首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.  相似文献   

2.
Floral nectary structure and nectar sugar composition were investigated in relation to other floral traits and flower visitors in contrasting species of Nyctaginaceae from southern South America, representing four tribes (Bougainvilleeae, Colignonieae, Nyctagineae, Pisoneae). Our comparative data will aid in the understanding of plant–pollinator interactions and in the development of hypotheses on the origin of floral and reproductive characters in this family. The nectaries are located on the inner side of the staminal tube. The nectariferous tissue is composed of an epidermis and three to ten layers of secretory parenchymal cells, supplied indirectly by the filament vascular bundles. Stomata appear to be associated with nectar secretion. For the first time in Nyctaginaceae, nectary ultrastructure is described in Boerhavia diffusa var. leiocarpa. Nectary parenchyma cells are densely cytoplasmic and contain numerous starch grains. Plasmodesmata connect the nectariferous cells. Flowers of Nyctaginaceae secrete a small volume of nectar of variable concentration (10–47%). Nectar is dominated by hexoses, but Mirabilis jalapa showed a balanced proportion of sucrose and hexoses. Hymenoptera are the most common visitors for most species; nocturnal Lepidoptera are the most common visitors for M. jalapa and Bougainvillea stipitata. We found relatively low variation in the nectary characteristics of Nyctaginaceae compared with broad variation in flower structure, shape, colour and nectar traits. © 2013 The Linnean Society of London  相似文献   

3.
通过解剖镜观察、石蜡切片和薄切片等方法,对芝麻菜的花蜜腺的位置、形态、结构、发育过程及泌蜜前后组织化学变化进行了研究。芝麻菜花蜜腺4枚,分成两对,其中一对侧蜜腺较大,棱柱状,分别着生在外轮2个短雄蕊基部内侧的花托上,结构上由表皮、产蜜组织和维管组织构成;另一对中蜜腺较小,近棒状,分别着生在内轮4个长雄蕊外侧的花托上,结构上仅由表皮和产蜜组织构成。二者表皮细胞外都具角质层,且蜜腺产蜜组织细胞中只含少量的多糖物质。两类蜜腺的蜜汁均由变态气孔泌出体外。无论侧蜜腺还是中蜜腺,蜜腺原基皆是在雌、雄蕊已分化后,由花托相应位置表皮下的1~2层细胞分裂形成的。在蜜腺发育中,产蜜组织细胞在泌蜜前后不具明显的液泡变化。  相似文献   

4.
长药景天花蜜腺的发育解剖学研究   总被引:3,自引:0,他引:3  
长药景天花蜜腺5枚,呈侧向扁平的舌形或弯月形,分别位于5株离生心皮的外侧,两者的基部相连,属于子房蜜腺。蜜腺由分泌表皮、产蜜组织和仅含韧皮部的维管束组成。长药景天花蜜腺起源于心皮外侧基部的表层结构。产蜜组织在发育过程中,细胞中的液泡体积及淀粉粒呈现有规律的消长变化。泌蜜后期,蜜腺组织从上往下液泡化,具明显的方向性。根据其结构及多糖变化分析,来自韧皮部的原蜜汁以淀粉粒形式贮存于产蜜组织中,泌蜜期水解  相似文献   

5.
垂柳雌花蜜腺一枚,位于于房与花序轴之间,多呈扁平广卵形,由分泌表皮、泌蜜组织和维管束组成。雄花蜜腺呈基部相连的两枚突起,一枚位于花丝与花序轴之间,基部宽扁,上部棒状;另一枚位于花丝与苞片之间,棒状,仅由分泌表皮和泌蜜组织组成。雌、雄花蜜腺均起源于花托表面2—3层细胞。在蜜腺发育过程中,雌、雄花蜜腺泌蜜组织细胞的液泡发生规律性变化.雌花蜜腺为淀粉型蜜腺,而雄花蜜腺为非淀粉型蜜腺。雌、雄花蜜腺的原宜汁分别由蜜腺维管束韧应部或花丝维管束韧皮部提供,其蜜计最后均由分泌表皮细胞和变态气孔排出。  相似文献   

6.
 Investigations of the effects of two global events – elevated CO2 levels and enhanced ultraviolet-B (UV-B) radiation – on floral nectar production are reviewed from twelve dicotyledonous families. Furthermore, to allow comparisons between nectary morphology and nectar production in treated plants of these fifteen species, new data on floral nectary structure are provided for Malcolmia maritima (L.) R. Br. (Brassicaceae) and Scabiosa columbaria L. (Dipsacaceae). All but the last taxon possessed mesenchymatic floral nectaries with surface stomata. Few clear relationships existed between nectary morphology and various physiological responses to CO2 or UV-B enrichment, indicating that species responded notwithstanding nectary structure itself. Overall, nectar-solute concentration was least affected by elevated CO2 or UV-B radiation; consequently, changes in nectar volume were responsible for differences in nectar-sugar production per flower. Three species of Fabaceae experienced no change in floral nectar production upon exposure to elevated CO2. To date, no study of enhanced UV-B radiation reported a consistent reduction in floral nectar production; three species of Brassicaceae responded differently, but various levels of ozone depletion were simulated. Experimentation with more taxa – including those possessing nectary types such as septal (gynopleural) nectaries (e.g. many monocotyledons) or aggregations of glandular trichomes – and expanding such physiological studies to species possessing extrafloral nectaries, are recommended. Received August 8, 2002; accepted November 23, 2002 Published online: June 2, 2003  相似文献   

7.
Nectaries and reproductive biology of Croton sarcopetalus (Euphorbiaceae)   总被引:1,自引:0,他引:1  
Flower morphology, nectary structure, nectar chemical composition, breeding system, floral visitors and pollination were analysed in Croton sarcopetalus , a diclinous-monoecious shrub from Argentina. Male flowers have five receptacular nectaries, with no special vascular bundles, that consist of a uniserial epidermis with stomata subtended by a secretory parenchyma. Female flowers bear two different types of nectaries: inner (IN) and outer (ON) floral nectaries. IN, five in all, are structurally similar to the nectaries of male flowers. The five ON are vascularized, stalked, and composed of secretory, column-shaped epidermal cells without stomata subtended by secretory and ground parenchyma. In addition, ON act as post-floral nectaries secreting nectar during fruit ripening. Extrafloral nectaries (EFN) are located on petioles, stipules and leaf margins. Petiolar EFN are patelliform, stalked and anatomically similar to the ON of the female flower. Nectar sampled from all nectary types is hexose dominant, except for the ON of the female flower at the post-floral stage that is sucrose dominant. The species is self-compatible, but geitonogamous fertilization is rarely possible because male and female flowers are not usually open at the same time in the same individual, i.e. there is temporal dioecism. Flowers are visited by 22 insect species, wasps being the most important group of pollinators. No significant differences were found in fruit and seed set between natural and hand pollinated flowers. This pattern indicates that fruit production in this species is not pollen/pollinator limited and is mediated by a wide array of pollinators.  相似文献   

8.
Premise of the study: While mahogany (Swietenia macrophylla) is one of the most important forest species in the Amazon region, little is known about its reproductive biology. Knowledge about the nectary structure and dynamics of nectar production of this species represent a key step toward understanding its relationship with pollinators. • Methods: Mahogany tree floral buds and flowers in anthesis were collected, fixed, and processed for study by light and transmission and scanning electron microscopy. The chemical composition of nectar and the nectary pigments was also studied. • Key results: Both staminate and pistillate flowers have nectaries, which contain a papillose epidermis and stomata. The nectariferous tissue is parenchymatous, with the cell cytoplasm primarily containing mitochondria and plastids. Secretory activity initiates at the beginning of anthesis, which occurs at nightfall. Flowers undergoing anthesis become structurally modified, with starch grains in the plastids disappearing. The number of plastoglobuli in the plastids also increases when nectaries change color from pale yellow to intense red. Pistillate and staminate flowers produce meager nectar rewards. • Conclusions: Changes in plastoglobuli number seem to be related to an increase in carotenes and color changes during anthesis. Carotenes can be linked to the protection of the plant against oxidative stress, which results from secretory activities. Nectary color has a limited role as a pollinator attractant. Floral rewards comprise small nectar droplets in both flower types, in addition to a few pollen grains in staminate flowers. These meager rewards are probably adapted to attract small generalist insects.  相似文献   

9.
Floral nectar is thought to be one of the most important rewards that attract pollinators in Pedicularis;however,few studies have examined variation of nectary structure and/or nectar secretion in the genus,particularly among closely related species. Here we investigated nectary morphology,nectar quality,and nectar production dynamics in flowers of Pedicularis section Cyathophora. We found a conical floral nectary at the base of the ovary in species of the rex-thamnophila clade. Stomata were found on the surface of the nectary,and copious starch grains were detected in the nectary tissues. In contrast,a semi-annular nectary was found in flowers of the species of the superba clade. Only a few starch grains were observed in tissues of the semi-annular nectary,and the nectar sugar concentration in these flowers was much lower than that in the flowers of the rexthamnophila clade. Our results indicate that the floral nectary has experienced considerable morphological,structural,and functional differentiation among closely related species of Pedicularis. This could have affected nectar production,leading to a shift of the pollination mode. Our results also imply that variation of the nectary morphology and nectar production may have played an important role in the speciation of sect. Cyathophora.  相似文献   

10.
群心菜花蜜腺的发育解剖学研究   总被引:1,自引:2,他引:1  
群心菜(Cardariadraba(L.)Desv)花蜜腺6枚,包括4枚侧蜜腺的和2枚中蜜腺,属十字花科侧中蜜腺类型中的侧分离中间亚型,侧中蜜腺结构相同,都由分泌表皮,产蜜组织组成,分泌表皮顶部分布的有变态气孔器,产蜜组织中无维管束分布,属较原始的十字花科花蜜腺亚型类型,在花的各部分基本分化完成后,由花托表层细胞恢复分裂能力形成蜜腺原基,蜜腺原基经分裂,分化和形态建成,发育形成成熟蜜腺,侧中蜜腺发  相似文献   

11.
Floral and extrafloral nectaries in plants favor pollination and defense against herbivory. Despite their wide distribution in plants and differences in position, structure, and topography, their biological and systematic significance has been underutilized. This study investigated the macro- and micromorphology of floral and extrafloral nectaries in the epiphytic cactus Rhipsalis teres and reports unusual bristle-like structures (bracteoles) functioning as extrafloral nectaries in the cactus family. The floral nectary is disc-shaped embedded in the hypanthial floral cup with anomocytic stomata as secreting structures present on the epidermal nectarial tissue. Small multicellular bristle-like extrafloral nectar-secreting structures, homologues to bracts, were observed on the plants’ stems and function as bracteolar nectaries having a relatively long and continuous secretory activity throughout several stages of the reproductive structures. Both the floral and bracteolar nectaries are functional. It is possible that in the latter nectar discharge occurs though epidermal cells, which build up pressure inside as nectar accumulates, thereby ending with rupture of the cuticle to release the liquid. The nectar in both secreting structures is scentless and colorless, and the concentration from floral nectaries is slightly lower than that of the bracteolar nectaries, 70.6% and 76.4%, respectively. The relatively higher concentration in the latter might be correlated with exposure, relative humidity and water evaporation, leading to crystallization of sugars on the stem surface in a short period of time.  相似文献   

12.
短果大蒜芥(Sisymbrium loeselii L.var.brevicarpum Z.X.An)花蜜腺位于雄蕊基部花托上,属十字花科环状花蜜腺类型中的侧棱环四圆环亚型。蜜腺由分泌表皮,产蜜组织和维管束组成。分泌表皮上有变态气孔器,蜜腺中部的气孔器呈舟状分布。产蜜组织中的维管束来自于花托中的维管束分支,属较进化的十字花科花蜜腺的亚型类型。蜜腺原基是在花的各部分原基分化后,由雄蕊基部花托表面区域的2-3层细胞,经反分化形成,环状蜜腺发生发育同步,在蜜腺的发育过程中,蜜腺组织中的液泡和淀粉粒都发生了有规律的变化,其原蜜汁由维管束提供,运转至产蜜组织,最后由变态气孔泌出。  相似文献   

13.
The occurrence, morphology, ontogeny, structure and preliminary nectar analysis of floral and extrafloral nectaries are studied inKigelia pinnata of the Bignoniaceae. The extrafloral nectaries occur on foliage leaves, sepals and outer wall of the ovary, while the floral nectary is situated around the ovary base as an annular, massive, yellowish ring on the torus. The extrafloral nectaries originate from a single nectary initial. The floral nectary develops from a group of parenchymatous cells on the torus. The extrafloral nectaries are differentiated into multicellular foot, stalk and cupular or patelliform head. The floral nectary consists of parenchymatous tissue. The floral nectaries are supplied with phloem tissue. The secretion is copious in floral nectary. Function of the nectary, preliminary nectar analysis, and symbiotic relation between nectaries and animal visitors are discussed.  相似文献   

14.
Factors that contribute to variation in nectar sugar composition, nectar concentration and volume have been a central concern in studies of pollinator assemblages in angiosperms. In an effort to better understand the mechanisms underlying variation in nectar traits, we designed a series of experiments with flowering Helleborus foetidus individuals under natural and glasshouse conditions, to identify intraplant variation in nectar traits which depend on both intrinsic (sexual phases of individual flowers) and external (pollinator visits and plant growth conditions) factors. The results showed that nectar volume, sugar composition and concentration in Helleborus foetidus varied between floral sexual phases, environmental growing conditions, and levels of flower exposure to pollinator visits. Processes of mate-limitation in male reproductive success or pollen-limitation in female success, as well as flower protogyny and holocrine secretion of nectaries may be involved in nectar variability between floral phases. By comparing different environments we observed that nectar volume and concentration at the nectary and flower level were plastic traits sensitive to external conditions, emphasizing responsiveness to environmental changes and a consequent plasticity in nectar traits such as sugar concentration and volume. Nectar sugar composition did not respond to different growing conditions, suggesting that this is an intrinsic characteristic of this species, but pollinator exposure produced significant changes in the nectar of single nectaries, particularly in the sucrose-fructose balance. Future research on nectar ecology and nectar chemistry will need to consider that nectar traits exhibit different kinds of variation at the intraplant level and under different environmental conditions.  相似文献   

15.
黄杨花单性,雌雄同株,雄花花蜜腺4枚,乳头状,着生于退化雌蕊子房顶部;雌花花蜜腺3枚,短柱状,位于3枚花柱之间。雌、雄花蜜腺均由分泌表皮、产蜜组织和维管束构成,在发育过程中产蜜组织细胞的液泡都发生有规律的变化。雌花蜜腺大,属非淀粉型蜜腺,泌蜜量大,蜜汁含糖分多,维管束中仅含韧皮部;雄花蜜腺小,属淀粉型蜜腺,泌蜜量小.蜜汁含糖量小,维管束由木质部和韧皮部构成。  相似文献   

16.
The nectary structure and chemical nectar composition of 15 species belonging to 12 genera ofBignoniaceae are analyzed. All taxa bear a conspicuous nuptial nectary surrounding the ovary base. The secretory tissue is mostly supplied by phloem branches. The stomata are located in the middle and upper part of the nectary epidermis with an homogeneous distribution. The nuptial nectary is proportionally large in relation to the ovary (15–30%), disregarding the nectary volume. Most species have extranuptial nectaries in both inner and outer surfaces of the calyx. Both kinds of nectaries lack a vascular tissue that straightly supplies them. Nuptial nectar concentration (wt/wt) ranges from 19 to 68%. Sugars and amino acids are found in all species. Half of the species have hexose predominant nectars, the remaining sucrose predominant. Phenols are detected in only three species, whereas reducing acids exclusively inTecoma stans. Alkaloids and lipids were never detected. Extranuptial nectar chemical composition is analyzed in two species:Dolichandra cynanchoides andPodranea ricasoliana. Bees constitute the main flower visitors of the species studied whereas hummingbirds were seen visiting three species. A correlation analysis is performed with the data obtained. There are a few significant correlations which indicate a parallel increase of three parameters: the longer the flower length, the more voluminous the nectary and the higher stomata number, independently of the floral biotype. Phenograms are obtained using 24 floral characters including nectary and nectar data. The clusters obtained do not reflect taxonomic relationships but are useful in the understanding of animal-plant interactions when the flower biotype is considered.This paper is based on a chapter of a doctoral thesis presented at the University of Córdoba (Argentina).  相似文献   

17.
Linnaeeae is a small tribe of Caprifoliaceae consisting of six genera and c. 20 species. In Linnaeeae, floral nectaries are located on the corolla‐filament‐tube and nectar is produced from unicellular glandular hairs. We studied 23 taxa using scanning electron microscopy (SEM), light microscopy (LM) and transmission electron microscopy (TEM) and found two distinct nectary morphologies, zonate and gibbous types, and two distinct types of glandular hair, clavate and smooth base types. Plesiomorphic characters associated with the nectary and identified in the tribe include hypocrateriform corollas, dichogamous flowers, zonate nectaries, wet papillate stigmas, vestigial nectary disc and smooth pollen grains. Apomorphic characters include bilabiate corollas, homogamous flowers, bulging nectaries, dry papillate stigmas and echinulate pollen grains. The nectary structure is similar in Vesalea and Linnaea and differs from the rest of the tribe, in accordance with recent phylogenetic results. Nectar secretion is typically granulocrine with subcuticular accumulation of nectar, which we compared with the secretion in multicellular hairs of Adoxa moschatellina. The cuticle on the hair becomes detached from the cell wall and large subcuticular spaces filled with nectar are formed. Nectar is probably released in areas with a thin cuticle. In Zabelia, the smooth basal part of the hair could help to build up the hydrostatic pressure.  相似文献   

18.
Nectar biodiversity: a short review   总被引:9,自引:0,他引:9  
 Nectaries differ in many aspects but a common feature is some kind of advantage for the plant conferred by foraging of consumers which may defend the plant from predators in the case of extrafloral nectaries, or be agents of pollination in the case of floral nectaries. This minireview is concerned mainly with floral nectaries and examines the following characteristics: position in flower; nectary structure; origin of carbohydrates, aminoacids and proteins; manner of exposure of nectar; site of nectar presentation; volume and production of nectar in time; sexual expression of flower and nectary morphology; nectar composition and floral sexual expression; variability of nectar composition; fate of nectar; energy cost of nectar production. The species of certain large families, such as Brassicaceae, Lamiaceae and Asteraceae, resemble each other in nectary organisation; other families, such as Cucurbitaceae and Ranunculaceae, have various types of organisation. A scheme is presented to illustrate factors influencing nectary and nectar biodiversity. Received July 23, 2002; accepted September 18, 2002 Published online: June 2, 2003  相似文献   

19.
Summary The floral nectary ofPisum sativum L. is situated on the receptacle at the base of the gynoecium. The gland receives phloem alone which departed the vascular bundles supplying the staminal column. Throughout the nectary, only the companion cells of the phloem exhibited wall ingrowths typical of transfer cells. Modified stomata on the nectary surface served as exits for nectar, but stomatal pores developed well before the commencement of secretion. Furthermore, stomatal pores on the nectary usually closed by occlusion, not by guard-cell movements. Pore occlusion was detected most frequently in post-secretory and secretory glands, and less commonly in pre-secretory nectaries. A quantitative stereological study revealed few changes in nectary fine structure between buds, flowers secreting nectar, and post-secretory flowers. Dissolution of abundant starch grains in plastids of subepidermal secretory cells when secretion commenced suggests that starch is a precursor of nectar carbohydrate production. Throughout nectary development, mitochondria were consistently the most plentiful organelle in both epidermal and subepidermal cells, and in addition to the relative paucity of dictyosomes, endoplasmic reticulum, and their associated vesicles, the evidence suggests that floral nectar secretion inP. sativum is an energy-requiring (eccrine) process, rather that granulocrine.Abbreviations ER endoplasmic reticulum - GA glutaraldehyde - SEM scanning electron microscopy  相似文献   

20.
荆条花蜜腺发育解剖学研究   总被引:2,自引:0,他引:2  
荆条(Vitex chinensis Mill.)花蜜腺属于淀粉型子房蜜腺,呈圆筒状环绕于子房的基部。蜜腺外观上无特殊结构,表面有。由分泌表皮和泌蜜组织组成,包括分泌表皮、气孔器、泌蜜薄壁组织和维管束。密腺和子房壁起源相同。花蕾膨大期,泌蜜组织细胞中产生大液泡;露冠期,泌蜜组织中形成维管束;花蕾初放期,分泌表皮细胞分化形成气孔器,无气孔下室,淀粉粒的积累在此期达到高峰;盛花期,蜜腺中已无淀粉粒,密  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号