首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We investigate the effect of mitochondrial localization and the Bcl-xL C-terminal transmembrane (TM) domain on mitochondrial morphology and subcellular light scattering. CSM 14.1 cell lines stably expressed yellow fluorescent protein (YFP), YFP-Bcl-xL, YFP-Bcl-xL-ΔTM, containing the remainder of Bcl-xL after deletion of the last 21 amino acids corresponding to the TM domain, or YFP-TM, consisting of YFP fused at its C-terminal to the last 21 amino acids of Bcl-xL. YFP-Bcl-xL and YFP-TM localized to the mitochondria. Their expression decreased the intensity ratio of wide-to-narrow angle forward scatter by subcellular organelles, and correlated with an increase in the proportion of mitochondria with an expanded matrix having greatly reduced intracristal spaces as observed by electron microscopy. Cells expressing YFP-TM also exhibited significant autophagy. In contrast, YFP-Bcl-xL-ΔTM was diffusely distributed in the cells, and its expression did not alter light scattering or mitochondrial morphology compared with parental cells. Expression of YFP-Bcl-xL or YFP-Bcl-xL-ΔTM provided significant resistance to staurosporine-induced apoptosis. Surprisingly however, YFP-TM expression also conferred a moderate level of cell death resistance in response to staurosporine. Taken together, our results suggest the existence of a secondary Bcl-xL function that is mediated by the transmembrane domain, alters mitochondrial morphology, and is distinct from BH3 domain sequestration.  相似文献   

2.
The proapoptotic Bcl-2 protein Bax can commit a cell to apoptosis by translocation from the cytosol to the mitochondria and permeabilization of the outer mitochondrial membrane. Prosurvival Bcl-2 family members, such as Bcl-xL, control Bax activity. Bcl-xL recognizes Bax after a conformational change in the N-terminal segment of Bax on the mitochondria and retrotranslocates it back into the cytoplasm, stabilizing the inactive form of Bax. Here we show that Bax retrotranslocation depends on the C-terminal helix of Bcl-xL. Deletion or substitution of this segment reduces Bax retrotranslocation and correlates with the accumulation of GFP-tagged or endogenous Bax on the mitochondria of non-apoptotic cells. Unexpectedly, the substitution of the Bcl-xL membrane anchor by the corresponding Bax segment reverses the Bax retrotranslocation activity of Bcl-xL, but not that of Bcl-xL shuttling. Bax retrotranslocation depends on interaction to the Bcl-xL membrane anchor and interaction between the Bax BH3 domain and the Bcl-xL hydrophobic cleft. Interference with either interaction increases mitochondrial levels of endogenous Bax. In healthy cells, mitochondrial Bax does not permeabilize the outer mitochondrial membrane, but increases cell death after apoptosis induction.  相似文献   

3.
Anti- and pro-apoptotic Bcl-2 family members regulate the mitochondrial phase of apoptotic cell death. The mitochondrial targeting mechanisms of Bcl-2 family proteins are tightly regulated. Known outer mitochondrial membrane targeting sequences include the C-terminal tail and central helical hairpin. Bcl-xL also localizes to the inner mitochondrial membrane, but these targeting sequences are unknown. Here we investigate the possibility that the N-terminus of Bcl-xL also contains mitochondrial targeting information. Amino acid residues 1–28 of Bcl-xL fused to EGFP are sufficient to target mitochondria. Although positive charges and helical propensity are required for targeting, similar to import sequences the N-terminus is not sufficient for efficient mitochondrial import.  相似文献   

4.
Mitochondrial dynamics in the regulation of neuronal cell death   总被引:1,自引:0,他引:1  
Mitochondria undergo continuous fission and fusion events in physiological situations. Fragmentation of mitochondria during cell death has been shown to play a key role in cell death progression, including release of the mitochondrial apoptotic proteins. Ultrastructural changes in mitochondria, such as cristae remodeling, is also involved in cell death initiation. Here, we emphasize the important role of mitochondrial fission/fusion machinery in neuronal cell death. Unlike many other cell types such as immortalized cell lines, neurons are distinct morphologically and functionally. We will discuss how this uniqueness presents special challenges in the cellular response to neurotoxic stresses, and how this affects the mitochondrial dynamics in the regulation of cell death in neurons.  相似文献   

5.
Mitochondrial dysfunction plays a central role in glutamate-evoked neuronal excitotoxicity, and mitochondrial fission/fusion dynamics are essential for mitochondrial morphology and function. Here, we establish a novel mechanistic linker among glutamate excitotoxicity, mitochondrial dynamics, and mitochondrial dysfunction in spinal cord motor neurons. Ca2+-dependent activation of the cysteine protease calpain in response to glutamate results in the degradation of a key mitochondrial outer membrane fusion regulator, mitofusin 2 (MFN2), and leads to MFN2-mediated mitochondrial fragmentation preceding glutamate-induced neuronal death. MFN2 deficiency impairs mitochondrial function, induces motor neuronal death, and renders motor neurons vulnerable to glutamate excitotoxicity. Conversely, MFN2 overexpression blocks glutamate-induced mitochondrial fragmentation, mitochondrial dysfunction, and/or neuronal death in spinal cord motor neurons both in vitro and in mice. The inhibition of calpain activation also alleviates glutamate-induced excitotoxicity of mitochondria and neurons. Overall, these results suggest that glutamate excitotoxicity causes mitochondrial dysfunction by impairing mitochondrial dynamics via calpain-mediated MFN2 degradation in motor neurons and thus present a molecular mechanism coupling glutamate excitotoxicity and mitochondrial dysfunction.  相似文献   

6.
Mitochondrial fragmentation is recognized to be an important event during the onset of apoptosis. In this current study, we have used single cell imaging to investigate the role of the mitochondrial fission protein DRP‐1 on mitochondrial morphology and mitochondrial fragmentation in primary hippocampal neurons undergoing necrotic or apoptotic cell death. Treatment of neurons with 500 nM staurosporine (apoptosis) or 30 μM glutamate (l ‐Glu; excitotoxic necrosis) produced a fragmentation and condensation of mitochondria, which although occurred over markedly different time frames appeared broadly similar in appearance. In neurons exposed to an apoptotic stimuli, inhibiting DRP‐1 activity using overexpression of the dominant negative DRP‐1K38A slowed the rate of mitochondrial fragmentation and decreased total cell death when compared to overexpression of wild‐type DRP‐1. In contrast, responses to l ‐Glu appeared DRP‐1 independent. Similarly, alterations in the fission/fusion state of the mitochondrial network did not alter mitochondrial Ca2+ uptake or the ability of l ‐Glu to stimulate excitotoxic Ca2+ overload. Finally, apoptosis‐induced mitochondrial fragmentation was observed concurrent with recruitment of Bax to the mitochondrial membrane. In contrast, during glutamate excitotoxicity, Bax remained in the cytosolic compartment. We conclude that different pathways lead to the appearance of fragmented mitochondria during necrotic and apoptotic neuronal cell death. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:335–341, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20336  相似文献   

7.
Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis   总被引:1,自引:0,他引:1  
Mitochondrial morphology and physiology are regulated by the processes of fusion and fission. Some forms of apoptosis are reported to be associated with mitochondrial fragmentation. We showed that overexpression of Fzo1A/B (rat) proteins involved in mitochondrial fusion, or silencing of Dnm1 (rat)/Drp1 (human) (a mitochondrial fission protein), increased elongated mitochondria in healthy cells. After apoptotic stimulation, these interventions inhibited mitochondrial fragmentation and cell death, suggesting that a process involved in mitochondrial fusion/fission might play a role in the regulation of apoptosis. Consistently, silencing of Fzo1A/B or Mfn1/2 (a human homolog of Fzo1A/B) led to an increase of shorter mitochondria and enhanced apoptotic death. Overexpression of Fzo1 inhibited cytochrome c release and activation of Bax/Bak, as assessed from conformational changes and oligomerization. Silencing of Mfn or Drp1 caused an increase or decrease of mitochondrial sensitivity to apoptotic stimulation, respectively. These results indicate that some of the proteins involved in mitochondrial fusion/fission modulate apoptotic cell death at the mitochondrial level.  相似文献   

8.
《FEMS yeast research》2005,5(2):149-156
The capacity of yeast cells to produce reactive oxygen species (ROS), both as a response to manipulation of mitochondrial functions and to growth conditions, was estimated and compared with the viability of the cells. The chronological ageing of yeast cells (growth to late-stationary phase) was accompanied by increased ROS accumulation and a significantly higher loss of viability in the mutants with impaired mitochondrial functions than in the parental strain. Under these conditions, the ectopic expression of mammalian Bcl-xL, which is an anti-apoptotic protein, allowed cells to survive longer in stationary phase. The protective effect of Bcl-xL was more prominent in respiratory-competent cells that contained defects in mitochondrial ADP/ATP translocation, suggesting a model for Bcl-xL regulation of chronological ageing at the mitochondria. Yeast can also be triggered into apoptosis-like cell death, at conditions leading to the depletion of the intramitochondrial ATP pool, as a consequence of the parallel inhibition of mitochondrial respiration and ADP/ATP translocation. If respiratory-deficient (ρ0) cells were used, no correlation between the numbers of ROS-producing cells and the viability loss in the population was observed, indicating that ROS production may be an accompanying event. The protective effect of Bcl-xL against death of these cells suggests a mitochondrial mechanism which is different from the antioxidant activity of Bcl-xL.  相似文献   

9.
The gene encoding human IAP-like protein (hILP) is one of several mammalian genes with sequence homology to the baculovirus inhibitor-of-apoptosis protein (iap) genes. Here we show that hILP can block apoptosis induced by a variety of extracellular stimuli, including UV light, chemotoxic drugs, and activation of the tumor necrosis factor and Fas receptors. hILP also protected against cell death induced by members of the caspase family, cysteine proteases which are thought to be the principal effectors of apoptosis. hILP and Bcl-xL were compared for their ability to affect several steps in the apoptotic pathway. Redistribution of cytochrome c from mitochondria, an early event in apoptosis, was not blocked by overexpression of hILP but was inhibited by Bcl-xL. In contrast, hILP, but not Bcl-xL, inhibited apoptosis induced by microinjection of cytochrome c. These data suggest that while Bcl-xL may control mitochondrial integrity, hILP can function downstream of mitochondrial events to inhibit apoptosis.  相似文献   

10.
Mitochondria are highly dynamic organelles that undergo constant cycles of fusion and fission. An additional level of regulation of mitochondrial function, which is particularly important in neurons, is their active transport along microtubules. Recent evidence suggests that the mitochondrial fusion/fission machinery as well as the molecular motors responsible for their movement constitute powerful regulatory control points that directly impact metabolism and regulation of cell death. This is true for not only apoptosis, but also for excitotoxicity where calcium overload is a major component of the cell death process. In this review, we will describe the molecular mechanisms regulating fusion and fission and how this impinges on cell survival in the context of acute neuronal injury.  相似文献   

11.
Under physiological conditions, mitochondrial morphology dynamically shifts between a punctuate appearance and tubular networks. However, little is known about upstream signal transduction pathways that regulate mitochondrial morphology. We show that mitochondrial fission is a very early and kinetically invariant event during neuronal cell death, which causally contributes to cytochrome c release and neuronal apoptosis. Using a small molecule CDK5 inhibitor, as well as a dominant-negative CDK5 mutant and RNAi knockdown experiments, we identified CDK5 as an upstream signalling kinase that regulates mitochondrial fission during apoptosis of neurons. Vice versa, our study shows that mitochondrial fission is a modulator contributing to CDK5-mediated neurotoxicity. Thereby, we provide a link that allows integration of CDK5 into established neuronal apoptosis pathways.  相似文献   

12.
Neurons are known to use large amounts of energy for their normal function and activity. In order to meet this demand, mitochondrial fission, fusion, and movement events (mitochondrial dynamics) control mitochondrial morphology, facilitating biogenesis and proper distribution of mitochondria within neurons. In contrast, dysfunction in mitochondrial dynamics results in reduced cell bioenergetics and thus contributes to neuronal injury and death in many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease. We recently reported that amyloid-β peptide, thought to be a key mediator of AD pathogenesis, engenders S-nitrosylation and thus hyperactivation of the mitochondrial fission protein Drp1. This activation leads to excessive mitochondrial fragmentation, bioenergetic compromise, and synaptic damage in models of AD. Here, we provide an extended commentary on our findings of nitric oxide-mediated abnormal mitochondrial dynamics.  相似文献   

13.
Migration and invasion of malignant cells are prerequisites for cancer progression and metastasis. The Bcl-2 family of proteins consists of about 25 members and has been extensively studied in the context of apoptosis. Despite the fact that small molecules targeting Bcl-2 proteins have already entered clinical trials, very few studies investigated a role of antiapoptotic Bcl-2 proteins beside cell death in the context of metastasis. The aim of this study was to dissect a potential role of the antiapoptotic Bcl-2 proteins Mcl-1, Bcl-2 and Bcl-xL on migration and invasion of colorectal cancer cells independent of their cell death control function. We used migration and invasion assays as well as three dimensional cell cultures to analyze colorectal cancer cell lines (HT29 and SW480) after siRNA mediated knockdown or overexpression of Mcl-1, Bcl-2 or Bcl-xL. We observed neither spontaneous cell death induction nor impaired proliferation of cells lacking Mcl-1, Bcl-2 or Bcl-xL. In contrast, knockdown of Mcl-1 led to increased proliferation. Strikingly, we demonstrate a profound impairment of both, migration and invasion, of colorectal cancer cells after Mcl-1, Bcl-2 or Bcl-xL knockdown. This phenotype was completely revised in cells overexpressing Mcl-1, Bcl-2 or Bcl-xL. The most pronounced effect among the investigated proteins was observed for Bcl-2. The data presented indicate a pivotal role of Mcl-1, Bcl-2 and Bcl-xL for migration and invasion of colorectal cancer cells independent of their known antiapoptotic effects. Thus, our study illustrates novel antitumoral mechanisms of Bcl-2 protein targeting.  相似文献   

14.
Of the GTPases involved in the regulation of the fusion machinery, mitofusin 2 (Mfn2) plays an important role in the nervous system as point mutations of this isoform are associated with Charcot Marie Tooth neuropathy. Here, we investigate whether Mfn2 plays a role in the regulation of neuronal injury. We first examine mitochondrial dynamics following different modes of injury in cerebellar granule neurons. We demonstrate that neurons exposed to DNA damage or oxidative stress exhibit extensive mitochondrial fission, an early event preceding neuronal loss. The extent of mitochondrial fragmentation and remodeling is variable and depends on the mode and the severity of the death stimuli. Interestingly, whereas mitofusin 2 loss of function significantly induces cell death in the absence of any cell death stimuli, expression of mitofusin 2 prevents cell death following DNA damage, oxidative stress, and K+ deprivation induced apoptosis. More importantly, whereas wild-type Mfn2 and the hydrolysis-deficient mutant of Mfn2 (Mfn2(RasG12V)) function equally to promote fusion and lengthening of mitochondria, the activated Mfn2(RasG12V) mutant shows a significant increase in the protection of neurons against cell death and release of proapoptotic factor cytochrome c. These findings highlight a signaling role for Mfn2 in the regulation of apoptosis that extends beyond its role in mitochondrial fusion.  相似文献   

15.
Mitochondria play critical roles in neuronal function and almost all aspects of mitochondrial function are altered in Alzheimer neurons. Emerging evidence shows that mitochondria are dynamic organelles that undergo continuous fission and fusion, the balance of which not only controls mitochondrial morphology and number, but also regulates mitochondrial function and distribution. In this review, after a brief overview of the basic mechanisms involved in the regulation of mitochondrial fission and fusion and how mitochondrial dynamics affects mitochondrial function, we will discuss in detail our and others' recent work demonstrating abnormal mitochondrial morphology and distribution in Alzheimer's disease (AD) models and how these abnormalities may contribute to mitochondrial and synaptic dysfunction in AD. We propose that abnormal mitochondrial dynamics plays a key role in causing the dysfunction of mitochondria that ultimately damage AD neurons.  相似文献   

16.
Controlled cell death is fundamental to tissue hemostasis and apoptosis malfunctions can lead to a wide range of diseases. Bcl-xL is an anti-apoptotic protein the function of which is linked to its reversible interaction with mitochondrial outer membranes. Its interfacial and intermittent bilayer association makes prediction of its bound structure difficult without using methods able to extract data from dynamic systems. Here we investigate Bcl-xL associated with oriented lipid bilayers at physiological pH using solid-state NMR spectroscopy. The data are consistent with a C-terminal transmembrane anchoring sequence and an average alignment of the remaining helices, i.e. including helices 5 and 6, approximately parallel to the membrane surface. Data from several biophysical approaches confirm that after removal of the C-terminus from Bcl-xL its membrane interactions are weak. In the presence of membranes Bcl-xL can still interact with a Bak BH3 domain peptide suggesting a model where the hydrophobic C-terminus of the protein unfolds and inserts into the membrane. During this conformational change the Bcl-xL hydrophobic binding pocket becomes accessible for protein–protein interactions whilst the structure of the N-terminal region remains intact. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
Tumor necrosis factor (α)–related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that preferentially kills tumor cells with limited cytotoxicity to nonmalignant cells. However, signaling from death receptors requires amplification via the mitochondrial apoptosis pathway (type II) in the majority of tumor cells. Thus, TRAIL-induced cell death entirely depends on the proapoptotic Bcl-2 family member Bax, which is often lost as a result of epigenetic inactivation or mutations. Consequently, Bax deficiency confers resistance against TRAIL-induced apoptosis. Despite expression of Bak, Bax-deficient cells are resistant to TRAIL-induced apoptosis. In this study, we show that the Bax dependency of TRAIL-induced apoptosis is determined by Mcl-1 but not Bcl-xL. Both are antiapoptotic Bcl-2 family proteins that keep Bak in check. Nevertheless, knockdown of Mcl-1 but not Bcl-xL overcame resistance to TRAIL, CD95/FasL and tumor necrosis factor (α) death receptor ligation in Bax-deficient cells, and enabled TRAIL to activate Bak, indicating that Mcl-1 rather than Bcl-xL is a major target for sensitization of Bax-deficient tumors for death receptor–induced apoptosis via the Bak pathway.  相似文献   

19.
Disrupting particular mitochondrial fission and fusion proteins leads to the death of specific neuronal populations; however, the normal functions of mitochondrial fission in neurons are poorly understood, especially in vivo, which limits the understanding of mitochondrial changes in disease. Altered activity of the central mitochondrial fission protein dynamin-related protein 1 (Drp1) may contribute to the pathophysiology of several neurologic diseases. To study Drp1 in a neuronal population affected by Alzheimer''s disease (AD), stroke, and seizure disorders, we postnatally deleted Drp1 from CA1 and other forebrain neurons in mice (CamKII-Cre, Drp1lox/lox (Drp1cKO)). Although most CA1 neurons survived for more than 1 year, their synaptic transmission was impaired, and Drp1cKO mice had impaired memory. In Drp1cKO cell bodies, we observed marked mitochondrial swelling but no change in the number of mitochondria in individual synaptic terminals. Using ATP FRET sensors, we found that cultured neurons lacking Drp1 (Drp1KO) could not maintain normal levels of mitochondrial-derived ATP when energy consumption was increased by neural activity. These deficits occurred specifically at the nerve terminal, but not the cell body, and were sufficient to impair synaptic vesicle cycling. Although Drp1KO increased the distance between axonal mitochondria, mitochondrial-derived ATP still decreased similarly in Drp1KO boutons with and without mitochondria. This indicates that mitochondrial-derived ATP is rapidly dispersed in Drp1KO axons, and that the deficits in axonal bioenergetics and function are not caused by regional energy gradients. Instead, loss of Drp1 compromises the intrinsic bioenergetic function of axonal mitochondria, thus revealing a mechanism by which disrupting mitochondrial dynamics can cause dysfunction of axons.Mitochondrial dynamics – the balance between mitochondrial fission and fusion – regulates mitochondrial quality control by segregating poorly functioning mitochondria for degradation while mixing the contents of healthy mitochondria.1, 2 In neurons, fission uniquely facilitates movement of mitochondria down narrow distal axons.3, 4 Disruptions of this movement, and of other neuron-specific functions, may explain why systemic mutations in mitochondrial fusion and fission proteins specifically cause death of neurons. However, the roles and requirements of these proteins also differ between neuronal types.1 For example, mutations in the fusion protein optic atrophy 1 cause degeneration of retinal ganglion neurons,5 and mutations in the fusion protein mitofusin-2 or the fission protein ganglioside-induced differentiation-associated protein 1 cause peripheral neuropathy (Charcot-Marie-Tooth types 2A and 4A6, 7).There are several potential reasons why specific neurons have unique requirements for fission–fusion proteins. First, the functions of these proteins may be more critical in vulnerable neuronal populations. Recently, we showed that most midbrain DA neurons are uniquely vulnerable to loss of the central mitochondrial fission protein dynamin-related protein 1 (Drp1),4 a GTPase recruited to fission sites on the outer mitochondrial membrane.1 Loss of Drp1 depletes axonal mitochondria, which is followed by axonal degeneration and neuronal death. However, a subpopulation of midbrain DA neurons survive, despite losing their axonal mitochondria, suggesting that they have lower needs for energy or other mitochondrial functions in their axons.4 Do unique requirements for mitochondrial dynamics underlie differential neuronal vulnerability? Do resistant neurons compensate with other fission or fusion mechanisms? Do the functions of fission differ between neurons? Notably, Drp1 may also have mitochondria-independent functions in synaptic vesicle release.8 Addressing these issues could help elucidate the physiological functions of mitochondrial dynamics in the nervous system and reveal how shifts in the fission–fusion balance contribute to selective neuronal death in neurodegenerative diseases, including Huntington''s disease, Parkinson''s disease and Alzheimer''s disease (AD),1, 4 and in other neurologic disorders, including stroke and epilepsy.9, 10, 11To understand mitochondrial dynamics, it would be useful to know why mitochondrial fission is needed in the nervous system in the first place, and how loss of fission affects mitochondrial functions in specific cell types. Notably, Drp1 knockout did not change respiration or ATP levels in resuspended mouse embryonic fibroblasts (MEFs),12, 13 indicating that mitochondrial fission is not required for respiration in these cells. However, neuronal respiration may be more sensitive to Drp1 loss. Indeed, Drp1 loss markedly decreased the number of mitochondria in axons and the cell body in midbrain DA neurons in vivo,4 and reduced staining of complex I and IV activity in cerebellar neurons in vivo.14 However, it is unclear whether these changes translate into decreased ATP levels in neurons and, if so, whether this decrease compromises neuronal function. Furthermore, Drp1 loss caused cell death in cerebellar and most midbrain DA neurons,4, 14 which challenges our ability to dissociate the specific effects of Drp1 loss on mitochondrial function from other non-specific changes that accompany cell death.To learn how disrupting mitochondrial fission contributes to selective neurodegeneration, we studied the function of Drp1 in CA1 hippocampal neurons and its role in mitochondrial bioenergetics. Surprisingly, despite losing Drp1, most CA1 neurons survived for more than 1 year in vivo, although their function was compromised, leading to deficits in synaptic transmission and memory. To begin to understand how loss of Drp1 causes neuronal dysfunction, we examined the role of Drp1 in mitochondrial bioenergetics. We found that Drp1 is required to maintain normal mitochondrial-derived ATP levels specifically in axons (but not the cell body), and that the loss of this function is unrelated to the distribution of mitochondria within axons.  相似文献   

20.
Plasminogen Kringle 5(K5) is a proteolytic fragment of plasminogen, which displays potent anti-angiogenic activities. K5 has been shown to induce apoptosis in proliferating endothelial cells; however the exact mechanism has not been well explored. The present study was designed to elucidate the possible molecular mechanism of K5-induced endothelial cell apoptosis. Our results showed that K5 inhibited basic fibroblast growth factors activated in human umbilical vein endothelial cells (HUVECs), indicating proliferation in a dose-dependent manner and induced endothelial cell death via apoptosis. K5 exposure activated caspase 7, 8 and 9. These results suggested that both the intrinsic mitochondrial apoptosis pathway and extrinsic pathway might be involved in K5-induced apoptosis. K5 reduced mitochondrial membrane potential (MMP) of HUVECs, demonstrating mitochondrial depolarization in HUVECs. K5 increased the ratio of Bak to Bcl-xL on mitochondria, decreased the ratio in cytosol, and had no effect on the total amounts of these proteins. K5 also did not effect on Bax/Bcl-2 distribution. K5 increased the ratio of Bak to Bcl-xL on mitochondrial that resulted in mitochondrial depolarization, cytochrome c release and consequently the cleavage of caspase 9. These results suggested that K5 induces endothelial cell apoptosis at least in part via activating mitochondrial apoptosis pathway. The regulation of K5 on Bak and Bcl-xL distribution may play an important role in endothelial cell apoptosis. These results provide further insight into the anti-angiogenesis roles of K5 in angiogenesis-related ocular diseases and solid tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号