首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Increased soil phosphorus (P) caused by agricultural intensification has been associated with decreased plant species richness (SR) in central Europe. How plant communities and soil P gradients are related in unimproved open habitats remains unclear.

Aims: The aim of this article was to characterise the relationship between soil chemical parameters and plant species composition and richness in unimproved open habitats.

Methods: The influence of soil chemical parameters (pH, P, K, Mg) on species composition was assessed, using data from 40 heathland and 54 grassland plots, by non-metric multidimensional scaling and permutational multivariate analysis of variance. The relationship between soil chemical parameters and SR was tested by linear mixed effects models.

Results: A direct relationship between heathland community composition and pH was observed, explaining 10% of variation in species composition, while P, Mg and pH together explained 17% of variation in grassland composition. In heathlands, SR increased with increasing pH, whereas in grasslands, SR decreased with increasing soil P.

Conclusions: Soil chemical parameters were substantially related to plant community composition and richness. In an area spared from a century of agricultural intensification, reduced pH appeared to constrain SR in heathlands, while even slight P increases (<10 mg kg?1) depressed plant SR in semi-natural grasslands.  相似文献   

2.
We examined the influence of vegetation structure and soil chemistry on post-adelgid, ground-layer plant communities in high-elevation forests of the southern Appalachian Mountains. Specifically, we hypothesized that post-disturbance community composition and diversity would vary along a gradient of soil acidity and other soil characteristics influenced by acid deposition. Ground-layer vegetation and soils were sampled on 60 randomly located nested vegetation plots in the spruce-fir (Picea abies) zone of Great Smoky Mountains National Park, TN and NC, USA. To capture a range of deposition levels, plot placement was stratified based on modeled acid deposition classes. Ordination and multiple regression results showed that ground-layer composition and diversity were negatively associated with acidity of the A horizon and the presence of ericaceous shrubs (i.e., Rhododendron spp.). A strong correspondence between soil acidity and ericaceous shrub cover was also observed, suggesting that soil acidity may be, in conjunction with overstory disturbance resulting from chronic acid deposition and adelgid induced mortality, an important driver of ericaceous shrub thicket expansion. Slow-decaying, acidic ericaceous litter may also induce a positive feedback resulting in enhanced acidification.  相似文献   

3.
Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North‐central Arizona, USA. Methods: We sampled 75 0.05‐ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non‐linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests.  相似文献   

4.
Background : The Snowy Mountains contain Australia's longest-lasting snowpatches. Because of climate change, their longevity has declined, with the loss of some specialist vegetation in the underlying snowbeds.

Aims: To characterise the current status of the vegetation associated with the longest-lasting snowpatches in Australia and its association with abiotic factors.

Methods: We assessed plant composition, soil depth, moisture and nutrients and subsurface temperatures in five zones of increasing vegetation height and cover in snowbeds.

Results: The zone beneath the middle of snowpatches was characterised by little vegetation cover and lower species richness, later emergence from snow, skeletal soils, and lower mean soil temperatures than zones further downslope where soils increased in depth and nutrient levels. Vegetation beneath these snowpatches no longer occurs in distinct communities. Plants have not simply migrated upslope, instead, areas that have deep soil that used to have snowpatch specialist species are being colonised upslope by grasses and downslope by tall alpine herbfield species that prefer bare ground.

Conclusions: Reduced longevity of Australia's longest-lasting snowpatches has led to the loss of distinct snowpatch plant communities. With limited soils beneath the centre of current snowpatches, and a lack of other suitable sites there is no location for these plant communities to migrate to.  相似文献   

5.
Abstract

This study is focused on the selection of variables affecting lichen and bryophyte diversity in Mediterranean deciduous forests. Plots representing two forest types (Fagus sylvatica and Quercus cerris forests) and two forest continuity categories (old‐growth (OG) and non‐OG forests) were selected in the Cilento and Vallo di Diano National Park (Italy). The presence and the abundance of bryophytes and epiphytic lichens were recorded. Structural variables of the forests and vascular plant species richness have been used as predictors. A strong positive correspondence between the two groups of organisms was found. Higher species richness and the distribution of rare species are related to OG stands, while a qualitative (species composition) rather than a quantitative (species richness) difference between the two forest types was observed. Some species elsewhere considered as indicators of forest continuity, such as Lobaria pulmonaria, Antitrichia curtipendula, and Homalothecium sericeum, are associated with OG forests, independently from forest type, suggesting that they can be regarded as suitable indicators also in Mediterranean forests. Finally, our results suggest that old trees, high levels of basal area, a broad range of diameter classes, and high understory diversity are the main structural features affecting cryptogamic communities, while no correlation was found with the occurrence of deadwood.  相似文献   

6.
Background: Gradients in the amounts and duration of snowpack and resulting soil moisture gradients have been associated with different plant communities across alpine landscapes.

Aims: The extent to which snow additions could alter plant community structure, both alone and in combination with nitrogen (N) and phosphorus (P) additions, provided an empirical assessment of the strength of these variables on structuring the plant communities of the alpine tundra at Niwot Ridge, Colorado Front Range.

Methods: A long-term snow fence was used to study vegetation changes in responses to snowpack, both alone and in conjunction with nutrient amendments, in plots established in dry and moist meadow communities in the alpine belt. Species richness, diversity, evenness and dissimilarity were evaluated after 20 years of treatments.

Results: Snow additions, alone, reduced species richness and altered species composition in dry meadow plots, but not in moist meadow; more plant species were found in the snow-impacted areas than in nearby controls. Changes in plant community structure to N and N + P additions were influenced by snow additions. Above-ground plant productivity in plots not naturally affected by snow accumulation was not increased, and the positive responses of plant species to nutrient additions were reduced by snow addition. Plant species showed individualistic responses to changes in snow and nutrients, and indirect evidence suggested that competitive interactions mediated responses. A Permanova analysis demonstrated that community dissimilarity was affected by snow, N, and P additions, but with these responses differing by community type for snow and N. Snow influenced community patterns generated by N, and finally, the communities impacted by N + P were significantly different than those affected by the individual nutrients.

Conclusions: These results show that changes in snow cover over a 20-year interval produce measureable changes in community composition that concurrently influence and are influenced by soil nutrient availability. Dry meadow communities exhibit more sensitivity to increases in snow cover whereas moist meadow communities appear more sensitive to N enrichment. This study shows that the dynamics of multiple limiting resources influence both the productivity and composition of alpine plant communities, with, species, life form, and functional traits mediating these responses.  相似文献   

7.
除草剂在桉树人工林中的应用越来越普遍,但关于除草剂对桉树人工林林下植物和土壤微生物群落的影响知之甚少。通过桉树人工林低剂量高频率(LHF)、中剂量中频率(MMF)、高剂量低频率(HLF)除草剂喷施试验,并与人工除草(MT)为对照,比较分析不同剂量、不同频率除草剂施用对林下植物和土壤微生物群落的影响。结果表明,施用除草剂导致桉树人工林林下植物种类和功能群组成发生显著变化,但并未显著降低林下植物群落物种丰富度和多样性,随除草剂施用频率的降低及恢复时间的增加,物种丰富度及多样性指数呈恢复趋势。除草剂施用也导致土壤养分含量降低。除草剂通过对林下植物群落和土壤养分的负面影响间接影响土壤微生物群落。LHF显著降低藤本植物而显著提高蕨类植物功能群的重要值,从而显著降低了微生物群落、真菌和放线菌的磷脂脂肪酸(PLFA)含量。MMF显著降低木本和藤本植物而显著提高禾草植物功能群的重要值,导致土壤微生物群落和放线菌的PLFA含量显著降低。HLF未显著影响林下植物及土壤微生物群落,但土壤全磷含量显著降低,速效磷含量也大幅下降。施用除草剂显著降低了土壤微生物生物量碳、氮的含量。因此,生产上应减少除草剂的施用,以减少对林下植物和土壤微生物群落的负效应。  相似文献   

8.

In temperate oak forests in Ohio, USA, we examined variability in forest communities within containment treatment sites for oak wilt (Bretziella fagacearum), a fungal pathogen lethal to susceptible oak species. Containment treatments included quarantine lines in soil for limiting belowground fungal spread and sanitation cutting of 1–3 mature black oak (Quercus velutina) trees within oak wilt infection patches. At 28 sites, we compared tree structure and understory plant communities across a gradient of 1- to 6-year-old treatments and reference forest (untreated and without evidence of oak wilt). While oak seedlings were abundant, oak saplings (1–10 cm in diameter) were absent. In contrast, many native understory plant community measures were highest in oak wilt treatments. Plant species richness 100 m?2 doubled in treatments, regardless of age, compared with reference forest. Plant cover increased with treatment age, with 6-year-old treatments exhibiting 5?×?more cover than reference forest. Non-native plants averaged only a small proportion (<?0.12) of cover across treatments and reference forest. Variability in understory communities was mostly predictable using treatment age, tree canopy cover, and geographic location, as 20 of 25 understory measures had at least 72% of their variance modeled. While oak wilt treatments did not facilitate oak regeneration nor many conservation-priority species of open savanna-woodland habitats, the treatments did diversify and increase cover of native understory communities with minimal invasion of non-native plants.

  相似文献   

9.
Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand types in boreal forests. Understanding relationships between fungal community composition, particularly mycorrhizas, and understory plant composition is therefore important in predicting how future fire regimes may affect vegetation. We used an extreme wildfire event in boreal forests of Canada's Northwest Territories to test drivers of fungal communities and assess relationships with plant communities. We sampled soils from 39 plots 1 year after fire and 8 unburned plots. High‐throughput sequencing (MiSeq, ITS) revealed 2,034 fungal operational taxonomic units. We found soil pH and fire severity (proportion soil organic layer combusted), and interactions between these drivers were important for fungal community structure (composition, richness, diversity, functional groups). Where fire severity was low, samples with low pH had higher total fungal, mycorrhizal, and saprotroph richness compared to where severity was high. Increased fire severity caused declines in richness of total fungi, mycorrhizas, and saprotrophs, and declines in diversity of total fungi and mycorrhizas. The importance of stand age (a surrogate for fire return interval) for fungal composition suggests we could detect long‐term successional patterns even after fire. Mycorrhizal and plant community composition, richness, and diversity were weakly but significantly correlated. These weak relationships and the distribution of fungi across plots suggest that the underlying driver of fungal community structure is pH, which is modified by fire severity. This study shows the importance of edaphic factors in determining fungal community structure at large scales, but suggests these patterns are mediated by interactions between fire and forest stand composition.  相似文献   

10.
Abstract. We studied the effects of windthrow on the understory plant species composition of a pine forest (dominated by Pinus strobus) and an oak forest (dominated by Quercus ellipsoidalis). We recorded the presence of vascular plant species in randomly located quadrats in the two forests, and in three microsite types associated with tipup mounds (pit, old soil and new soil) in the pine forest at irregular intervals over the course of 14 years. The understories of the two forests remained distinct throughout the study. The frequency of occurrence of a number of forest floor species considerably increased; few species decreased. The disturbance specialists Rubus idaeus and Polygonum cilinode increased in frequency throughout the study in the pine forest, but are beginning to decline in the less disturbed oak forest. Annuals and biennials preferentially colonized the disturbed soil of microsites on tipups, and declined in frequency after about 7 yr. Both forests have increased in understory species richness, but have not changed substantially in the distribution of growth forms. Despite early differences in species composition, microsite types associated with tipup mounds became more similar through time. Although small in magnitude, there was a directional change in understory composition at both forests, with no apparent sign of a return to pre‐disturbance conditions.  相似文献   

11.
This study quantified relationships of understory vascular plant species composition and richness along environmental gradients over a broad spatial scale in second-growth oak forests in eastern North America. Species frequencies were recorded in 108 25 × 25 m plots in four study sites extending over 70 km in southern Ohio, U.S.A.. The plots were stratified into three long-term soil moisture classes with a GIS-derived integrated moisture index (IMI). In addition to the IMI, the environmental data matrix included eight soil and three overstory variables. Canonical correspondence analysis (CCA) indicated that variations in understory species composition were most strongly related to topographic variations in predicted moisture (IMI), N mineralization rate, nitrification rate, and soil pH. In addition, floristic variation at the regional scale was correlated with variations in soil texture, nitrification, pH, and PO4 , resulting from differences in the soil parent material complexes among sites. Species richness averaged 65 species/plot, and increased with moisture and fertility. Stepwise regression indicated that richness was positively correlated with N mineralization rate and nitrification rate, and inversely correlated with tree basal area. Greater richness on fertile plots was the largely the result of increasing forb richness. Forb richness per quadrat (2 m2) was most strongly and positively related to N mineralization rate. Conversely, richness of understory individuals of tree species was greatest on xeric, less-fertile plots. Our results describe general, broad-scale species-environment relationships that occurred at both the topographic scale (long-term moisture status and fertility) and the regional scale (geomorphological differences among the sites). Strong species richness-N mineralization correlations indicate an important link between below-ground processes and above-ground biodiversity. Because N availability was a strong correlate to vegetation patterns at a broad-scale, our results suggest that the increasing rates of atmospheric N deposition in the region could have a major impact on understory vegetation dynamics.  相似文献   

12.
《Plant Ecology & Diversity》2013,6(3-4):355-364
Background: The alpine treeline ecotone is regarded as a sensor of the effects of global change on alpine plant communities. However, little is known about how treeline dynamics influence the diversity and composition of alpine plant communities. Such information is necessary to forecast how ascending montane forests may affect the composition of alpine flora.

Aims: We analysed the temporal variations in tree cover, plant diversity and composition, and the effect of tree cover dynamics on field layer vegetation over a period of 11 years, at two alpine treeline ecotones in the central Pyrenees, Spain.

Methods: Tree and field layer vegetation was sampled in permanent transects in 1998 and 2009, using the point-intercept method. Temporal changes in tree cover, plant species richness and abundance were characterised along the ecotone by using a randomisation approach, rarefaction curves, and a non-parametric multivariate test, respectively.

Results: Tree cover increased significantly at one of the sites, whereas plant species richness only increased at the other site where tree cover had not changed. Vegetation composition changed significantly at both sites, but it was not spatially coupled with changes in tree cover along the ecotone.

Conclusions: A change of tree cover does not necessarily trigger changes in the ground flora at the treeline over relatively short periods (decade scale). The results challenge our ability to infer short-term biodiversity impacts from upslope advance of forests. Integrated tree and field layer monitoring approaches are necessary to produce a better understanding of the impact of ongoing global change on treeline ecotones.  相似文献   

13.
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.  相似文献   

14.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

15.
Longleaf pine (Pinus palustris) savanna characterized by open-canopy, diverse herbaceous vegetation, and high amounts of bare soil once covered much of the southeastern United States Coastal Plain. The unique structural and vegetative conditions of this ecosystem support endemic reptiles and amphibians that have declined as longleaf pine forests have been lost or degraded. Private working pine (Pinus spp.) forests managed for timber production now occur throughout the southeastern United States and have replaced much of the historical longleaf pine savanna. The examination of herpetofaunal (reptile, amphibian) communities in private working loblolly pine (P. taeda) landscapes, particularly in the western Gulf Coastal Plain is lacking. Using repeated field surveys and hierarchical community occupancy models, we examined occupancy and species richness of herpetofauna across 81 sites spanning gradients of management practices, vegetative conditions, and soil composition in northwestern Louisiana, USA, 2017–2019. Young pine stands (<6 yr) exhibited structural characteristics most similar to mature longleaf pine reference sites (>30 yr), while mid-aged stands (13–26 yr) often featured closed canopy and dense midstory. Vegetation conditions varied widely depending on landscape characteristics and site-specific disturbance regimes. We documented 43 species of herpetofauna, including 9 open-pine-associated species. Occupancy of open-pine-associated herpetofauna was positively associated with open-canopy and understory conditions, and sandy soil area. Sites providing open-canopy conditions were often occupied by open-pine-associated species regardless of overstory type and disturbance method. Overall richness of herpetofauna was greatest at sites with moderate canopy cover outside of sandy soil regions. Working pine landscapes in the western Gulf Coastal Plain can support diverse herpetofaunal assemblages, including open-pine-associated species, when management practices maintain open-canopy conditions on sandy, upland soils. More broadly, our results provide insight into how forest management practices affect herpetofauna and may guide practices that can contribute to conservation value of working pine forests.  相似文献   

16.
Northern hardwood forests experience annual maximal loss of nutrients during spring. The vernal dam hypothesis predicts that spring ephemeral herbs in northern hardwood forests serve as sinks for nutrients during this season and reduce the loss of nutrients from the terrestrial ecosystem. Soil microbes of northern hardwood forests also sequester nutrients during spring. We compared the vernal nutrient acquisition ability of a soil microbial community and an understory plant community with species of mixed leaf phenology. We monitored nitrogen and phosphorus pool sizes in understory vegetation and soil microbes during spring from 1999 through 2001 in a northern hardwood forest in the Catskill Mountains, New York. Vegetation nutrient content increased during two spring seasons by an average of 3.07 g N m–2 and 0.19 g P m–2 and decreased during one spring by 0.81 g N m–2 and 0.10 g P m–2. Evergreen, wintergreen, and deciduous plant species were able to sequester nutrients during spring. Soil microbial nutrient content decreased during one spring by 1.29 g N m–2 and remained constant during the other two springs. Streamwater nitrogen losses were not correlated with biotic nutrient uptake suggesting a temporal disconnect between the two processes. We conclude that understory vegetation is a larger potential sink for vernal nutrients than are soil microbes in this northern hardwood forest and understory and species representing multiple phenologies are capable of vernal nutrient uptake.  相似文献   

17.
The community structures of Mesostigmata, Prostigmata, and Oribatida in the soil of broad-leaved regeneration forests and conifer plantations of various ages were assessed alongside soil and plant environmental variables using three response metrics (density, species richness, and species–abundance distribution). The density and species richness of mites recovered swiftly after clear-cutting or replanting. Oribatid mites dominated the soil mite communities in terms of densities and species richness for both forest types. Soil mite communities in broad-leaved forests was related to forest age, the crown tree communities index, and forest-floor litter weight. In contrast, soil mite communities in the conifer plantation sites were related to various indices of understory plants. The development of the understory plants was synchronized with the silvicultural schedules, including a closed canopy and thinning. Such a conifer plantation management may affect indirectly the community of mites.  相似文献   

18.
We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO2 and nitrogen (N) deposition treatments. Because elevated CO2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO2 and ambient N, or ambient CO2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO2. In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.  相似文献   

19.
Background: Boreal forest understory plant communities are known to be resilient to fire – the species composition of stands after a fire is quite similar to the pre-fire composition. However, we know little about recovery of individual plants within particular locations in forest stands (i.e. plot-level changes) since we usually do not have pre-fire data for plots.

Aims: We wanted to determine whether species recruited into the same or different locations in a Pinus banksiana stand that experienced a severe wildfire.

Methods: We used pre-existing permanent plots to evaluate the cover of understory after an unplanned wildfire.

Results: Across the entire stand nine of 47 species showed a significant change in cover. The largest change in a plant functional group was in the mosses, with all species present before fire being eliminated. There was no change in species diversity or total cover. At the plot level, species composition showed a much greater change. An average of 47% of the species present in a plot before the fire were absent in the same plot after the fire, and the total species turnover in plots was 88% of the species present before the fire. The plots showed a similar shift in species composition.

Conclusions: These results confirm that boreal forest communities show a high degree of resilience to fire, but within a forest stand species will be found in different locations following fire, potentially exposing them to a different set of biotic and abiotic conditions in these new locations.  相似文献   

20.
Abstract

Our study had the objective to examine whether the number of forest vascular plants in a forest-poor region may be indicative of total plant species richness and of the number of threatened plant species. We also related forest plant species richness to geological and soil variables. The analysis was based on a regional flora atlas from the Weser-Elbe region in northwestern Germany including incidence data of species in a total of 1109 grid cells (each ca. 2.8 × 2.8 km2). All taxa were classified either as forest or non-forest species. Total species richness in the grid cells ranged from 65 to 597, with a mean value of 308. The number of forest species varied between 20 and 309 (mean 176). Grid cells with or without particular geological units differed in total and forest species richness, with those containing peatland and marshland being particularly species-poor. Indicator value analysis showed that both total and forest species richness in the grid cells were related to soil acidity and nitrogen in a hump-backed manner, with the highest number of species found at moderately low values for nitrogen and at intermediate values of pH. Forest species richness was highly positively correlated with the number of non-forest species and threatened non-forest species. Indicators for high species richness were primarily those species that are confined to closed semi-natural forests with a varied topography and relatively base- and nutrient-rich soils. Grid cells including historically ancient forest exhibited a higher species richness than grid cells lacking ancient forest, indicating the importance of a long habitat continuity for a high phytodiversity. The “habitat coincidence” of high species richness is best explained by similar responses of forest species and species of other habitats to the main environmental gradients. It is suggested that the regional patterns found for the Weser-Elbe region can be transferred also to other forest-poor regions in Central Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号