首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication of the human herpesvirus Epstein-Barr virus drastically impairs cellular protein synthesis. This shutoff phenotype results from mRNA degradation upon expression of the early lytic-phase protein BGLF5. Interestingly, BGLF5 is the viral DNase, or alkaline exonuclease, homologues of which are present throughout the herpesvirus family. During productive infection, this DNase is essential for processing and packaging of the viral genome. In contrast to this widely conserved DNase activity, shutoff is only mediated by the alkaline exonucleases of the subfamily of gammaherpesviruses. Here, we show that BGLF5 can degrade mRNAs of both cellular and viral origin, irrespective of polyadenylation. Furthermore, shutoff by BGLF5 induces nuclear relocalization of the cytosolic poly(A) binding protein. Guided by the recently resolved BGLF5 structure, mutants were generated and analyzed for functional consequences on DNase and shutoff activities. On the one hand, a point mutation destroying DNase activity also blocks RNase function, implying that both activities share a catalytic site. On the other hand, other mutations are more selective, having a more pronounced effect on either DNA degradation or shutoff. The latter results are indicative of an oligonucleotide-binding site that is partially shared by DNA and RNA. For this, the flexible "bridge" that crosses the active-site canyon of BGLF5 appears to contribute to the interaction with RNA substrates. These findings extend our understanding of the molecular basis for the shutoff function of BGLF5 that is conserved in gammaherpesviruses but not in alpha- and betaherpesviruses.  相似文献   

2.
A conserved family of herpesvirus protein kinases plays a crucial role in herpesvirus DNA replication and virion production. However, despite the fact that these kinases are potential therapeutic targets, no systematic studies have been performed to identify their substrates. We generated an Epstein-Barr virus (EBV) protein array to evaluate the targets of the EBV protein kinase BGLF4. Multiple proteins involved in EBV lytic DNA replication and virion assembly were identified as previously unrecognized substrates for BGLF4, illustrating the broad role played by this protein kinase. Approximately half of the BGLF4 targets were also in vitro substrates for the cellular kinase CDK1/cyclin B. Unexpectedly, EBNA1 was identified as a substrate and binding partner of BGLF4. EBNA1 is essential for replication and maintenance of the episomal EBV genome during latency. BGLF4 did not prevent EBNA1 binding to sites in the EBV latency origin of replication, oriP. Rather, we found that BGLF4 was recruited by EBNA1 to oriP in cells transfected with an oriP vector and BGLF4 and in lytically induced EBV-positive Akata cells. In cells transfected with an oriP vector, the presence of BGLF4 led to more rapid loss of the episomal DNA, and this was dependent on BGLF4 kinase activity. Similarly, expression of doxycycline-inducible BGLF4 in Akata cells led to a reduction in episomal EBV genomes. We propose that BGLF4 contributes to effective EBV lytic cycle progression, not only through phosphorylation of EBV lytic DNA replication and virion proteins, but also by interfering with the EBNA1 replication function.Herpesviruses encode two families of serine/threonine protein kinases, one of which, the BGLF4 (Epstein-Barr virus [EBV])/UL97 (human cytomegalovirus)/UL13 (herpes simplex virus)/ORF36 (Kaposi''s sarcoma-associated herpesvirus)/ORF47 (varicella-zoster virus) family, is the sole protein kinase encoded by beta and gamma herpesviruses. The protein kinases phosphorylate both viral and host proteins (16, 21, 42) and are necessary for efficient virus lytic replication. Consequently, these kinases have been of interest as potential targets for antiviral drug development (37), and the compound 1263W94 (maribavir), which inhibits the cytomegalovirus UL97 protein (3), has been used in phase I clinical trials (27, 31, 47).EBV infection is prevalent worldwide, and primary infection in adolescence or early adulthood is associated in 30 to 40% of cases with infectious mononucleosis. EBV efficiently infects B cells in the lymphoid tissues of the Waldeyer ring (43). EBV infection of B cells is biased toward establishment of latency with limited viral-gene expression (49). During latent infection, EBV genomes are maintained as extrachromosomal episomes. Replication of episomal genomes utilizes the latency origin of replication, oriP. The only EBV-encoded protein required is the origin binding protein EBNA1. All other essential replication factors are provided by the cell. Expression of the EBV replicative cycle and production of progeny virus take place in terminally differentiated plasma B cells (11, 29), and epithelial cells may also contribute to the cycle of virus replication and spread that is an important component of both persistent infection of the individual and transmission of virus from one individual to the next (4, 22). Lytic DNA replication initiates at separate origins, oriLyt. EBV encodes a set of six core lytic replication proteins, along with ancillary proteins, such as thymidine kinase (TK), that are involved in nucleotide metabolism (13, 44).Several substrates have been described for the EBV BGLF4 protein kinase, including the core lytic EBV replication protein BMRF1, the polymerase processivity factor (8, 17). BGLF4 has also been found to locate to sites of lytic viral replication (46), to be required for efficient lytic DNA replication and release of nucleocapsids from the nucleus (18), and to contribute to the compaction of cell chromatin seen in cells undergoing lytic replication (32). Protein chip technology provides a new tool for global analysis of activities for biologically important enzymes, such as ubiquitin ligases, DNA repair enzymes, and kinases (7, 19, 36, 38, 52). Using an EBV protein array for unbiased screening, we identified multiple new BGLF4 substrates involved in lytic DNA replication, capsid assembly, and DNA packaging. Unexpectedly, we also identified EBNA1 as a substrate and binding partner for BGLF4. The data suggest that the contribution of BGLF4 to the EBV lytic cycle extends beyond the previously recognized contributions to lytic DNA replication and virion production and includes facilitating the switch from latent to lytic DNA replication by downregulating the EBNA1 replication function.  相似文献   

3.
4.
The BGLF4 protein kinase of Epstein-Barr virus (EBV) is a member of the conserved family of herpesvirus protein kinases which, to some extent, have a function similar to that of the cellular cyclin-dependent kinase in regulating multiple cellular and viral substrates. In a yeast two-hybrid screening assay, a splicing variant of interferon (IFN) regulatory factor 3 (IRF3) was found to interact with the BGLF4 protein. This interaction was defined further by coimmunoprecipitation in transfected cells and glutathione S-transferase (GST) pull-down in vitro. Using reporter assays, we show that BGLF4 effectively suppresses the activities of the poly(I:C)-stimulated IFN-β promoter and IRF3-responsive element. Moreover, BGLF4 represses the poly(I:C)-stimulated expression of endogenous IFN-β mRNA and the phosphorylation of STAT1 at Tyr701. In searching for a possible mechanism, BGLF4 was shown not to affect the dimerization, nuclear translocation, or CBP recruitment of IRF3 upon poly(I:C) treatment. Notably, BGLF4 reduces the amount of active IRF3 recruited to the IRF3-responsive element containing the IFN-β promoter region in a chromatin immunoprecipitation assay. BGLF4 phosphorylates GST-IRF3 in vitro, but Ser339-Pro340 phosphorylation-dependent, Pin1-mediated downregulation is not responsible for the repression. Most importantly, we found that three proline-dependent phosphorylation sites at Ser123, Ser173, and Thr180, which cluster in a region between the DNA binding and IRF association domains of IRF3, contribute additively to the BGLF4-mediated repression of IRF3(5D) transactivation activity. IRF3 signaling is activated in reactivated EBV-positive NA cells, and the knockdown of BGLF4 further stimulates IRF3-responsive reporter activity. The data presented here thus suggest a novel mechanism by which herpesviral protein kinases suppress host innate immune responses and facilitate virus replication.  相似文献   

5.
Stathmin is an important microtubule (MT)-destabilizing protein, and its activity is differently attenuated by phosphorylation at one or more of its four phosphorylatable serine residues (Ser-16, Ser-25, Ser-38, and Ser-63). This phosphorylation of stathmin plays important roles in mitotic spindle formation. We observed increasing levels of phosphorylated stathmin in Epstein-Barr virus (EBV)-harboring lymphoblastoid cell lines (LCLs) and nasopharyngeal carcinoma (NPC) cell lines during the EBV lytic cycle. These suggest that EBV lytic products may be involved in the regulation of stathmin phosphorylation. BGLF4 is an EBV-encoded kinase and has similar kinase activity to cdc2, an important kinase that phosphorylates serine residues 25 and 38 of stathmin during mitosis. Using an siRNA approach, we demonstrated that BGLF4 contributes to the phosphorylation of stathmin in EBV-harboring NPC. Moreover, we confirmed that BGLF4 interacts with and phosphorylates stathmin using an in vitro kinase assay and an in vivo two-dimensional electrophoresis assay. Interestingly, unlike cdc2, BGLF4 was shown to phosphorylate non-proline directed serine residues of stathmin (Ser-16) and it mediated phosphorylation of stathmin predominantly at serines 16, 25, and 38, indicating that BGLF4 can down-regulate the activity of stathmin. Finally, we demonstrated that the pattern of MT organization was changed in BGLF4-expressing cells, possibly through phosphorylation of stathmin. In conclusion, we have shown that a viral Ser/Thr kinase can directly modulate the activity of stathmin and this contributes to alteration of cellular MT dynamics and then may modulate the associated cellular processes.  相似文献   

6.
The Epstein-Barr virus transactivator Zta triggers lytic gene expression and is essential for replication of the lytic origin, oriLyt. Previous analysis indicated that the Zta activation domain contributed a replication-specific function. We now show that the Zta activation domain interacts with components of the EBV helicase-primase complex. The three helicase-primase proteins BBLF4 (helicase), BSLF1 (primase), and BBLF2/3 (primase-associated factor) were expressed fused to the Myc epitope. When expression plasmids for BBLF4 or BBLF2/3 plus BSLF1 (primase subcomplex) were separately transfected, the proteins localized to the cytoplasm. Interaction between Zta and the components of the helicase-primase complex was tested by examining the ability of Zta to alter the intracellular localization of these proteins. Cotransfection of Zta with Myc-BBLF4 resulted in nuclear translocation of Myc-BBLF4; similarly, cotransfection of Zta with the primase subcomplex led to nuclear translocation of the Myc-BSLF1 and Myc-BBLF2/3 proteins. This relocalization provides evidence for an interaction between Zta and the helicase and Zta and the primase subcomplex. An affinity assay using glutathione S-transferase–Zta fusion proteins demonstrated that Myc-BBLF4 and Myc-BBLF2/3 plus BSLF1 bound to the Zta activation domain (amino acids 1 to 133). In the nuclear relocalization assay, the amino-terminal 25 amino acids of Zta were required for efficient interaction with the primase subcomplex but not for interaction with BBLF4. Evidence for interaction between oriLyt bound Zta and the helicase-primase complex was obtained in a superactivation assay using an oriLyt-chloramphenicol acetyltransferase (CAT) reporter. Zta activated expression from a CAT reporter containing the complete oriLyt region and regulated by the oriLyt BHLF1 promoter. Cotransfection of the helicase-primase proteins, one of which was fused to a heterologous activation domain, led to Zta-dependent superactivation of CAT expression. This assay also provided evidence for an interaction between the single-stranded DNA binding protein, BALF2, and the Zta-tethered helicase-primase complex. The helicase-primase interaction is consistent with a role for Zta in stabilizing the formation of an origin-bound replication complex.  相似文献   

7.
8.
9.
10.
11.
12.
Members of the RecQ family of helicases are known for their roles in DNA repair, replication, and recombination. Mutations in the human RecQ helicases, WRN and BLM, cause Werner and Bloom syndromes, which are diseases characterized by genome instability and an increased risk of cancer. While WRN contains both a helicase and an exonuclease domain, the Drosophila melanogaster homolog, WRNexo, contains only the exonuclease domain. Therefore the Drosophila model system provides a unique opportunity to study the exonuclease functions of WRN separate from the helicase. We created a null allele of WRNexo via imprecise P-element excision. The null WRNexo mutants are not sensitive to double-strand break-inducing reagents, suggesting that the exonuclease does not play a key role in homologous recombination-mediated repair of DSBs. However, WRNexo mutant embryos have a reduced hatching frequency and larvae are sensitive to the replication fork-stalling reagent, hydroxyurea (HU), suggesting that WRNexo is important in responding to replication stress. The role of WRNexo in the HU-induced stress response is independent of Rad51. Interestingly, the hatching defect and HU sensitivity of WRNexo mutants do not occur in flies containing an exonuclease-dead copy of WRNexo, suggesting that the role of WRNexo in replication is independent of exonuclease activity. Additionally, WRNexo and Blm mutants exhibit similar sensitivity to HU and synthetic lethality in combination with mutations in structure-selective endonucleases. We propose that WRNexo and BLM interact to promote fork reversal following replication fork stalling and in their absence regressed forks are restarted through a Rad51-mediated process.  相似文献   

13.
14.
15.
16.
17.
18.
收集236例胃癌组织标本及135份健康人群咽漱液(throat washings,TWs)标本,采用原位杂交、PCR-Southern blot筛选出17例EB病毒相关胃癌(EBVaGC)(7.2%)和33例EBV阳性的TWs标本(24.4%);应用PCR-RFLP、巢式PCR及DNA测序等方法,检测EBV阳性标本病毒1/2分型、F/f分型、I/i分型及LMP1XhoI(+)/(-)等四种基因变异。EBVaGC及健康对照均为F型变异,未检测到f型变异。EBVaGC中1/2型、I/i型及LMP1XhoI(+)/(-)型的例数及比例分别为:17(100%)/0(0)、1(5.9%)/16(94.1%)及0(0)/15(88.2%);而TWs中上述分型的相应数据为25(75.8%)/8(24.2%)、11(33.3%)/19(57.6%)及12(36.4%)/18(54.5%),各位点两种基因型在EBVaGC和健康人中的分布不同(1/2:P=0.047;I/i:P=0.048;XhoI(+)/(-):P=0.012)。综合分析表明在3种基因多态性均能确定的标本中,EBVaGC均为1/i/XhoI(-)亚型(15/1...  相似文献   

19.
Infection of Raji cells with Epstein-Barr virus (EBV) causes suppression of cellular deoxyribonucleic acid (DNA) synthesis and fragmentation of the cellular DNA. About 1,000 copies of EBV DNA of normal size (about 5 x 10(7) daltons in a single strand, as shown in an alkaline gradient) are synthesized per cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号