首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species extinctions are accelerating globally, yet the mechanisms that maintain local biodiversity remain poorly understood. The extinction of species that feed on or are fed on by many others (i.e. ‘hubs’) has traditionally been thought to cause the greatest threat of further biodiversity loss. Very little attention has been paid to the strength of those feeding links (i.e. link weight) and the prevalence of indirect interactions. Here, we used a dynamical model based on empirical energy budget data to assess changes in ecosystem stability after simulating the loss of species according to various extinction scenarios. Link weight and/or indirect effects had stronger effects on food‐web stability than the simple removal of ‘hubs’, demonstrating that both quantitative fluxes and species dissipating their effects across many links should be of great concern in biodiversity conservation, and the potential for ‘hubs’ to act as keystone species may have been exaggerated to date.  相似文献   

2.
3.
Food web theory suggests that the placement of a weak interaction is critical such that under some conditions even one well‐placed weak interaction can stabilise multiple strong interactions. This theory suggests that complex stable webs may be built from pivotal weak interactions such that the removal of even one to a few keystone interactions can have significant cascading impacts on whole system diversity and structure. However, the connection between weak interactions, derived from the theory of modular food web components, and keystone species, derived from empirical results, is not yet well understood. Here, we develop numerical techniques to detect potential oscillators hidden in complex food webs, and show that, both in random and real food webs, keystone consumer–resource interactions often operate to stabilise them. Alarmingly, this result suggests that nature frequently may be dangerously close to precipitous change with even the loss of one or a few weakly interacting species.  相似文献   

4.
Parasites in food webs: the ultimate missing links   总被引:2,自引:0,他引:2  
Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food‐web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food‐web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food‐web stability, interaction strength and energy flow. Food‐web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food‐web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food‐web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.  相似文献   

5.
Lai SM  Liu WC  Jordán F 《Biology letters》2012,8(4):570-573
Identifying important species for maintaining ecosystem functions is a challenge in ecology. Since species are components of food webs, one way to conceptualize and quantify species importance is from a network perspective. The importance of a species can be quantified by measuring the centrality of its position in a food web, because a central node may have greater influence on others in the network. A species may also be important because it has a unique network position, such that its loss cannot be easily compensated. Therefore, for a food web to be robust, we hypothesize that central species must be functionally redundant in terms of their network position. In this paper, we test our hypothesis by analysing the Prince William Sound ecosystem. We found that species centrality and uniqueness are negatively correlated, and such an observation is also carried over to other food webs.  相似文献   

6.
生态系统中的物质和能量主要沿食物链在食物网中流通,诸多研究表明入侵植物对生态系统功能的影响是通过改变当地原有的食物网结构而实现的,因此外来植物入侵对食物网的影响受到人们越来越多的关注.本文分析了植物入侵引起食物网变化的原因以及改变食物网的途径,探讨了土著食物网特点对群落可入侵性的影响,得出以下结论:(1)食物网的变化主要是由于入侵植物引起的消费者基础食物资源或者周围环境条件的变化造成的;(2)入侵植物通过3种途径影响食物网:一是入侵植物具有较好的可利用性,能够直接被土著草食者取食,通过上行效应按照原有的路径进入土著食物网;二是当入侵植物的可利用性较差时,入侵植物所固定的能量通过引入新的消费者或者转变流通路径形成新的食物网结构;三是入侵植物通过非营养作用造成食物网中各级消费者的种群密度和行为活动等发生变化,进而影响土著生物群落和食物网结构;(3)食物网的大小及其连通性可能影响外来植物的入侵成功率.在今后的研究中,为深入揭示生物入侵对食物网的影响,在短期控制实验的基础上应加强长时间尺度的动态研究,对于食物网变化的定量描述对象也需要进一步加以明确.此外,食物网对入侵植物生态修复的响应以及食物网变化对入侵植物的反馈作用等也具有重要的研究价值.  相似文献   

7.
8.
Food-web structure mediates dramatic effects of biodiversity loss including secondary and `cascading' extinctions. We studied these effects by simulating primary species loss in 16 food webs from terrestrial and aquatic ecosystems and measuring robustness in terms of the secondary extinctions that followed. As observed in other networks, food webs are more robust to random removal of species than to selective removal of species with the most trophic links to other species. More surprisingly, robustness increases with food-web connectance but appears independent of species richness and omnivory. In particular, food webs experience `rivet-like' thresholds past which they display extreme sensitivity to removal of highly connected species. Higher connectance delays the onset of this threshold. Removing species with few trophic connections generally has little effect though there are several striking exceptions. These findings emphasize how the number of species removed affects ecosystems differently depending on the trophic functions of species removed.  相似文献   

9.
Host specificity of parasitoids may be measured by various specialization indices to assess the variation of interaction strength among species and the structure of the wider interaction network. However, the conclusions from analyses at the species and network levels may differ, which remains poorly explored. In addition, the recovery of cryptic species of hosts and parasitoids with molecular data may affect the structure of inferred interaction links. We quantified host specificity of hymenopteran parasitoids (family Encyrtidae) on armored scale insects (Hemiptera: Diaspididae) from a wide geographic sampling range across the Chinese Mainland based on both morphological and molecular species delimitation. Mitochondrial COI and nuclear 28S markers detected high cryptic species diversity in the encyrtids and to a lesser degree in the diaspidids, which divided generalist morphospecies into complexes of specialists and generalists. One‐to‐one reciprocal host–parasite links were increased in the molecular data set, but different quantitative species‐level indices produced contrasting estimates of specificity from various one‐to‐multiple and multiple‐to‐multiple host–parasite links. Network indices calculated from DNA‐based species, compared to morphology‐based species definitions, showed lower connectance and generality, but greater specialization and compartmentalization of the interaction network. We conclude that a high degree of cryptic species in host–parasitoid systems refines the true network structure and may cause us overestimating the stability of these interaction webs.  相似文献   

10.
基于SURF指数识别海州湾食物网的关键饵料生物   总被引:2,自引:0,他引:2  
徐从军  徐宾铎  张崇良  任一平  薛莹 《生态学报》2019,39(24):9373-9378
关键种(keystone species)在生态系统中发挥着不可替代的重要作用,对于群落结构的稳定与演替起着决定性的作用。基于2011年3—12月在海州湾及其邻近海域进行的渔业资源底拖网调查资料以及胃含物分析数据和参考历史文献数据,以物种间的摄食关系作为基础,采用SURF(Supportive Role to Fishery ecosystems)指数识别海州湾食物网中的关键饵料生物。在矩阵中分析每个物种作为饵料生物为捕食者提供的摄食比例及捕食者数量,计算每个物种的关键指标(SURFi)的值,结果表明前五位数值较高的物种是细鳌虾(Leptochela gracilis)、毛虾(Acetessp.)、疣背宽额虾(Latreutes planirostris)、日本鼓虾(Alpheus japonicus)和鳀鱼(Engraulis japonicus),它们是海州湾的关键饵料生物,在整个食物网中起到关键的控制作用,它们的数量波动会对海州湾其他物种产生直接或间接的影响。加强关键饵料生物的保护,对于维持海州湾生态系统的健康和稳定至关重要。  相似文献   

11.
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.  相似文献   

12.
13.
14.
15.
The dynamics of spatially coupled food webs   总被引:5,自引:2,他引:3  
The dynamics of ecological systems include a bewildering number of biotic interactions that unfold over a vast range of spatial scales. Here, employing simple and general empirical arguments concerning the nature of movement, trophic position and behaviour we outline a general theory concerning the role of space and food web structure on food web stability. We argue that consumers link food webs in space and that this spatial structure combined with relatively rapid behavioural responses by consumers can strongly influence the dynamics of food webs. Employing simple spatially implicit food web models, we show that large mobile consumers are inordinately important in determining the stability, or lack of it, in ecosystems. More specifically, this theory suggests that mobile higher order organisms are potent stabilizers when embedded in a variable, and expansive spatial structure. However, when space is compressed and higher order consumers strongly couple local habitats then mobile consumers can have an inordinate destabilizing effect. Preliminary empirical arguments show consistency with this general theory.  相似文献   

16.
水生生态系统食物网复杂性与多样性的关系   总被引:1,自引:0,他引:1  
李晓晓  杨薇  孙涛  崔保山  邵冬冬 《生态学报》2021,41(10):3856-3864
探索食物网的复杂结构是生态学的中心问题之一。基于构建的黄河口海草床食物网并耦合实际食物网的数据集,整理了包含河口、湖泊、海洋和河流四种水生生态系统类型的48个实际食物网案例。以食物网的节点数反映食物网多样性,物种之间的营养链接数、链接密度和连通度来表示食物网的复杂性,采用营养缩尺模型描述水生生态系统食物网的复杂性特征与节点数的普适性规律。结果表明:所涉及的48个水生生态系统食物网的多样性和复杂性跨度较大,其中,节点数的分布范围为4-124,链接数为3-1830,链接密度为0.75-15.71,连通度为0.06-0.25。不同类型水生生态系统间的连通度存在显著性差异(P=0.01),节点数、链接数、链接密度不存在显著性差异。各类型生态系统的食物网链接数、链接密度均随节点数的增加而增加(R2=0.92,P<0.001和R2=0.82,P<0.001)。湖泊生态系统的连通度随节点数的变化不明显,围绕在0.20附近;而其他3种类型生态系统的食物网连通度随节点数的增加而降低(R2=0.06-0.41,P<0.001)。对全球尺度的水生食物网多样性和复杂性的定量化研究对于提升对食物网的复杂结构的科学认识,从系统尺度探究多样性和复杂性的关系提供数据支撑。  相似文献   

17.
The quantitative structure of two host–parasitoid communities based on leaf-mining flies (Diptera, Agromyzidae) in Argentina is described. The two communities consisted of 29 and 27 hosts, 46 and 40 parasitoids, and 193 and 179 recorded host–parasitoid associations. Also, food webs were constructed for one community based solely on samples taken in the wet and dry seasons. Data were expressed as quantitative food webs, and the manner in which food web properties, such as connectance and compartmentalization, were influenced by sampling intensity was explored. The potential importance of indirect effects between hosts mediated by parasitoids (e.g. apparent competition) was assessed using quantitative parasitoid overlap diagrams. The studys results suggest that indirect effects are likely to be important in these highly connected communities. The limitations of the studys analysis, and how the conclusions can be tested experimentally, are discussed.  相似文献   

18.
Inferring trophic transfers from pulse-dynamics in detrital food webs   总被引:2,自引:0,他引:2  
In semiarid ecosystems, decomposers are active during numerous short periods following rainfall events, and most inactive in the intervening dry periods. Many studies concern season-long dynamics of decomposer populations, but less is known of the short-term dynamics during wet periods. These short-term dynamics may provide the key to understanding interactions between microbes and fauna.The dynamics of populations in the detrital food web were followed after wetting large intact soil cores that had been removed from native shortgrass steppe, winter wheat, and fallow plots. The cores were sampled over a ten day period for bacteria, fungi, protozoa, and various functional groups of microarthropods and nematodes. The native sod had appreciably greater biomass of fungi, nematodes and microarthropods than did the cultivated plots, but there was no difference in bacteria or protozoans. The observed dynamics after wetting were different in two experiments which differed in temperature, soil water level, and the initial sizes of the populations. These results were interpreted in relation to a model of the structure of the detrital food web, and estimates were made of the rates of trophic transfers in the web. Consumption by protozoa was great enough for them to account for bacterial turnover, but consumption by fungivorous nematodes and microarthropods appeared to be too small to account for fungal turnover.Progress in understanding the dynamics of detrital food webs requires a better definition of the functional groups of soil organisms, their resources, predators and population parameters, and the effects of soil structure and water content on trophic relationships.  相似文献   

19.
Many human influences on the world's ecosystems have their largest direct impacts at either the top or the bottom of the food web. To predict their ecosystem-wide consequences we must understand how these impacts propagate. A long-standing, but so far elusive, problem in this endeavour is how to reduce food web complexity to a mathematically tractable, but empirically relevant system. Simplification to main energy channels linking primary producers to top consumers has been recently advocated. Following this approach, we propose a general framework for the analysis of bottom-up and top-down forcing of ecosystems by reducing food webs to two energy pathways originating from a limiting resource shared by competing guilds of primary producers (e.g. edible vs. defended plants). Exploring dynamical models of such webs we find that their equilibrium responses to nutrient enrichment and top consumer harvesting are determined by only two easily measurable topological properties: the lengths of the component food chains (odd-odd, odd-even, or even-even) and presence vs. absence of a generalist top consumer reconnecting the two pathways (yielding looped vs. branched webs). Many results generalise to other looped or branched web structures and the model can be easily adapted to include a detrital pathway.  相似文献   

20.
1. The loss of a species from an ecological community can trigger a cascade of secondary extinctions. Here we investigate how the complexity (connectance) of model communities affects their response to species loss. Using dynamic analysis based on a global criterion of persistence (permanence) and topological analysis we investigate the extent of secondary extinctions following the loss of different kinds of species. 2. We show that complex communities are, on average, more resistant to species loss than simple communities: the number of secondary extinctions decreases with increasing connectance. However, complex communities are more vulnerable to loss of top predators than simple communities. 3. The loss of highly connected species (species with many links to other species) and species at low trophic levels triggers, on average, the largest number of secondary extinctions. The effect of the connectivity of a species is strongest in webs with low connectance. 4. Most secondary extinctions are due to direct bottom-up effects: consumers go extinct when their resources are lost. Secondary extinctions due to trophic cascades and disruption of predator-mediated coexistence also occur. Secondary extinctions due to disruption of predator-mediated coexistence are more common in complex communities than in simple communities, while bottom-up and top-down extinction cascades are more common in simple communities. 5. Topological analysis of the response of communities to species loss always predicts a lower number of secondary extinctions than dynamic analysis, especially in food webs with high connectance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号