) shared significant homologies with a catalytic domain of other PHB depolymerases. Although the C-terminal half region of PhaZ(Bm) showed no significant similarity with those of other PHB depolymerases, that region was necessary for the PHB depolymerase activity. Therefore, this enzyme's domain structure is unique among extracellular PHB depolymerase domain structures. The addition of PHB to the medium led to a sixfold increase in PhaZ(Bm) mRNA, while the presence of glucose repressed PhaZ(Bm) expression. The maximum activity was observed at pH 9.0 at 65 degrees C.  相似文献   

18.
Conversion of 3-hydroxypropionate (3HP) from 1,3-propanediol (PDO) was improved by expressing dehydratase gene (dhaT) and aldehyde dehydrogenase gene (aldD) of Pseudomonas putida KT2442 under the promoter of phaCAB operon from Ralstonia eutropha H16. Expression of these genes in Aeromonas hydrophila 4AK4 produced up to 21 g/L 3HP in a fermentation process. To synthesize homopolymer poly(3-hydroxypropionate) (P3HP), and copolymer poly(3-hydroxypropionate-co-3-hydroxybutyrate) (P3HP4HB), dhaT and aldD were expressed in E. coli together with the phaC1 gene encoding polyhydroxyalkanoate (PHA) synthase gene of Ralstonia eutropha, and pcs' gene encoding the ACS domain of the tri-functional propionyl-CoA ligase (PCS) of Chloroflexus aurantiacus. Up to 92 wt% P3HP and 42 wt% P3HP4HB were produced by the recombinant Escherichia coli grown on PDO and a mixture of PDO+1,4-butanediol (BD), respectively.  相似文献   

19.
P[(R)-lactate-co-(R)-3-hydroxybutyrate] [P(LA-co-3HB)] was produced in engineered Escherichia coli using lignocellulose-derived hydrolysates from Miscanthus × giganteus (hybrid Miscanthus) and rice straw. Hybrid Miscanthus-derived hydrolysate exhibited no negative effect on polymer production, LA fraction, and molecular weight of the polymer, whereas rice straw-derived hydrolysate reduced LA fraction. These results revealed that P(LA-co-3HB) was successfully produced from hybrid Miscanthus-derived sugars.  相似文献   

20.
The chemolithotroph Cupriavidus necator H16 is known as a natural producer of the bioplastic-polymer PHB, as well as for its metabolic versatility to utilize different substrates, including formate as the sole carbon and energy source. Depending on the entry point of the substrate, this versatility requires adjustment of the thermodynamic landscape to maintain sufficiently high driving forces for biological processes. Here we employed a model of the core metabolism of C. necator H16 to analyze the thermodynamic driving forces and PHB yields from formate for different metabolic engineering strategies. For this, we enumerated elementary flux modes (EFMs) of the network and evaluated their PHB yields as well as thermodynamics via Max-min driving force (MDF) analysis and random sampling of driving forces. A heterologous ATP:citrate lyase reaction was predicted to increase driving force for producing acetyl-CoA. A heterologous phosphoketolase reaction was predicted to increase maximal PHB yields as well as driving forces. These enzymes were then verified experimentally to enhance PHB titers between 60 and 300% in select conditions. The EFM analysis also revealed that PHB production from formate may be limited by low driving forces through citrate lyase and aconitase, as well as cofactor balancing, and identified additional reactions associated with low and high PHB yield. Proteomics analysis of the engineered strains confirmed an increased abundance of aconitase and cofactor balancing. The findings of this study aid in understanding metabolic adaptation. Furthermore, the outlined approach will be useful in designing metabolic engineering strategies in other non-model bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号