首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Here we describe a simplified method for transient gene expression (TGE) in suspension-adapted Chinese hamster ovary (CHO) cells using polyethylenimine (PEI) for DNA delivery. Both the transfection and production phases of the bioprocess were performed at a density of 4 × 10? cells/mL at 31 °C. In addition, the amounts of both PEI and plasmid DNA were reduced up to 50% on a per cell basis compared to previously published protocols from this laboratory, resulting in higher cell viability after transfection and higher volumetric recombinant protein yields. In batch cultures of up to 14 days, reproducible recombinant antibody yields up to 300 mg/L were achieved at small scale (5 mL) and up to 250 mg/L at large scale (500 mL). The simplicity and improved yields are expected to increase the utility of CHO cells for the rapid production of recombinant proteins at larger scales by TGE.  相似文献   

2.
Transient gene expression (TGE) in Chinese hamster ovary (CHO) cells with polyethylenimine (PEI) as a transfection reagent has been considered as an attractive method to produce recombinant proteins rapidly for pre-clinical studies. A high level of transfection efficiency, which is required for high-level TGE in CHO cells, can be achieved by increasing the PEI concentration. However, PEI induces cytotoxicity in a dose-dependent manner. To overcome this problem, Bcl-2 protein, an anti-apoptotic protein, was overexpressed in CHO cells (DG44). At a ratio of PEI to DNA (an N/P ratio) of 10, there were no significant differences in transfection efficiency and cell viability between Bcl-2 overexpressing and non-overexpressing cells. The transfection efficiency and cell viability were 2–11% and 83–92%, respectively. However, there were significant differences (P < 0.05) in the transfection efficiency and cell viability between them at a higher N/P ratio. At an N/P ratio of 40, the transfection efficiency and cell viability of Bcl-2 non-overexpressing cells were 24–38% and 35–40%, respectively, while those of Bcl-2 overexpressing cells were 48–53% and 43–56%, respectively. Furthermore, compared with Bcl-2 non-overexpressing cells, more DNAs entered the Bcl-2 overexpressing cells, resulting in a higher rate of TGE per cell. PE-Annexin V apoptosis revealed that Bcl-2 overexpression suppressed PEI-induced apoptotic cell death at high N/P ratios. Taken together, Bcl-2 overexpression in CHO cells suppresses apoptotic cell death during PEI-mediated transient transfection, resulting in enhanced transfection efficiency and TGE.  相似文献   

3.
Gadd45 is a p53-regulated protein and is involved in cell cycle arrest in the G2/M phase. In an effort to improve transient gene expression (TGE) in Chinese hamster ovary (CHO) cells, the effect of Gadd45-induced cell cycle arrest on TGE in CHO cells was investigated using the two different expression vectors encoding Fcfusion protein and recombinant antibody. To regulate the expression of Gadd45 in CHO cells, the CHO-TREx-gadd45 cell line was established using the T-REx system controlled by doxycycline. During the cultures for TGE, Gadd45 overexpression severely inhibited cell growth, but significantly enhanced TGE. Compared with the culture without Gadd45 overexpression, the TGE of Fc fusion protein and humanized antibody were increased by 111 and 93%, respectively. The enhanced TGE, despite the cell growth arrest induced by Gadd45 overexpression, was due to the significantly increased specific productivity, resulting from enhanced transfection efficiency, increased cell size, and active DNA demethylation. Taken together, the data obtained here demonstrate that Gadd45-induced cell cycle arrest in G2/M phase can significantly enhance TGE in CHO cells.  相似文献   

4.
Transient gene expression (TGE) is a well-established enabling technology for rapid generation of recombinant proteins, with Human Embryonic Kidney (HEK) and Chinese Hamster Ovary (CHO) cell lines and polyethyleneimine (PEI) as the transfection reagent being its most popular components. However, despite considerable progress made in the field, volumetric titers can still be a limiting factor causing the manipulation of increasing quantities of culture media and DNA. Here, we report a systematic analysis of TGE conditions and their influence on yields and protein quality. Guided by Design of Experiments (DoE), we conclude that TGE yields with one test antibody can be maximized by a parallel increase of cell density - 2.4 to 3.0 × 10(6)cells/mL - and PEI concentration - 24 to 30 mg/L - while maintaining a 1:1 ratio of heavy chain and light chain encoding plasmids. Interestingly, we also show that in these conditions, DNA concentration can be maintained in the 1mg/L range, thereby limiting the need for large DNA preparations. Our optimized settings for PEI-mediated TGE in HEK and CHO cells evaluated on several proteins are generally applicable to recombinant antibodies and proteins.  相似文献   

5.
Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon polyethyleneimine (PEI)-mediated transient gene delivery into HEK-293 cells cultured in suspension was investigated to understand the effect of different culture and transfection conditions as well as the significance of the culture age and the quality of the cell line used. Based on two different bicistronic model plasmids expressing the human erythropoietin gene (rHuEPO) in the first position and green fluorescent protein as reporter gene in the second position and vice versa, a completely serum-free transient transfection process was established. The process makes use of a 1:1 mixture of a special calcium-free DMEM and the FreeStyle™ 293 Expression Medium. Maximum transfectability was achieved by adjusting the ratio for complex formation to one mass part of DNA and three parts of PEI corresponding to an N/P (nitrogen residues/DNA phosphates) ratio of 23 representing a minimum amount of DNA for the polycation-mediated gene delivery. Applying this method, maximum transfectabilities between 70 and 96 % and a rHuEPO concentration of 1.6 μg mL−1 72 h post transfection were reached, when rHuEPO gene was expressed from the first position of the bicistronic mRNA. This corresponded to 10 % of the total protein concentration in the cell-free supernatant of the cultures in protein-free medium. Up to 30 % higher transfectabilities were found for cells of early passages compared to those from late passages under protein-free culture conditions. In contrast, when the same cells were propagated in serum-containing medium, higher transfectabilities were found for late-passage cells, while up to 40 % lower transfectabilities were observed for early-passage cells. Nucleotide pools were measured during all cell cultivations and the nucleoside triphosphate/uridine ratios were calculated. These ‘nucleotide ratios’ changed in an age-dependent manner and could be used to distinguish early- from late-passage cells. The observed effects were also dependent on the presence of serum in the culture. Nucleotide ratios were shown being applied to investigate the optimal passage number of cultured cell lines for achieving a maximum productivity in cultures used for transient gene expression. Furthermore, these nucleotide ratios proved to be different for transfected and untransfected cells, providing a high potential tool to monitor the status of transfection under various culture conditions.  相似文献   

6.
Large-scale transient gene expression (TGE) in mammalian cells is an attractive method to rapidly produce recombinant proteins for pre-clinical studies, with some processes reported to reach 100 L. However, the yield remains low, hardly over 20 mg protein/L, mainly because the current TGEs have been performed at low cell density (approximately 5 x 10(5) cells/mL). In this study, the strategy to improve TGE focuses on facilitating transfection at high cell density. A high-density perfusion culture of 293 EBNA1 cells was established in 2-L bioreactor using Freestyle 293 expression medium (Invitrogen, Singapore) to grow the cells for transfection. Transfection was then carried out at 1 x 10(7) cells/mL using polyethylenimine (PEI) as DNA carrier, at the optimized conditions of 6 microg DNA/10(7) cells and 1:3 DNA to PEI mass ratio. During the post-transfection phase, 80.8 mg/L of the model protein, EPO was obtained at day 5.5 post-transfection (130 mg total EPO production) using a fed-batch culture mode. In comparison, perfusion cultures using an enriched SFM II medium resulted in a longer post-transfection production phase (8 days), and 227 mg of EPO was produced in 10.7 L medium, showing that high-density TGE enables the production of several hundreds of milligrams of protein in a 2 L bioreactor. In addition, a protocol for economical plasmid preparation based on anion exchange was also established to satisfy TGE's demand in terms of quality and quantity. To the best of our knowledge, this is the first report of transient transfections at a high cell density of up to 1 x 10(7) cells/mL.  相似文献   

7.
Transient gene expression (TGE) in animal cell cultures has been used for almost 30 years to produce milligrams and grams of recombinant proteins, virus-like particles and viral vectors, mainly for research purposes. The need to increase the amount of product has led to a scale-up of TGE protocols. Moreover, product quality and process reproducibility are also of major importance, especially when TGE is employed for the preparation of clinical lots. This work gives an overview of the different technologies that are available for TGE and how they can be combined, depending on each application. Then, a critical assessment of the challenges of large-scale transient transfection follows, focusing on suspension cell cultures transfected with polyethylenimine (PEI), which is the most widely used methodology for transfection. Finally, emerging opportunities for transient transfection arising from gene therapy, personalized medicine and vaccine development are reviewed.  相似文献   

8.
Lithium chloride (LiCl), which induces cell cycle arrest at G2/M phase, is known as a specific production rate (q p)-enhancing additive in recombinant Chinese hamster ovary (CHO) cell culture. To determine the potential of LiCl as a chemical additive that enhances transient gene expression (TGE), LiCl was added to the CHO-NK and human embryonic kidney 293E (HEK293E) cell cultures before and/or after transfection with polyethylenimine as a transfection reagent. The effect of this addition on transfection efficiency (pre-treatment) and q p enhancement during TGE (post-treatment) was examined. For the TGE of monoclonal antibody (mAb) in CHO-NK cells, pretreatment alone with 10 mM LiCl and post-treatment alone with 5 mM LiCl resulted in 1.2- and 3.4-fold increase of maximum mAb concentration (MMC), respectively, compared with the TGE without LiCl treatment. Furthermore, combinatorial treatment with LiCl (10 mM for pre-treatment and 5 mM for post-treatment) synergistically increased the TGE of mAb (5.3-fold increase in MMC). Likewise, combinatorial treatment with LiCl (10 mM for pre-treatment and 15 mM for post-treatment) in HEK293E cells synergistically increased the TGE of mAb (4.9-fold increase in MMC). Taken together, the data obtained here demonstrate that combinatorial treatment with LiCl is a useful means to improve TGE in CHO as well as HEK293 cells.  相似文献   

9.
Serum-free large-scale transient transfection of CHO cells   总被引:11,自引:0,他引:11  
To date, methods for large-scale transient gene expression (TGE) in cultivated mammalian cells have focused on two transfection vehicles: polyethylenimine (PEI) and calcium phosphate (CaPi). Both have been shown to result in high transfection efficiencies at scales beyond 10 L. Unfortunately, both approaches yield higher levels of recombinant protein (r-protein) in the presence of serum than in its absence. Since serum is a major cost factor and an obstacle to protein purification, our goal was to develop a large-scale TGE process for Chinese hamster ovary (CHO) cells in the absence of serum. CHO-DG44 cells were cultivated and transfected in a chemically defined medium using linear 25 kDa PEI as a transfection vehicle. Parameters that were optimized included the DNA amount, the DNA-to-PEI ratio, the timing and solution conditions for complex formation, the transfection medium, and the cell density at the time of transfection. The highest levels of r-protein expression were observed when cultures at a density of 2.0 x 10(6) cells/ml were transfected with 2.5 microg/ml DNA in RPMI 1640 medium containing 25 mM HEPES at pH 7.1. The transfection complex was formed at a DNA:PEI ratio of 1:2 (w/w) in 150 mM NaCl with a 10-min incubation at room temperature prior to addition to the culture. The procedure was scaled up for a 20-L bioreactor, yielding expression levels of 10  相似文献   

10.

Polyethylenimine (PEI)-based transient gene expression (TGE) is nowadays a well-established methodology for rapid protein production in mammalian cells, but it has been used to a much lower extent in insect cell lines. A fast and robust TGE methodology for suspension Hi5 (Trichoplusia ni) cells is presented. Significant differences in size and morphology of DNA:PEI polyplexes were observed in the different incubation solutions tested. Moreover, minimal complexing time (&lt; 1 min) between DNA and PEI in 150 mM NaCl solution provided the highest transfection efficiency. Nanoscopic characterization by means of cryo-EM revealed that DNA:PEI polyplexes up to 300–400 nm were the most efficient for transfection. TGE optimization was performed using eGFP as model protein by means of the combination of advanced statistical designs. A global optimal condition of 1.5 × 106 cell/mL, 2.1 μg/mL of DNA, and 9.3 μg/mL PEI was achieved through weighted-based optimization of transfection, production, and viability responses. Under these conditions, a 60% transfection and 0.8 μg/106 transfected cell·day specific productivity were achieved. The TGE protocol developed for Hi5 cells provides a promising baculovirus-free and worthwhile approach to produce a wide variety of recombinant proteins in a short period of time.

  相似文献   

11.
We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG4 encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 microg mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn297 was not significantly affected by nocodazole during transient production by this method.  相似文献   

12.
tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC.  相似文献   

13.
14.
CENP—B的基因表达与细胞周期关系的研究   总被引:1,自引:0,他引:1  
本文以HeLa细胞为材料研究一种着丝粒蛋白CENP-B的基因表达与细胞周期及细胞核骨架的关系。将HeLa细胞同步在不同周期时相,以流式细胞光度术、同位素掺入和ACA着丝粒染色等方法检测细胞同步化效果。我们分别提取了各周期时相细胞的总RNA和Poly(A)~ RNA,用Dot blot和Northern blot杂交方法研究CENP-B在细胞周期中的表达。结果表明,CENP-B基因在细胞周期中的各个时相均有表达,但表达的强度差别很大:G2期表达最强,S期最弱,G1期中的表达介于二者之间;有意义的是CENP-B基因在M期仍然有较强的表达,表现出其在细胞周期中表达的持续性;这种表达的持续性反映了一种可能性:着丝粒、动粒蛋白不断合成,但直到S期后进入G2期时着丝粒、动粒蛋白到一定临界浓度时才开始组装新的动粒。另外,着丝粒、动粒蛋白的持续合成对着丝粒、动粒功能的发挥可能是必需的。用Bam H I限制性内切酶消化处于不同细胞周期时相的HeLa细胞核骨架,提取与核骨架紧密结合的DNA,用~(32)P标记的cDNA为探针研究CENP-B基因与细胞核骨架的结合与其表达的关系。结果证明,在G2期细胞中CENP-B基因表达最强,与细胞核骨架结合最为紧密,G1期细胞中次之,S期中CENP-B基因与核骨架结合最弱,说明CENP-B基因与细胞核骨架结合的紧密度影响其表达强度。  相似文献   

15.
In this study, a recombinant monoclonal IgG antibody was produced by transient gene expression (TGE) in suspension-adapted HEK-293E cells. The objective of the study was to determine the variation in recombinant IgG yield and glycosylation in ten independent transfections. In a ten-day batch process, the variation in transient IgG yield in the ten batches was less than 30% with the specific productivity averaging 20.2 ± 2.6 pg/cell/day. We characterized the N-glycosylation profile of each batch of affinity-purified IgG by intact protein and bottom-up mass spectrometry. Four major glycans were identified at Asn(297) in the ten batches with the maximum relative deviation for a single glycoform being 2.5%. In addition, within any single transfection there was little variation in glycoforms over the ten-day culture. Our experimental data indicate that with TGE, the production of recombinant IgG with little batch-to-batch variation in volumetric yield and protein glycosylation is feasible, even in a non-instrumented cultivation system as described here.  相似文献   

16.
A Chinese Hamster Ovary cell line, CHO1-15500, producing recombinant human tissue type plasminogen activator (tPA) via the dihydrofolate reductase (DHFR) amplification system, was studied in batch culture. In this system both DHFR and tPA are under the control of the strong constitutive viral SV40 early promoter. Employing the cumulative viable cell-hour approach, the specific productivity of tPA had maxima in the lag (0.065 pg cell−1 h−1) and early decline (0.040 pg cell−1 h−1) population growth phases. The viable population was assigned into four subpopulations (G1, S, G2/M phase, and Apoptotic cells) using flow cytometric analysis. As expected, intracellular DHFR was maximally expressed during the S cell cycle phase. The production of tPA, however, was found to be a direct linear function of the G1 phase, with a subpopulation specific productivity of 0.080 pg c-h−1. Productivity maxima in the lag and early decline corroborate the flow cytometric data, indicative that this recombinant tPA production occurs primarily in the G1 cell cycle phase, not the S phase. This suggests that endogenous regulatory mechanisms are important controlling influences on the production of recombinant tPA in this ovarian cell line. Productivity from recombinant cell lines cannot be inferred from either the plasmid construct or the host cell alone. Elucidation of the relationship between expression of recombinant protein and the cell cycle phases of the host cell is a major component of the characterization of the animal cell production system. This information facilitates rational process design, including operating mode, modelling and control, and medium formulation.  相似文献   

17.
The upscale of transient gene expression (TGE) gained popularity over the last decade as it drastically shortens timelines for the production of recombinant proteins. Bottlenecks of the method turned out to be media composition and media exchange, which is usually required as conditioned medium drastically reduces the transfection efficiency. Media exchanges are typically done by centrifugation, which limits upscale, is prone to contamination or is a high cost factor when continuous centrifuges are used. In this work HEK/EBNA cells were grown and transfected on microcarriers. Cell immobilisation allows easy media exchange after sedimentation. The transfection method was optimised regarding polyethylenimine (PEI) concentration, optimal DNA:PEI ratio, type of PEI, incubation time and polyplex formation time. In addition to HEK, Vero cells were also transfected using the same protocol. The method was established in spinner flasks and scaled up to a 1.5 litre stirred tank reactor. Transfection efficiencies of up to 33% with pCEP4 and 98% with pMAX were reached. Additionally immobilisation on microcarriers was used to retain the cells during cultivation, thus allowing media replacement and prolonging cultivation time from one to two weeks with continuous expression of the recombinant protein.  相似文献   

18.
19.
病毒的感染导致细胞内部发生一系列变化。应用流式细胞仪FACS的荧光检测 ,测出Sf9细胞完成整个周期循环大约需要 18h ,G1、S、G2 /M各时相的时间间隔约为 6h ;AcNPV感染Sf9细胞 12 18h ,细胞被抑制于G2 /M期 ;Sf9细胞同步于G1/S期后释放细胞并用AcNPV感染 ,12h后 ,2 / 3的细胞处于G2 /M期 ,1/ 3的细胞处于S期  相似文献   

20.
BACKGROUND: Here we report on studies that probe whether the intracellular kinetics of plasmid DNA (pDNA) and cell surface glycosaminoglycans (GAGs) are modified during the cell cycle in a way that can be correlated with changes in gene transfer efficiency with poly(ethyleneimine) (PEI) and poly-L-lysine (PLL) polyplexes. METHODS: Synchronized D407 retinal cells were transfected with PEI and PLL polyplexes using a luciferase reporter. The free and/or loosely complexed nuclear pDNA was determined by real-time PCR, and compared with transgene expression, the rate of pinocytosis by FITC-dextran uptake and the content of cell surface GAGs. RESULTS: The amount of free and/or loosely complexed nuclear pDNA between cell cycle phases varied approximately 4-20 times (G1 < S < G2/M). Both carriers delivered pDNA in a similar way into the nucleus (PLL vs. PEI < or = 3.5-fold), but PEI was approximately 10-100 times more efficient in gene expression than PLL (G1 < G2/M < S). The rate of pinocytosis increased up to 70-fold from G1 to middle S phase. Cell surface heparan and chondroitin sulfate increased 50-80%, and hyaluronan decreased 50% when the cells went from G1 through S to G2/M. CONCLUSIONS: The data obtained indicates that no single parameter (pinocytosis, cell surface GAGs, nuclear uptake) solely accounts for the differential pDNA uptake or expression during cell cycle, and that the main difference in PLL- and PEI-mediated transfections seems to be at the nuclear level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号