首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Phytomedicine》2014,21(12):1638-1644
Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD), which is mediated by lung infiltration with inflammatory cells, enhanced oxidative stress, and tissue destruction. Anti-malarial drug artesunate has been shown to possess anti-inflammatory and anti-oxidative actions in mouse asthma models. We hypothesized that artesunate can protect against cigarette smoke-induced acute lung injury via its anti-inflammatory and anti-oxidative properties. Artesunate was given by oral gavage to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage (BAL) fluid and lungs were collected for analyses of cytokines, oxidative damage and antioxidant activities. Bronchial epithelial cell BEAS-2B was exposed to cigarette smoke extract (CSE) and used to study the mechanisms of action of artesunate. Artesunate suppressed cigarette smoke-induced increases in BAL fluid total and differential cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Artesunate promoted anti-oxidant catalase activity and reduced NADPH oxidase 2 (NOX2) protein level in the lungs from cigarette smoke-exposed mice. In BEAS-2B cells, artesunate suppressed pro-inflammatory PI3 K/Akt and p44/42 MAPK signaling pathways, and increased nuclear Nrf2 accumulation in response to CSE. Artesunate possesses anti-inflammatory and anti-oxidative properties against cigarette smoke-induced lung injury, probably via inhibition of PI3K and p42/22 MAPK signaling pathways, augmentation of Nrf2 and catalase activities, and reduction of NOX2 level. Our data suggest that artesunate may have therapeutic potential for treating COPD.  相似文献   

2.
3.
The effects of differences in smoke concentration and exposure duration in Sprague Dawley rats to determine variation in type and severity of the testis apoptosis were evaluated. The daily dosages were 10, 20 and 30 non-filter cigarettes for a period of 2, 4, 6, 8 and 12 weeks. Mainstream smoke exposure suppressed body weight gain in all regimens. A dose-related increase in plasma nicotine concentration was observed in smoke-exposed groups for 4, 6, 8 and 12 week regimens. Histopathological examination of the exposed groups showed disturbances in the stages of spermatogenesis, tubules atrophying and these appeared to be dose-related. Cytoplasmic caspase-3 immunostaining was detected both in Sertoli cells and germ cells in smoke-exposure groups. An increase in TUNEL-positive cells of testicular cells was observed after 6 weeks of cigarette exposure. The results indicate that cigarette exposure concentration and duration have interaction effect to induce apoptosis in the rat testes.  相似文献   

4.

Background

We have previously reported that low concentrations of cigarette smoke extract induce DNA damage without leading to apoptosis or necrosis in human bronchial epithelial cells (HBECs), and that IL-6/STAT3 signaling contributes to the cell survival. Since NF-κB is also involved in regulating apoptosis and cell survival, the current study was designed to investigate the role of NF-κB in mediating cell survival in response to cigarette smoke exposure in HBECs.

Methods

Both the pharmacologic inhibitor of NF-κB, curcumin, and RNA interference targeting p65 were used to block NF-κB signaling in HBECs. Apoptosis and cell survival were then assessed by various methods including COMET assay, LIVE/DEAD Cytotoxicity/Viability assay and colony formation assay.

Results

Cigarette smoke extract (CSE) caused DNA damage and cell cycle arrest in S phase without leading to apoptosis in HBECs as evidenced by TUNEL assay, COMET assay and DNA content assay. CSE stimulated NF-κB -DNA binding activity and up-regulated Bcl-XL protein in HBECs. Inhibition of NF-κB by the pharmacologic inhibitor curcumin (20 μM) or suppression of p65 by siRNA resulted in a significant increase in cell death in response to cigarette smoke exposure. Furthermore, cells lacking p65 were incapable of forming cellular colonies when these cells were exposed to CSE, while they behaved normally in the regular culture medium.

Conclusion

The current study demonstrates that CSE activates NF-κB and up-regulates Bcl-XL through NF-kB activation in HBECs, and that CSE induces cell death in cells lacking p65. These results suggest that activation of NF-κB regulates cell survival following DNA damage by cigarette smoke in human bronchial epithelial cells.  相似文献   

5.
Cigarette smoking can cause damage of airway epithelial cells and contribute to chronic obstructive pulmonary disease (COPD). Honokiol is originally isolated from Magnolia obovata with multiple biological activities. Here, we investigated the protective effects of honokiol on cigarette smoke extract (CSE)-induced injury of BEAS-2B cells. BEAS-2B cells were treated with 300 mg/L CSE to construct an in vitro cell injury model, and cells were further treated with 2, 5 and 10 μM honokiol, then cell viability and LDH leakage were analysed by CCK-8 and LDH assay kits, respectively. Apoptosis was detected by flow cytometry analysis. ELISA was used to measure the levels of tumour necrosis factor (TNF)-ɑ, IL-1β, IL-6, IL-8 and MCP-1. The results showed that honokiol (0.5–20 μM) showed non-toxic effects on BEAS-2B cells. Treatment with honokiol (2, 5 and 10 μM) reduced CSE (300 mg/L)-induced decrease in cell viability and apoptosis in BEAS-2B cells. Honokiol also decreased CSE-induced inflammation through inhibiting expression and secretion of inflammatory cytokines, such as TNF-ɑ, IL-1β, IL-6, IL-8 and MCP-1. Moreover, honokiol repressed CSE-induced reactive oxygen species (ROS) production, decrease of ATP content and mitochondrial biogenesis, as well as mitochondrial membrane potential. Mechanistically, honokiol promoted the expression of SIRT3 and its downstream target genes, which are critical regulators of mitochondrial function and oxidative stress. Silencing of SIRT3 reversed the protective effects of honokiol on CSE-induced damage and mitochondrial dysfunction in BEAS-2B cells. These results indicated that honokiol attenuated CSE-induced damage of airway epithelial cells through regulating SIRT3/SOD2 signalling pathway.  相似文献   

6.
The aim of this work was to find out whether Src kinase family and c-Jun N-terminal kinase (JNK) are involved in the ROS signaling pathway that could induce mucin MUC5AC expression in cultured cells of airway epithelia (BEAS-2B). For this purpose, the impact of cigarette smoke extract (CSE) on ROS production and MUC5AC expression in BEAS-2B cells was studied. Effects of ROS scavenger dimethylthiourea (DMTU), JNK specific inhibitor SP600125, and Src specific inhibitor PP2 in the CSE-induced ROS generation and MUC5AC expression were also assessed. A dose-dependent increase of ROS production in cells exposed to different concentrations of CSE was detected. DMTU inhibited cigarette smoke-induced Src phosphorylation, suggesting the ROS involvement in activation of Src kinase. Furthermore, SP600125 reduced the expression of MUC5AC. The activation of JNK was suppressed by PP2 but not by TACE inhibitor TAPI-1 or EGFR inhibitor PD153035. These results suggest that Src kinase participate in JNK activation and MUC5AC synthesis, which is independent of the TACE/EGFR activation. We conclude that ROS-Src-JNK signal cascade plays a particular role in cigarette smoke-induced mucin MUC5AC expression in BEAS-2B cells.  相似文献   

7.

Background

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.

Methodology and Principal Findings

Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7). Cigarette smoke extract (CSE) is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC) inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1) and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1 −/− mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.

Conclusions

We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.  相似文献   

8.
The current study was carried out to evaluate the genotoxic aspects of the aqueous extracts of the Tribulus terrestris fruits by comet assay and cytogenetic procedures conditions on cultured human peripheral blood lymphocyte. After the treatment of the lymphocytes with four concentrations of the aqueous fruit extract of T. terrestris (10, 20, 40 and 80 mg/L) for 24 h it was noticed that, the presence of micronuclei and/or chromosomal aberration were monitored and a significant increase of comet cells at high concentration of T. terrestris extract 80 mg/L. Also, this study showed that the presence of micronuclei, chromosomal aberration as a chromosomal gap, fragmentation, stickiness and necrotic cells were appeared and increased with high concentrations of T. terrestris fruits extract (40–80 mg/L). On the other hand, no significant difference was observed with the low concentration of the extract (10–20 mg/L) as compared with control. The current study refers to the ability of the extract of T. terrestris fruits to do damage in the target DNA at the higher concentrations. Thus, it could be considered that the aqueous extracts of the T. terrestris fruits have genotoxic effect in the therapeutic protocols if it used in high doses.  相似文献   

9.
We have previously reported that cigarette smoke can induce DNA damage in human lung cells without leading to apoptosis or necrosis. In this study, we report that STAT3 is required for the survival of human bronchial epithelial cells (HBECs) following cigarette smoke-induced DNA damage. Cigarette smoke extract (CSE) exposure increases STAT3 phosphorylation (Tyr 705) and DNA binding activity in HBECs. CSE also stimulates IL-6 release and mRNA expression. Anti-IL-6 neutralizing antibody partially blocks STAT3 activation and renders the cells sensitive to CSE-induced DNA damage. Suppression of STAT3 by siRNA results in severe DNA damage and cell death in response to CSE exposure. These findings suggest that STAT3 mediates HBEC survival in response to CSE-induced DNA damage, at least in part, through the IL-6/STAT3 signaling pathway.  相似文献   

10.
Differentiation among American cigarettes relies primarily on the use of proprietary tobacco blends, menthol, tobacco substitutes, paper porosity, paper additives, and filter ventilation. These characteristics substantially alter per cigarette yields of tar and nicotine in standardized protocols promulgated by government agencies. However, due to compensatory alterations in smoking behavior to sustain a preferred nicotine dose (e.g., by increasing puff frequency, inhaling more deeply, smoking more cigarettes per day, or blocking filter ventilation holes), smokers actually inhale similar amounts of tar and nicotine regardless of any cigarette variable, supporting epidemiological evidence that all brands have comparable disease risk. Consequently, it would be advantageous to develop assays that realistically compare cigarette smoke (CS)-induced genotoxicity regardless of differences in cigarette construction or smoking behavior. One significant indicator of potentially carcinogenic DNA damage is double strand breaks (DSBs), which can be monitored by measuring Ser 139 phosphorylation on histone H2AX. Previously we showed that phosphorylation of H2AX (defined as γH2AX) in exposed lung cells is proportional to CS dose. Thus, we proposed that γH2AX may be a viable biomarker for evaluating genotoxic risk of cigarettes in relation to actual nicotine/tar delivery. Here we tested this hypothesis by measuring γH2AX levels in A549 human lung cells exposed to CS from a range of commercial cigarettes using various smoking regimens. Results show that γH2AX induction, a critical event of the mammalian DNA damage response, provides an assessment of CS-induced DNA damage independent of smoking topography or cigarette type. We conclude that γH2AX induction shows promise as a genotoxic bioassay offering specific advantages over the traditional assays for the evaluation of conventional and nonconventional tobacco products.  相似文献   

11.
Cigarette smoke is a major cause of chronic obstructive pulmonary disease (COPD). Airway epithelial cells and macrophages are the first defense cells against cigarette smoke and these cells are an important source of pro-inflammatory cytokines. These cytokines play a role in progressive airflow limitation and chronic airways inflammation. Furthermore, the chronic colonization of airways by Gram-negative bacteria, contributes to the persistent airways inflammation and progression of COPD. The current study addressed the effects of cigarette smoke along with lipolysaccharide (LPS) in airway epithelial cells as a representative in vitro model of COPD exacerbations. Furthermore, we evaluated the effects of PDE4 inhibitor, the roflumilast N-oxide (RNO), in this experimental model. A549 cells were stimulated with cigarette smoke extract (CSE) alone (0.4% to 10%) or in combination with a low concentration of LPS (0.1 µg/ml) for 2 h or 24 h for measurement of chemokine protein and mRNAs and 5–120 min for protein phosphorylation. Cells were also pre-incubated with MAP kinases inhibitors and Prostaglandin E2 alone or combined with RNO, before the addition of CSE+LPS. Production of cytokines was determined by ELISA and protein phosphorylation by western blotting and phospho-kinase array. CSE did not induce production of IL-8/CXCL8 and Gro-α/CXCL1 from A549 cells, but increase production of CCL2/MCP-1. However the combination of LPS 0.1 µg/ml with CSE 2% or 4% induced an important production of these chemokines, that appears to be dependent of ERK1/2 and JAK/STAT pathways but did not require JNK and p38 pathways. Moreover, RNO associated with PGE2 reduced CSE+LPS-induced cytokine release, which can happen by occur through of ERK1/2 and JAK/STAT pathways. We report here an in vitro model that can reflect what happen in airway epithelial cells in COPD exacerbation. We also showed a new pathway where CSE+LPS can induce cytokine release from A549 cells, which is reduced by RNO.  相似文献   

12.
Boerhaavia diffusa Linn. of family Nyctaginaceae is a known traditional medicinal plant and has been used in the treatment of many free radical mediated diseases. Excessive formation of free radicals, either reactive oxygen species (ROS) or reactive nitrogen species (RNS) is responsible for damaging various biomolecules like DNA, lipids and proteins. The present investigation was initially carried out to explore the possible link between antioxidant, oxidative DNA damage protective and α-amylase inhibitory property of B. diffusa root extract and their bioactive fraction. Our results illustrated an enhanced DPPH radical scavenging activity/antioxidant power of methanol root extract (IC50 < 250 μg/ml) than ethanol (IC50 = 250 μg/ml) and aqueous extract (IC50 > 250 μg/ml). In addition, the methanol root extract also showed better oxidative DNA damage protective activity and α-amylase inhibitory property than ethanol and aqueous root extract. Phytochemical screening of B. diffusa ethanol and methanol root extract showed the presence of saponins, alkaloids, flavonoids, glycosides and terpenoids in large amount. By means of repetitive preparatory TLC and HPLC the potent antioxidant and α-amylase inhibitory fraction was isolated from methanol root extract. Our results illustrated that DPPH radical scavenging activity (IC50 < 250 μg/ml) and oxidative DNA damage protective and α-amylase inhibitory activity of the isolated/purified bioactive compound from methanol extract were significantly closer to that of crude extract, which in turn confirm that antioxidant and antidiabetic property of methanol root extract resides in this fraction and established a significant correlation between antioxidant and inhibitory α-amylase property of this bioactive fraction compound. These profound effects of B. diffusa methanol root extract and its purified fraction against oxidative plasmid DNA damage, antioxidant and α-amylase inhibitory activity may explain its extensive use in daily life and possible health benefits.  相似文献   

13.
香烟烟雾提取物抑制肺泡上皮细胞的增殖并诱导其凋亡   总被引:2,自引:0,他引:2  
Jiao ZX  Ao QL  Xiong M 《生理学报》2006,58(3):244-254
香烟烟雾提取物(cigarette smoke extract,CSE)中含有丰富的氧化剂和自由基,由它所引起的氧化应激可导致肺泡壁的损伤进而发展为肺气肿.近年来,围绕CSE损伤肺泡壁作用机制的研究较为活跃,但其结果却一直存在着分歧.本实验的目的是观察CSE对肺泡Ⅱ型上皮细胞的损伤作用并探讨与其相关的分子机制.MTT比色法的结果显示,CSE以时间和剂量依赖性的方式降低细胞的增殖活力,流式细胞术的分析结果表明细胞增殖周期被阻滞在G1/S期.Hoechst 33258染色以及透射电镜观察从形态上确认CSE诱导细胞凋亡的发生,DNA梯的出现和Annexin V-FITC/碘化丙啶双染色的结果从分子水平得到进一步的证实.同时,运用流式细胞术检测到CSE诱导的凋亡伴随着Fas受体的高表达和caspase-3的显著活化.另外,使用H2DCFDA染色,经激光共聚焦显微镜术测得细胞内氧自由基在细胞受到CSE刺激以后大量快速积累.结果表明CSE能够抑制肺泡Ⅱ型上皮细胞来源的A549细胞的生长和增殖,并诱导细胞凋亡,由Fas受体所介导的死亡受体途径参与此凋亡过程,而CSE所引起的氧化应激则可能是阻止肺泡上皮细胞生长增殖并诱导其凋亡的始动因素.  相似文献   

14.
Hydroquinone (HQ) is found in natural and anthropogenic sources including food, cosmetics, cigarette smoke, and industrial products. In addition to ingestion and dermal absorption, human exposure to HQ may also occur by inhaling cigarette smoke or polluted air. The adverse effects of HQ on respiratory systems have been studied, but genotoxicity HQ on human lung cells is unclear. The aim of this study was to investigate the cytotoxicity and genotoxicity of HQ in human lung alveolar epithelial cells (A549). We found that HQ induced a dose response in cell growth inhibition and DNA damage which was associated with an increase in oxidative stress. Cytotoxicity results demonstrated that HQ was most toxic after 24 h (LC50?=?33 μM) and less toxic after 1 h exposure (LC50?=?59 μM). Genotoxicity of HQ was measured using the Comet assay, H2AX phosphorylation, and chromosome aberration formation. Results from the comet assay revealed that DNA damage was highest during the earlier hours of exposure (1 and 6 h) and thereafter was reduced. A similar pattern was observed for H2AX phosphorylation suggesting that damage DNA may be repaired in later exposure hours. An increase in chromosomal aberration corresponded with maximal DNA damage which further confirmed the genotoxic effects of HQ. To investigate whether oxidative stress was involved in the cytotoxic and genotoxic effects of HQ, cellular glutathione and 8-Oxo-deoguanisone (8-Oxo-dG) formation were measured. A decrease in the reduced glutathione (GSH) and an increase oxidized glutathione (GSSG) was observed during the early hours of exposure which corresponded with elevated 8-Oxo-dG adducts. Together these results demonstrate that HQ exerts its cytotoxic and genotoxic effects in A549 lung cells, probably through DNA damage via oxidative stress.  相似文献   

15.
16.
Cigarette smoke is a mixture of chemicals having direct and/or indirect toxic effects on different lung cells. We investigated the effect of cigarette smoke on human lung fibroblasts (HFL-1) oxidation and apoptosis. Cells were exposed to various concentrations (1, 5, and 10%) of cigarette smoke extract (CSE) for 3 h, and oxidative stress and apoptosis were assessed by fluorescence-activated cell sorting and confocal laser fluorescence microscopy. Both oxidative stress and apoptosis exhibited a dose-response relationship with CSE concentrations. Lung fibroblasts also showed marked DNA fragmentation at the Comet assay after exposure to 10% CSE. Coincubation of HLF-1 cells with N-acetylcysteine (1 mM) during CSE exposure significantly reduced oxidative stress, apoptosis, and DNA fragmentation, whereas preincubation (3 h) with the glutathione-depleting agent buthionine sulfoximine (125 microM) produced a significant increase of oxidative stress. Cigarette smoke is a potent source of oxidative stress, DNA damage, and apoptosis for HFL-1 cells, and we speculate that this could contribute to the development of pulmonary emphysema in the lungs of smokers.  相似文献   

17.

Background

Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis.

Methods

We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls.

Results

We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1β. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1.

Conclusion

The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.  相似文献   

18.
Background and objectivesThis study aimed to assess the dose-dependent effect of antioxidants in protection against cardiovascular changes induced by exposure to cigarette smoke.Design and settingThis was an experimental study, conducted at King Fahd Medical Research Center, King Abdulaziz University.Materials and methodsThis study was carried out on 57 male albino rats divided into nine groups. Rats of experimental groups were exposed to cigarette smoke from a total of 100 cigarettes per week for four weeks in a specially designed chamber. The antioxidants used (vitamin C, E, and B-carotene) were administrated at low (9, 7.2, and 0.27 mg/day) and high doses (18, 14.4, and 0.54 mg/day), respectively, through gastric feeding tubes. The lipid profile was estimated, and the carotids and heart were removed, weighed, and then processed, and the carotid intima-media thickness was measured. Statistical analysis was performed using the Statistical Package for Social Sciences.ResultsThe lipid profile was significantly improved in all groups treated with low or high doses of antioxidants after or during the exposure to cigarette smoke. Improvement was marked in the group treated with a high dose of antioxidants.The histological changes, as well as the intima-medial thickness of the carotid artery induced by exposure to cigarette smoke, have been improved by treatment with antioxidants (at either low or high doses), either after or during exposure to cigarette smoke. Improvement was marked in the group treated with a low dose of antioxidant. Treatment with antioxidants could not improve degenerated cardiac muscle fibers, while they could reduce the thickness of the branches of the coronary vessels.ConclusionThese results indicated that antioxidants ameliorated the cigarette smoke contribution to atherosclerosis, but they could not completely reverse the changes induced by cigarette smoke. Simultaneous intake of antioxidants could ameliorate the cigarette-smoke-induced changes apart from those of the heart.  相似文献   

19.
Cigarette smoke is associated with high risk of lung, cardiovascular, and degenerative diseases, reduced fertility, and possibly the health of newborns. Cigarette smoke contains many components and exerts its genotoxicity in part by generating reactive oxidative stress. Telomeres consist of repeated ‘G’ rich sequences and associated proteins located at the chromosomal ends that maintain chromosomal integrity. We tested the hypothesis that telomere shortening and dysfunction are implicated in smoke associated oxidative damage and chromosomal instability using early mouse embryos in vitro and short-telomere mouse model. Mouse embryos exposed to smoke components, cigarette smoke condensate (CSC) at the concentration of 0.02 mg/ml continuously or 0.1 mg/ml for 20 h, or cadmium at 5-100 µM, exhibited increased oxidative stress and telomere shortening and loss, associated with chromosomal instability, apoptosis, and compromised embryo cleavage and development. Remarkably, reduction of oxidative stress by an antioxidant N-acetyl-L-cysteine (NAC) greatly reduced these toxicities. Notably, cadmium led to more severe oxidative damage and telomere dysfunction, which could be more effectively rescued by antioxidant treatment, than did CSC. Moreover, short telomeres predisposed embryos to smoke component-induced oxidative damage. These data further extend our understanding of mechanisms underlying smoke-induced oxidative damage to include telomere dysfunction and chromosomal instability.  相似文献   

20.
Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号