首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.  相似文献   

2.
3.
4.
5.
Iron (Fe) is crucial for cellular proliferation, and Fe chelators have shown activity at preventing the growth of the malarial parasite in cell culture and in animal and human studies. We investigated the anti-malarial activity of novel aroylhydrazone and thiosemicarbazone Fe chelators that show high activity at inhibiting the growth of tumour cells in cell culture [Blood 100 (2002) 666]. Experiments with the chelators were performed using the chloroquine-sensitive, 3D7, and chloroquine-resistant, 7G8, strains of Plasmodium falciparum in vitro. The new ligands were significantly more active in both strains than the Fe chelator in widespread clinical use, desferrioxamine (DFO). The most effective chelators examined were 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone and 2-hydroxy-1-naphthylaldehyde-4-phenyl-3-thiosemicarbazone. The anti-malarial activity correlates with anti-proliferative activity against neoplastic cells demonstrated in a previous study. Our studies suggest that this class of lipophilic chelators may have potential as useful agents for the treatment of malaria.  相似文献   

6.
A group of novel synthetic indoloisoquinolines was prepared and its potential as a novel series of small-molecule anti-malarial leads was assessed. The structure-activity relationship on variation of three distinct regions of chemical space was investigated. A lead compound was generated with an activity close to that observed for a known anti-malarial natural product, dihydrousambarensine, that shares the indoloisoquinoline template structure.  相似文献   

7.
Telomerase activity is detected in most types of human tumors, but it is almost undetectable in normal somatic cells; therefore, telomerase is a promising therapeutic target. The present review describes various approaches to telomerase inhibition, namely, antisense therapy, RNA interference, and the use of ribozymes and agents interacting with the telomeric G-quadruplex. The use of these compounds in clinical research is analyzed in the review.  相似文献   

8.
The trypanosomostatic and trypanosomicidal effects of four anti-protozoal drugs, namely halofantrine hydrochloride, chloroquine phosphate, benzoylmetronidazole and pyrimethamine, on species of trypanosomes, viz. Trypanosoma brucei brucei (MBOS/NG/94/NITR) Bassa strain, T. congolense (MBOS/NG/93/NVRI) Zaria strain and T. brucei gambiense (MHOM/NG/92/NITR) Abraka strain, were investigated. In vitro and in vivo studies on these drugs vis-a-vis the parasites were carried out. The histopathological changes in organs and tissues of experimentally infected rats were also studied. Results from the in vitro studies indicated that halofantrine hydrochloride, chloroquine phosphate, benzoylmetronidazole and pyrimethamine appeared to be effective trypanosomicidal agents against T. brucei brucei (Bassa strain), T. congolense (Zaria strain) and T. brucei gambiense (Abraka strain). The in vivo studies showed that these drugs were sub-curative by prolonging the survival period of the trypanosome-infected rats, but not necessarily curing the infection. Histopathological findings indicated inflammatory reactions characterised by infiltration to variable degrees in the majority of tissues, mostly in the lungs and liver. The most consistent lesions were interstitial pneumonia, multifocal necrosis and oedema. Pathological findings showed the T. brucei brucei and T. brucei gambiense strains studied to be both intravascular and extravascular parasites. These results suggest that halofantrine hydrochloride, chloroquine phosphate, benzoylmetronidazole and pyrimethamine could be used as supportive, suppressive and/or synergistic/additive drugs in the treatment of African trypanosomiasis. Their effects on species of trypanosomes have been studied and are reported for the first time.  相似文献   

9.
Equilibrium dialysis studies with chlorpromazine (CPZ) showed affinity and binding capacity values which were not significantly different with the following binders: rat liver microsomes, mitochondria, mitochondrial membranes, brain synaptosomes, myelin vesicles, and red blood cell membranes. There was no binding to cytosol or mitochondrial matrix. The same binding values as above were obtained with protein-free liposomes of lipids extracted from microsomes, mitochondrial and red cell membranes and of pure egg lecithin. The binding values of the two classes of binding sites of all these preparations were K1 = 2.7 ± 1.0 · 104 M?1, K2 = 3.8 ± 1.7 · 103 M?1, C1 = 580 ± 230 and C1+2 = 1410 ± 500 nmole/mg phospholipid. These values were not altered by elimination of the polar head groups of phospholipids with phospholipase C. The results were confirmed by a UV spectroscopic method whereby the strongest binding signals were obtained with CPZ in the presence of fatty acids such as oleate. It is concluded that the major intracellular binders for CPZ and related drugs are the nonpolar moieties of membrane phospholipids, whereby hydrophobic interactions are mainly involved.  相似文献   

10.
A series of analogues of the naturally occurring antibiotic thiolactomycin (TLM) have been synthesised and evaluated for their ability to inhibit the growth of the malaria parasite, Plasmodium falciparum. Thiolactomycin is an inhibitor of Type II fatty acid synthase which is found in plants and most prokaryotes, but not an inhibitor of Type I fatty acid synthase in mammals. A number of the analogues showed inhibition equal to or greater than TLM. The introduction of hydrophobic alkyl groups at the C3 and C5 positions of the thiolactone ring lead to increased inhibition, the best showing a fourteenfold increase in activity over TLM. In addition, some of the analogues showed activity when assayed against the parasitic protozoa, Trypanosoma cruzi and Trypanosoma brucei.  相似文献   

11.
Successful malaria control depends heavily on efficacious anti-malarial drugs for the treatment of malaria. Artesunate-containing Combination Treatments (ACT) are increasingly recommended as first line malaria treatment in endemic countries, but implementation of this recommendation is limited by the small number of available and affordable co-formulated anti-malarial drugs. In recent years Intermittent Preventive Treatment has been recommended for malaria control in pregnancy and has been shown to be of potential public health importance in the prevention of malaria and anaemia in children. The use of drugs for malaria treatment or prevention is associated with the development of resistance and recent advances in molecular biology facilitate the evaluation of the impact on drug resistance of new drug-based strategies. This review concentrates on the challenges surrounding the use of ACT, the current understanding of IPT in infants and the use of molecular approaches to enhance our understanding of the effects of interventions on the spread of drug resistance.  相似文献   

12.
Kim J  Yip ML  Shen X  Li H  Hsin LY  Labarge S  Heinrich EL  Lee W  Lu J  Vaidehi N 《PloS one》2012,7(2):e31004
Despite recent advances in targeted therapies, patients with pancreatic adenocarcinoma continue to have poor survival highlighting the urgency to identify novel therapeutic targets. Our previous investigations have implicated chemokine receptor CXCR4 and its selective ligand CXCL12 in the pathogenesis and progression of pancreatic intraepithelial neoplasia and invasive pancreatic cancer; hence, CXCR4 is a promising target for suppression of pancreatic cancer growth. Here, we combined in silico structural modeling of CXCR4 to screen for candidate anti-CXCR4 compounds with in vitro cell line assays and identified NSC56612 from the National Cancer Institute's (NCI) Open Chemical Repository Collection as an inhibitor of activated CXCR4. Next, we identified that NSC56612 is structurally similar to the established anti-malarial drugs chloroquine and hydroxychloroquine. We evaluated these compounds in pancreatic cancer cells in vitro and observed specific antagonism of CXCR4-mediated signaling and cell proliferation. Recent in vivo therapeutic applications of chloroquine in pancreatic cancer mouse models have demonstrated decreased tumor growth and improved survival. Our results thus provide a molecular target and basis for further evaluation of chloroquine and hydroxychloroquine in pancreatic cancer. Historically safe in humans, chloroquine and hydroxychloroquine appear to be promising agents to safely and effectively target CXCR4 in patients with pancreatic cancer.  相似文献   

13.
Membrane rafts are distinct plasma membrane microdomains that are enriched in sphingolipids and cholesterol. They organize receptors and their downstream molecules and regulate a number of intracellular signaling pathways. This review presents information on the dependence of several growth factor receptor signaling pathways on membrane rafts. It also discusses the involvement of rafts in the regulation of differentiation, apoptosis and cell migration connected with invasiveness and metastasis. Examples of known synthetic and naturally occurring substances that are known to affect lateral membrane organization in tumor cell growth are discussed as potential or actual therapeutics.  相似文献   

14.
HIV chemokine receptor inhibitors as novel anti-HIV drugs   总被引:1,自引:0,他引:1  
The chemokine receptors CXCR4 and CCR5 are the main coreceptors used by the T-cell-tropic (CXCR4-using, X4) and macrophage-tropic (CCR5-using, R5) HIV-1 strains, respectively, for entering their CD4+ target cells. In this review, we focus on the function of these chemokine receptors in HIV infection and their role as novel targets for viral inhibition. Besides some modified chemokines with antiviral activity, several low-molecular weight CCR5 and CXCR4 antagonistic compounds have been described with potent antiviral activity. The best CXCR4 antagonists described are the bicyclam derivatives, which consistently block X4 but also R5/X4 viral replication in PBMCs. We believe that chemokine receptor antagonists will become important new antiviral drugs to combat AIDS. Both CXCR4 and CCR5 chemokine receptor inhibitors will be needed in combination and even in combinations of antiviral drugs that also target other aspects of the HIV replication cycle to obtain optimum antiviral therapeutic effects.  相似文献   

15.
Abstract

Drugs used for the treatment and prevention of malaria are often plagued by the problem of development of resistance. This has hampered their therapeutic efficiency and rendered them ineffective for monotherapy. However, if re-packaged and combined properly, many of these neglected anti-malarial drugs can possibly find their way back into the treatment regime. The present study evaluates the use of curcumin (CC) and primaquine (PRI) as an anti-malarial combination, packaged within niosomes, in comparison to their respective monotherapy options. It was observed that in Plasmodium berghei-infected mice, mice treated with a combination of 35?mg/kg of CC along with either 5?mg/kg or 1?mg/kg body weight of PRI demonstrated 100% anti-malarial activity and survivability beyond 20 days. The niosome-based PRI–CC combination therapy provided increased protection and survival rate that was associated with prevention in recrudescence. The findings of the study suggest that niosome-based PRI–CC combination therapy may be a promising approach in the treatment of malaria.  相似文献   

16.
Malaria is the major life threatening parasitic disease and the cause of a global public health problem. The failure of vector eradication programs and the appearance and spread of drug resistant parasites have posed the urgent challenge of developing effective, safe and affordable anti-malarial drugs. The design of such drugs is largely based on the targeting of agents to the parasite-based machinery for host digestion and to the products of hemoglobin catabolism. Iron chelators, by depriving intracellular parasites from essential iron, lead to selective suppression of parasite growth. However, by acting on parasite-impaired macrophages, chelators can also expedite resumption of phagocytosis and elimination of parasites. In order to be clinically effective, chelators need to be maintained in the blood for extensive time periods. Therapeutic doses can be attained with appropriate drug combinations and formulations or delivery devices and these must be presented in a form well tolerated by the host. The early documentation that chelation therapy has activity against human malaria has paved the road for the design of novel and more efficient remedies based on short-term iron deprivation.  相似文献   

17.
Comparative protein modeling, active site analysis and binding site specificity for the homologous series of plasmepsins (PM's), present in food vacuole of Plasmodium falciparum, are carried out. Four loops (L1, L2, L3 and L4), which show maximum structural deviations irrespective of type of inhibitor, have been identified. Comparison of the crystal structures of ligand complexes reveal that residues belonging to these loops have negligible coulomb and VDW interactions with the inhibitor but play major role in determining the openness of the binding cavity. The coulomb and VDW interactions between the PMII subsite pockets and inhibitors, which play a major role in determining the inhibition constants, are delineated. Besides small displacements, the catalytic residues D32 of PMII undergoes rotation around the Cgamma-Cbeta single bond to assist catalysis whereas side chain conformational deviations are not observed in D214 on plasmepsin activation. The mutant S79D of PMII (and the corresponding residues of PMI and PMIV) which helps in recognizing and cleaving substrates containing lysine at P1 position is surrounded by highly polar atmosphere stabilized by lysine. However, in PMIII significantly lower polar atmosphere around the mutant A78S/A78D is observed. Large buried side chain area of residues located at M15 and I289 of PMII (and corresponding residues of PMI and PMIV) corroborates well with increase in specificity constant for hydrophobic substrates.  相似文献   

18.
19.
The idea of using carbohydrate-based drugs to prevent attachment of microbial pathogens to host tissues has been around for about three decades. This concept evolved from the observation that many pathogenic microbes bind to complex carbohydrate sequences on the surface of host cells. It stands to reason, therefore, that analogs of the carbohydrate sequences pathogens bind to could be used to competitively inhibit these interactions, thereby preventing microbial damage to the host. This article will summarize some of the recent advances in developing such carbohydrate-based anti-infective drugs.  相似文献   

20.
Cyanide-insensitive trypanosome alternative oxidase (TAO) is the terminal oxidase of the respiratory chain of long slender bloodstream forms of the African trypanosome, which causes sleeping sickness in humans and nagana in cattle. TAO has been targeted for the development of anti-trypanosomal drugs, because it does not exist in the host. In this study, we established a system for overproduction of highly active TAO in Eschericia coli heme-deficient mutant. Kinetic analysis of recombinant enzyme and TAO in Trypanosoma brucei brucei mitochondria revealed that recombinant TAO retains the properties of native enzyme, indicating that recombinant TAO is quite valuable for further biochemical study of TAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号