首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST.

Methodology/Principal Findings

We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ∼100% and Mathew’s correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families.

Conclusions/Significance

Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the ‘bridging’ role of related families.  相似文献   

2.
Cupins: the most functionally diverse protein superfamily?   总被引:10,自引:0,他引:10  
  相似文献   

3.
4.
5.

Background

Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data.

Methodology/Principal Findings

Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection.

Conclusions/Significance

Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a “bramble” model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic “root”. Structural diversification may be constrained (“trimmed”) where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification.  相似文献   

6.
7.

Background

Amyloid precursor protein (APP) is widely recognized for playing a central role in Alzheimer''s disease pathogenesis. Although APP is expressed in several tissues outside the human central nervous system, the functions of APP and its family members in other tissues are still poorly understood. APP is involved in several biological functions which might be potentially important for male fertility, such as cell adhesion, cell motility, signaling, and apoptosis. Furthermore, APP superfamily members are known to be associated with fertility. Knowledge on the protein networks of APP in human testis and spermatozoa will shed light on the function of APP in the male reproductive system.

Results

We performed a Yeast Two-Hybrid screen and a database search to study the interaction network of APP in human testis and sperm. To gain insights into the role of APP superfamily members in fertility, the study was extended to APP-like protein 2 (APLP2). We analyzed several topological properties of the APP interaction network and the biological and physiological properties of the proteins in the APP interaction network were also specified by gene ontologyand pathways analyses. We classified significant features related to the human male reproduction for the APP interacting proteins and identified modules of proteins with similar functional roles which may show cooperative behavior for male fertility.

Conclusions

The present work provides the first report on the APP interactome in human testis. Our approach allowed the identification of novel interactions and recognition of key APP interacting proteins for male reproduction, particularly in sperm-oocyte interaction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0432-9) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the “RAG transposon”.

Methodology/Principal Findings

Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a “RAG transposon.” A subsequent “arms race” between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex).

Conclusions/Significance

A “co-regulatory” model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the “RAG-transposon” hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination.  相似文献   

9.

Background

Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity.

Methodology/Results

FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B.

Conclusion

Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.  相似文献   

10.

Objective

To determine whether microbial contamination of door handles in two busy intensive care units and one high dependency unit was related to their design, location, and usage.

Design

Observational study of the number of viable bacteria on existing door handles of different design at defined entry/exit points with simultaneous data collection of who used these doors and how often.

Setting

Two busy specialised intensive care units and one high dependency unit in a tertiary referral NHS neurological hospital.

Main outcome measures

Surface bacterial density on door handles with reference to design, location, and intensity of use.

Results

We found a significant correlation between the frequency of movements through a door and the degree to which it was contaminated (p = <0.01). We further found that the door''s location, design and mode of use all influenced contamination. When compared to push plate designs, pull handles revealed on average a five fold higher level of contamination; lever handles, however, displayed the highest levels of bacterial contamination when adjusted for frequency of use. We also observed differences in contamination levels at doors between clinical areas, particularly between the operating theatres and one of the ICUs.

Conclusions

Door handles in busy, “real life” high acuity clinical environments were variably contaminated with bacteria, and the number of bacteria found related to design, location, mode and frequency of operation. Largely ignored issues of handle and environmental design can support or undermine strategies designed to limit avoidable pathogen transmission, especially in locations designed to define “thresholds” and impose physical barriers to pathogen transmission between clinical areas. Developing a multidisciplinary approach beyond traditional boundaries for purposes of infection control may release hitherto unappreciated options and beneficial outcomes for the control of at least some hospital acquired infections.  相似文献   

11.

Background

A better understanding of the size and abundance of open reading frames (ORFS) in whole genomes may shed light on the factors that control genome complexity. Here we examine the statistical distributions of open reading frames (i.e. distribution of start and stop codons) in the fully sequenced genomes of 297 prokaryotes, and 14 eukaryotes.

Methodology/Principal Findings

By fitting mixture models to data from whole genome sequences we show that the size-frequency distributions for ORFS are strikingly similar across prokaryotic and eukaryotic genomes. Moreover, we show that i) a large fraction (60–80%) of ORF size-frequency distributions can be predicted a priori with a stochastic assembly model based on GC content, and that (ii) size-frequency distributions of the remaining “non-random” ORFs are well-fitted by log-normal or gamma distributions, and similar to the size distributions of annotated proteins.

Conclusions/Significance

Our findings suggest stochastic processes have played a primary role in the evolution of genome complexity, and that common processes govern the conservation and loss of functional genomics units in both prokaryotes and eukaryotes.  相似文献   

12.

Background

Understanding the biogenesis pathways for the functional expression of recombinant proteins, in particular membrane proteins and complex multidomain assemblies, is a fundamental issue in cell biology and of high importance for future progress in structural genomics. In this study, we employed a proteomic approach to understand the difference in expression levels for various multidomain membrane proteins in L. lactis cells grown in complex and synthetic media.

Methodology/Principal Findings

The proteomic profiles of cells growing in media in which the proteins were expressed to high or low levels suggested a limitation in the availability of branched-chain amino acids, more specifically a too limited capacity to accumulate these nutrients. By supplying the cells with an alternative path for accumulation of Ile, Leu and/or Val, i.e., a medium supplement of the appropriate dipeptides, or by engineering the transport capacity for branched-chain amino acids, the expression levels could be increased several fold.

Conclusions

We show that the availability of branched chain amino acids is a critical factor for the (over)expression of proteins in L. lactis. The forward engineering of cells for functional protein production required fine-tuning of co-expression of the branched chain amino acid transporter.  相似文献   

13.
14.

Background

The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite.

Methodology/Principal Findings

We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail.

Conclusions/Significance

This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.  相似文献   

15.

Background

The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB) fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5–25%). Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n = 46) compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n = 344) or fruit fly D. melanogaster (n = 84). Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies.

Methodology/Principal Findings

This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans.

Conclusions/Significance

This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.  相似文献   

16.

Background

Spounavirinae viruses have received an increasing interest as tools for the control of harmful bacteria due to their relatively broad host range and strictly virulent phenotype.

Results

In this study, we collected and analyzed the complete genome sequences of 61 published phages, either ICTV-classified or candidate members of the Spounavirinae subfamily of the Myoviridae. A set of comparative analyses identified a distinct, recently proposed Bastille-like phage group within the Spounavirinae. More importantly, type 1 thymidylate synthase (TS1) and dihydrofolate reductase (DHFR) genes were shown to be unique for the members of the proposed Bastille-like phage group, and are suitable as molecular markers. We also show that the members of this group encode beta-lactamase and/or sporulation-related SpoIIIE homologs, possibly questioning their suitability as biocontrol agents.

Conclusions

We confirm the creation of a new genus—the “Bastille-like group”—in Spounavirinae, and propose that the presence of TS1- and DHFR-encoding genes could serve as signatures for the new Bastille-like group. In addition, the presence of metallo-beta-lactamase and/or SpoIIIE homologs in all members of Bastille-like group phages makes questionable their suitability for use in biocontrol.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1757-0) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

The architectural organization of protein structures has been the focus of intense research since it can hopefully lead to an understanding of how proteins fold. In earlier works we had attempted to identify the inherent structural organization in proteins through a study of protein topology. We obtained a modular partitioning of protein structures with the modules correlating well with experimental evidence of early folding units or “foldons”. Residues that connect different modules were shown to be those that were protected during the transition phase of folding.

Methodology/Principal Findings

In this work, we follow the topological path of ubiquitin through molecular dynamics unfolding simulations. We observed that the use of recurrence quantification analysis (RQA) could lead to the identification of the transition state during unfolding. Additionally, our earlier contention that the modules uncovered through our graph partitioning approach correlated well with early folding units was vindicated through our simulations. Moreover, residues identified from native structure as connector hubs and which had been shown to be those that were protected during the transition phase of folding were indeed more stable (less flexible) well beyond the transition state. Further analysis of the topological pathway suggests that the all pairs shortest path in a protein is minimized during folding.

Conclusions

We observed that treating a protein native structure as a network by having amino acid residues as nodes and the non-covalent interactions among them as links allows for the rationalization of many aspects of the folding process. The possibility to derive this information directly from 3D structure opens the way to the prediction of important residues in proteins, while the confirmation of the minimization of APSP for folding allows for the establishment of a potentially useful proxy for kinetic optimality in the validation of sequence-structure predictions.  相似文献   

18.

Objective

We evaluated the patient satisfaction with HIV/AIDS care and treatment and its determinants across levels of health service administration in Vietnam.

Methods

We interviewed 1016 patients at 7 hospitals and health centers in three epicenters, including Hanoi, Hai Phong, and Ho Chi Minh City. The Satisfaction with HIV/AIDS Treatment Interview Scale (SATIS) was developed, and 3 dimensions were constructed using factor analysis, namely “Quality and Convenience”; “Availability and Responsiveness”; and “Competence of health care workers”.

Results

In a band score of (0; 10), the mean scores of all domains were large; it was the highest in “Competence of health workers” (9.34±0.84), and the lowest in “Quality and Convenience” (9.03±1.04). The percentages of respondents completely satisfied with overall service quality and treatment outcomes were 42.4% and 18.8%, respectively. In multivariate analysis, factors related to higher satisfaction included female sex, older age, and living with spouses or partners. Meanwhile, lower satisfaction was found among patients who were attending provincial and district clinics; in the richest group; had higher CD4 count; and drug users.

Conclusion

This study highlights the importance of improving the quality of HIV/AIDS services at the provincial and district clinics. Potential strategies include capacity building for health workers, integrative service delivery, engagements of family members in treatment supports, and additional attention and comprehensive care for drug users with HIV/AIDS.  相似文献   

19.

Objective

To determine the function and phenotype of CD8+ T-cells targeting consensus and autologous sequences of entire HIV-1 Nef protein.

Methods

Multiparameter flow cytometry-based analysis was used to evaluate the responses of two treatment naïve HIV-infected individuals, during primary and the chronic phases of infection.

Results

A greater breadth and magnitude of CD8 IFN-γ responses to autologous compared to clade-B consensus peptides was observed in both subjects. Cross recognition between autologous and consensus peptides decreased in both subjects during progression from primary to chronic infection. The frequencies of TEMRA and TEM CD8+ T-cells targeting autologous peptides were higher than those targeting consensus peptides and were more polyfunctional (IFN-γ+ Gr-B+ CD107a+).

Conclusions

Our data indicate superior sensitivity and specificity of autologous peptides. The functional and maturational aspects of “real” versus “cross-recognized” responses were also found to differ, highlighting the importance of a sequence-specific approach towards understanding HIV immune response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号