首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
2.
RNA-ligand chemistry: a testable source for the genetic code   总被引:5,自引:3,他引:2       下载免费PDF全文
In the genetic code, triplet codons and amino acids can be shown to be related by chemical principles. Such chemical regularities could be created either during the code's origin or during later evolution. One such chemical principle can now be shown experimentally. Natural or particularly selected RNA binding sites for at least three disparate amino acids (arginine, isoleucine, and tyrosine) are enriched in codons for the cognate amino acid. Currently, in 517 total nucleotides, binding sites contain 2.4-fold more codon sequences than surrounding nucleotides. The aggregate probability of this enrichment is 10(-7) to 10(-8), had codons and binding site sequences been independent. Thus, at least some primordial coding assignments appear to have exploited triplets from amino acid binding sites as codons.  相似文献   

3.
Information theoretic analysis of genetic languages indicates that the naturally occurring 20 amino acids and the triplet genetic code arose by duplication of 10 amino acids of class-II and a doublet genetic code having codons NNY and anticodons GNN. Evidence for this scenario is presented based on the properties of aminoacyl-tRNA synthetases, amino acids and nucleotide bases.  相似文献   

4.
Genetic code redundancy allows most amino acids to be encoded by multiple codons that are non-randomly distributed along coding sequences. An accepted theory explaining the biological significance of such non-uniform codon selection is that codons are translated at different speeds. Thus, varying codon placement along a message may confer variable rates of polypeptide emergence from the ribosome, which may influence the capacity to fold toward the native state. Previous studies report conflicting results regarding whether certain codons correlate with particular structural or folding properties of the encoded protein. This is partly due to different criteria traditionally utilized for predicting translation speeds of codons, including their usage frequencies and the concentration of tRNA species capable of decoding them, which do not always correlate. Here, we developed a metric to predict organism-specific relative translation rates of codons based on the availability of tRNA decoding mechanisms: Watson-Crick, non-Watson-Crick or both types of interactions. We determine translation rates of messages by pulse-chase analyses in living Escherichia coli cells and show that sequence engineering based on these concepts predictably modulates translation rates in a manner that is superior to codon usage frequency, which occur during the elongation phase, and significantly impacts folding of the encoded polypeptide. Finally, we demonstrate that sequence harmonization based on expression host tRNA pools, designed to mimic ribosome movement of the original organism, can significantly increase the folding of the encoded polypeptide. These results illuminate how genetic code degeneracy may function to specify properties beyond amino acid encoding, including folding.  相似文献   

5.
It is known that different codons may be unified into larger groups related to the hierarchical structure, approximate hidden symmetries, and evolutionary origin of the universal genetic code. Using a simplified evolutionary motivated two-letter version of genetic code, the general principles of the most stable coding are discussed. By the complete enumeration in such a reduced code it is strictly proved that the maximum stability with respect to point mutations and shifts in the reading frame needs the fixation of the middle letters within codons in groups with different physico-chemical properties, thus, explaining a key feature of the universal genetic code. The translational stability of the genetic code is studied by the mapping of code onto de Bruijn graph providing both the compact visual representation of mutual relationships between different codons as well as between codons and protein coding DNA sequence and a powerful tool for the investigation of stability of protein coding. Then, the results are extended to four-letter codes. As is shown, the universal genetic code obeys mainly the principles of optimal coding. These results demonstrate the hierarchical character of optimization of universal genetic code with strictly optimal coding being evolved at the earliest stages of molecular evolution. Finally, the universal genetic code is compared with the other natural variants of genetic codes.  相似文献   

6.
Genetic code development by stop codon takeover   总被引:5,自引:0,他引:5  
A novel theoretical consideration of the origin and evolution of the genetic code is presented. Code development is viewed from the perspective of simultaneously evolving codons, anticodons and amino acids. Early code structure was determined primarily by thermodynamic stability considerations, requiring simplicity in primordial codes. More advanced coding stages could arise as biological systems became more complex and precise in their replication. To be consistent with these ideas, a model is described in which codons become permanently associated with amino acids only when a codon-anticodon pairing is strong enough to permit rapid translation. Hence all codons are essentially chain-termination or "stop" codons until tRNA adaptors evolve having the ability to bind tightly to them. This view, which draws support from several lines of evidence, differs from the prevalent thinking on code evolution which holds that codons specifying newer amino acids were derived from codons encoding older amino acids.  相似文献   

7.
Selection on Codon Usage for Error Minimization at the Protein Level   总被引:1,自引:0,他引:1  
Given the structure of the genetic code, synonymous codons differ in their capacity to minimize the effects of errors due to mutation or mistranslation. I suggest that this may lead, in protein-coding genes, to a preference for codons that minimize the impact of errors at the protein level. I develop a theoretical measure of error minimization for each codon, based on amino acid similarity. This measure is used to calculate the degree of error minimization for 82 genes of Drosophila melanogaster and 432 rodent genes and to study its relationship with CG content, the degree of codon usage bias, and the rate of nucleotide substitution. I show that (i) Drosophila and rodent genes tend to prefer codons that minimize errors; (ii) this cannot be merely the effect of mutation bias; (iii) the degree of error minimization is correlated with the degree of codon usage bias; (iv) the amino acids that contribute more to codon usage bias are the ones for which synonymous codons differ more in the capacity to minimize errors; and (v) the degree of error minimization is correlated with the rate of nonsynonymous substitution. These results suggest that natural selection for error minimization at the protein level plays a role in the evolution of coding sequences in Drosophila and rodents.Reviewing Editor: Dr. Massimo Di Giulio  相似文献   

8.
H Himeno  H Masaki  T Kawai  T Ohta  I Kumagai  K Miura  K Watanabe 《Gene》1987,56(2-3):219-230
The nucleotide sequence of a 3849-bp fragment of starfish mitochondrial genome was determined. The genes for NADH dehydrogenase subunits 3, 4, 5, and COIII, and three kinds of (tRNA(UCNSer), tRNA(His), and tRNA(AGYSer) were identified by comparing with the genes of other animal mitochondria so far elucidated. The gene arrangement of starfish mitochondrial genome was different from those of vertebrate and insect mitochondrial genomes. Comparison of the protein-encoding nucleotide sequences of starfish mitochondria with those of other animal mitochondria suggested a unique genetic code in starfish mitochondrial genome; both AGA and AGG (arginine in the universal code) code for serine, AUA (isoleucine in the universal code but methionine in most mitochondrial systems) for isoleucine, and AAA (lysine) for asparagine. It was also inferred that these AGA and AGG codons are decoded by serine tRNA(AGYSer) originally corresponding to AGC and AGU codons. This situation is similar to the case of Drosophila mitochondrial genome. Variations in the use of AGA and AGG codons were discussed on the basis of the evolution of animals and decoding capacity of various tRNA(AGYSer) species possessing different sizes of the dihydrouridine (D) arm.  相似文献   

9.
A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed. We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting protein. The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain. A complete search for GenBank nucleotide sequences coding for structural entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment. By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets. These signals do not originate from the clustering of rare codons, but from the similarity of codons coding for very abundant amino acid residues at the N- and C-termini of helices and sheets. No correlation between the positioning of rare codons and the location of structural units was found. The mRNA signals were also compared with conserved nucleotide features of 16S-like ribosomal RNA sequences and related to mechanisms for maintaining the correct reading frame by the ribosome. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Explaining the apparent non-random codon distribution and the nature and number of amino acids in the ‘standard’ genetic code remains a challenge, despite the various hypotheses so far proposed. In this paper we propose a simple new hypothesis for code evolution involving a progression from singlet to doublet to triplet codons with a reading mechanism that moves three bases each step. We suggest that triplet codons gradually evolved from two types of ambiguous doublet codons, those in which the first two bases of each three-base window were read (‘prefix’ codons) and those in which the last two bases of each window were read (‘suffix’ codons). This hypothesis explains multiple features of the genetic code such as the origin of the pattern of four-fold degenerate and two-fold degenerate triplet codons, the origin of its error minimising properties, and why there are only 20 amino acids. Reviewing Editor: Dr. Laura Landweber An erratum to this article can be found at .  相似文献   

11.
Noncanonical amino acid mutagenesis has emerged as a powerful tool for the study of protein structure and function. While triplet nonsense codons, especially the amber codon, have been widely employed, quadruplet codons have attracted attention for the potential of creating additional blank codons for noncanonical amino acids mutagenesis. In this review, we discuss methodologies and applications of quadruplet codon decoding in genetic code expansion both in vitro and in vivo.  相似文献   

12.
Codon reassignment (codon capture) in evolution   总被引:20,自引:3,他引:17  
The genetic code, once thought to be "frozen," shows variations from the universal code. Variations are found in mitochondria, Mycoplasma, and ciliated protozoa. The variations result from reassignment of codons, especially stop codons. The reassignments take place by disappearance of a codon from coding sequences, followed by its reappearance in a new role. Simultaneously, a changed anticodon must appear. We discuss the role of directional mutation pressure in the events, and we also describe the possibility that such events have taken place during early evolution of the genetic code and can occur during its present evolution.  相似文献   

13.
The aminoacyl-tRNA synthetases exist as two enzyme families which were apparently generated by divergent evolution from two primordial synthetases. The two classes of enzymes exhibit intriguing familial relationships, in that they are distributed nonrandomly within the codon-amino acid matrix of the genetic code. For example, all XCX codons code for amino acids handled by class II synthetases, and all but one of the XUX codons code for amino acids handled by class I synthetases. One interpretation of these patterns is that the synthetases coevolved with the genetic code. The more likely explanation, however, is that the synthetases evolved in the context of an already-established genetic code—a code which developed earlier in an RNA world. The rules which governed the development of the genetic code, and led to certain patterns in the coding catalog between codons and amino acids, would also have governed the subsequent evolution of the synthetases in the context of a fixed code, leading to patterns in synthetase distribution such as those observed. These rules are (1) conservative evolution of amino acid and adapter binding sites and (2) minimization of the disruptive effects on protein structure caused by codon meaning changes.  相似文献   

14.
The principles of mRNA decoding are conserved among all extant life forms. We present an integrative view of all the interaction networks between mRNA, tRNA and rRNA: the intrinsic stability of codon–anticodon duplex, the conformation of the anticodon hairpin, the presence of modified nucleotides, the occurrence of non-Watson–Crick pairs in the codon–anticodon helix and the interactions with bases of rRNA at the A-site decoding site. We derive a more information-rich, alternative representation of the genetic code, that is circular with an unsymmetrical distribution of codons leading to a clear segregation between GC-rich 4-codon boxes and AU-rich 2:2-codon and 3:1-codon boxes. All tRNA sequence variations can be visualized, within an internal structural and energy framework, for each organism, and each anticodon of the sense codons. The multiplicity and complexity of nucleotide modifications at positions 34 and 37 of the anticodon loop segregate meaningfully, and correlate well with the necessity to stabilize AU-rich codon–anticodon pairs and to avoid miscoding in split codon boxes. The evolution and expansion of the genetic code is viewed as being originally based on GC content with progressive introduction of A/U together with tRNA modifications. The representation we present should help the engineering of the genetic code to include non-natural amino acids.  相似文献   

15.
A novel concept on mechanisms of evolution of genes and genomes is suggested: the sequences evolve largely by local events of triplet expansion and subsequent mutational changes in the repeats. The immediate memory about the earlier expansion events still resides in the sequences, in form of the frequently occurring segments of tandemly repeating codons. Other predicted fossils of the original repeats are: (I) the expanding triplets should be accompanied by their point mutation derivatives and (II) the remaining excess of codons formerly belonging to the tandem repeats should be reflected in overall codon usage biases. Both predictions are confirmed by analysis of largest available database of non-redundant protein coding sequences, of total size ~5?×?10(9) codons. One important conclusion also follows from the results. Life which, presumably, started with replication of expanding triplets and their subsequent mutational changes, is continuing to emerge within the genes and genomes, in form of new events of triplet expansion.  相似文献   

16.
In several species of ciliates, the universal stop codons UAA and UAG are translated into glutamine, while in the euplotids, the glutamine codon usage is normal, but UGA appears to be translated as cysteine. Because the emerging position of this monophyletic group in the eukaryotic lineage is relatively late, this deviant genetic code represents a derived state of the universal code. The question is therefore raised as to how these changes arose within the evolutionary pathways of the phylum. Here, we have investigated the presence of stop codons in alpha tubulin and/or phosphoglycerate kinase gene coding sequences from diverse species of ciliates scattered over the phylogenetic tree constructed from 28S rRNA sequences. In our data set, when deviations occur they correspond to in frame UAA and UAG coding for glutamine. By combining these new data with those previously reported, we show that (i) utilization of UAA and UAG codons occurs to different extents between, but also within, the different classes of ciliates and (ii) the resulting phylogenetic pattern of deviations from the universal code cannot be accounted for by a scenario involving a single transition to the unusual code. Thus, contrary to expectations, deviations from the universal genetic code have arisen independently several times within the phylum.  相似文献   

17.
18.
19.
M A Soto  C J Tohá 《Bio Systems》1985,18(2):209-215
A quantitative rationale for the evolution of the genetic code is developed considering the principle of minimal hardware. This principle defines an optimal code as one that minimizes for a given amount of information encoded, the product of the number of physical devices used by the average complexity of each device. By identifying the number of different amino acids, number of nucleotide positions per codon and number of base types that can occupy each such position with, respectively, the amount of information, number of devices and the complexity, we show that optimal codes occur for 3, 7 and 20 amino acids with codons having a single, two and three base positions per codon, respectively. The advantage of a code of exactly 4 symbols is deduced, as well as a plausible evolutionary pathway from a code of doublets to triplets. The present day code of 20 amino acids encoded by 64 codons is shown to be the most optimal in an absolute sense. Using a tetraplet code further evolution to a code in which there would be 55 amino acids is in principle possible, but such a code would deviate slightly more than the present day code from the minimal hardware configuration. The change from a triplet code to a tetraplet code would occur at about 32 amino acids. Our conclusions are independent of, but consistent with, the observed physico-chemical properties of the amino acids and codon structures. These correlations could have evolved within the constrains imposed by the minimal hardware principle.  相似文献   

20.
Herein two genetic codes from which the primeval RNA code could have originated the standard genetic code (SGC) are derived. One of them, called extended RNA code type I, consists of all codons of the type RNY (purine-any base-pyrimidine) plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. In order to test if putative nucleotide sequences in the RNA World and in both extended RNA codes, share the same scaling and statistical properties to those encountered in current prokaryotes, we used the genomes of four Eubacteria and three Archaeas. For each prokaryote, we obtained their respective genomes obeying the RNA code or the extended RNA codes types I and II. In each case, we estimated the scaling properties of triplet sequences via a renormalization group approach, and we calculated the frequency distributions of distances for each codon. Remarkably, the scaling properties of the distance series of some codons from the RNA code and most codons from both extended RNA codes turned out to be identical or very close to the scaling properties of codons of the SGC. To test for the robustness of these results, we show, via computer simulation experiments, that random mutations of current genomes, at the rates of 10−10 per site per year during three billions of years, were not enough for destroying the observed patterns. Therefore, we conclude that most current prokaryotes may still contain relics of the primeval RNA World and that both extended RNA codes may well represent two plausible evolutionary paths between the RNA code and the current SGC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号