首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study uses EPR, CD, and fluorescence spectroscopy to examine the structure of bradykinin (BK) analogues attaching the paramagnetic amino acid-type Toac (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 3, 7, and 9. The data were correlated with the potencies in muscle contractile experiments and the substrate properties towards the angiotensin I-converting enzyme (ACE). A study of the biological activities in guinea pig ileum and rat uterus indicated that only Toac0-BK partially maintained its native biological potency among the tested peptides. This and its counterpart, Toac3-BK, maintained the ability to act as ACE substrates. These results indicate that peptides bearing Toac probe far from the ACE cleavage sites were more susceptible to hydrolysis by ACE. The results also emphasize the existence of a finer control for BK-receptor interaction than for BK binding at the catalytic site of this metallodipetidase. The kinetic kcat/Km values decreased from 202.7 to 38.9 μM−1 min−1 for BK and Toac3-BK, respectively. EPR, CD, and fluorescence experiments reveal a direct relationship between the structure and activity of these paramagnetic peptides. In contrast to the turn-folded structures of the Toac-internally labeled peptides, more extended conformations were displayed by N- or C-terminally Toac-labeled analogues. Lastly, this work supports the feasibility of monitoring the progress of the ACE-hydrolytic process of Toac-attached peptides by examining time-dependent EPR spectral variations.  相似文献   

2.
Angiotensin I-converting enzyme (ACE) inhibitory peptide from silkworm pupa (Bombyx mori) was purified, modified, as well as inhibition mechanism by using molecular docking analysis. Silkworm pupa protein was hydrolyzed by neutral protease and the obtained hydrolysate was subjected to various types of chromatography to acquire peptide isolate. Then the molecular mass and amino acid sequence of the peptide was determined by MALDI-TOF/TOF MS. Subsequently, thermal and digestive stability of the peptide were explored through a high temperature processing and a simulated gastrointestinal digestion. Finally, the peptide was modified to smaller peptides and investigated their potentiate activities. Results showed that the peptide from silkworm pupa was determined to be Gly-Asn-Pro-Trp-Met (603.7 Da) with IC50 21.70 μM. Stability testing showed that ACE inhibitory activities were not significantly changed at temperature from 40 to 80 °C as well as during in vitro gastrointestinal digestion. The inhibitory activity of four modified peptides were Trp-Trp > Gly-Asn-Pro-Trp-Trp > Asn-Pro-Trp-Trp > Pro-Trp-Trp, and the IC50 of Trp-Trp was 10.76 μM Docking simulation revealed that the inhibitory activity was closely related to the spatial structure of peptide and zinc ions. The purified peptide and four modified peptides may be beneficial as functional food or drug for treating hypertension.  相似文献   

3.
Angioteinsin I-converting enzyme (ACE) inhibitory peptide was isolated from marine sponge (Stylotella aurantium) hydrolysate prepared by various hydrolysis enzymes. The peptic hydrolysate exhibited highest ACE inhibitory activity among them and was fractionated into three ranges of molecular weight. The below 5 kDa fraction showed the highest ACE inhibitory activity and was used for subsequent purification steps. The amino acid sequences of the purified peptides were identified to be Tyr-Arg (337.2 Da), and Ile-Arg (287.2 Da). The purified peptides from marine sponge had an IC50 value of 237.2 μM and 306.4 μM, respectively. The molecular docking study revealed that ACE inhibitory activity of the purified peptides was mainly attributed to the hydrogen bond interactions and Pi interaction between the dipeptides and ACE. The results suggest that marine sponge, S. aurantium would be an attractive raw material for the manufacture of anti-hypertensive nutraceutical ingredients.  相似文献   

4.
Angiotensin I-converting enzyme (ACE) inhibitory peptide was isolated from the Styela clava flesh tissue. Nine proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase, pepsin, trypsin, α-chymotrypsin and papain) were used, and their respective enzymatic hydrolysates and an aqueous extract were screened to evaluate their potential ACE inhibitory activity. Among all of the test samples, Protamex hydrolysate possessed the highest ACE inhibitory activity, and the Protamex hydrolysate of flesh tissue showed relatively higher ACE inhibitory activity compared with the Protamex hydrolysate of tunic tissue. We attempted to isolate ACE inhibitory peptide from the Protamex hydrolysate of S. clava flesh tissue using ultrafiltration, gel filtration on a Sephadex G-25 column and high performance liquid chromatography (HPLC) on an ODS column. The purified ACE inhibitory peptide exhibited an IC50 value of 37.1 μM and was identified as non-competitive inhibitor of ACE. Amino acid sequence of the peptide was identified as Ala-His-Ile-Ile-Ile, with a molecular weight 565.3 Da. The results of this study suggested that the peptides derived from enzymes-assisted extracts of S. clava would be useful new antihypertension compounds in functional food resource.  相似文献   

5.
Angiotensin I converting enzyme (ACE) plays a major role in blood pressure regulation, catalyzing the conversion of angiotensin I to the vasoconstrictor angiotensin II. In this report we describe a two-step affinity chromatography method for preparative purification of ACE from pig lung using Concanavalin-A Sepharose 4B and affinity chromatography on Lisinopril Sepharose 6B. The same purification scheme was used to obtain Cobalt-ACE, where zinc ion located at the active site is replaced by cobalt. Cobalt-ACE visible spectrum shows a characteristic broad peak from 500 to 600 nm. The shape and maximum absorptivity of this peak changes in presence of ACE inhibitors that bind at the catalytic site.  相似文献   

6.
The condensation of several primary amines and diamines with various N1-ethoxycarbonyles N1-tosylhydrazonates (1a-b), triazolones (2) and bis-triazolone (3) resulted in ethanol under ultrasound irradiation. Compared with the conventional methods, the main advantages of the present procedure are milder conditions, shorter reaction time and higher yields. The newly synthesized compounds were evaluated for angiotensin I-converting enzyme (ACE) inhibition. The results were compared to Captopril as a reference drug. Compounds 3b, 2h, 3a, 2d, and 2f showed not only inhibition activity with IC50 values of 0.162, 0.253, 0.253, 0.281 and 0.382 µM, respectively, but also minimal toxicity. The docking of chemical compounds in the ACE active site showed possible inhibitory effect of all compounds on the catalytic activity of the enzyme, which would satisfactorily explain the anti-hypertensive effect of these compounds.  相似文献   

7.
An assay using fluorescence resonance energy transfer peptides was developed to assess angiotensin I-converting enzyme (ACE) activity directly on the membrane of transfected Chinese hamster ovary cells (CHO) stably expressing the full-length somatic form of the enzyme. The advantage of the new method is the possibility of using selective substrates for the two active sites of the enzyme, namely Abz-FRK(Dnp)P-OH for somatic ACE, Abz-SDK(Dnp)P-OH for the N domain, and Abz-LFK(Dnp)-OH for the C domain. Hydrolysis of a peptide bond between the donor/acceptor pair (Abz/Dnp) generates detectable fluorescence, allowing quantitative measurement of the enzymatic activity. The kinetic parameter K(m) for the hydrolysis of the three substrates by ACE in this system was also determined and the values are comparable to those obtained using the purified enzyme in solution. The specificity of the activity was demonstrated by the complete inhibition of the hydrolysis by the ACE inhibitor lisinopril. Therefore, the results presented in this work show for the first time that determination of ACE activity directly on the surface of intact CHO cells is feasible and that the method is reliable and sensitive. In conclusion, we describe a methodology that may represent a new tool for the assessment of ACE activity which will open the possibility to study protein interactions in cells in culture.  相似文献   

8.
Aydin  Fatih  Turkoglu  Vedat  Bas  Zehra 《Molecular biology reports》2021,48(5):4191-4199
Molecular Biology Reports - Angiotensin-converting enzyme (ACE, EC 3.4.15.1) in the renin-angiotensin system regulates blood pressure by catalyzing angiotensin I to the vasoconstrictor angiotensin...  相似文献   

9.
Venom from the endoparasitic wasp, Pimpla hypochondriaca, is composed of a mixture of high and low molecular weight proteins, possesses phenoloxidase activity, has immunosuppressive properties, and induces paralysis in several insect species. In the present study we demonstrate that P. hypochondriaca venom also contains antibacterial and proteolytic activity. Antibacterial activity was detected against the Gram-negative bacteria Escherichia coli and Xanthamonas campestris but not against Pseudomonas syringae nor against two Gram-positive bacteria, Bacillus cereus and Bacillus subtilis. Endopeptidase and aminopeptidase activity in venom was detected using the synthetic fluorogenic substrates N-t-BOC-Phe-Ser-Arg-AMC, Arg-AMC and Leu-Arg. The aminopeptidase activity towards Arg-AMC was sensitive to amastatin (70% inhibition), an aminopeptidase inhibitor. Angiotensin-converting enzyme (ACE)-like enzyme activity was detected, by reverse-phase HPLC using the synthetic tripeptide Hip-His-Leu as a substrate. This activity was sensitive to captopril, an ACE inhibitor (IC(50) 3.8 x 10(-8) M). Using an antiserum raised against recombinant Drosophila melanogaster ACE-like enzyme, (rAnce), Western blot analysis revealed an immunoreactive protein, with a molecular weight estimate of 74 kDa, in P. hypochondriaca venom. The possibility that the endopeptidase, aminopeptidase and ACE are involved in the processing of peptide precursors in the venom sac is discussed.  相似文献   

10.
Angiotensin I converting enzyme (ACE) inhibitory peptide was isolated from the marine rotifer, Brachionus rotundiformis. ACE inhibitory peptides were separated from rotifer hydrolysate prepared by Alcalase, α-chymotrypsin, Neutrase, papain, and trypsin. The Alcalase hydrolysate had the highest ACE inhibitory activity compared to the other hydrolysates. The IC50 value of Alcalase hydrolysate for ACE inhibitory activity was 0.63 mg/ml. We attempted to isolate ACE inhibitory peptides from Alcalase prepared rotifer hydrolysate using gel filtration on a Sephadex G-25 column and high performance liquid chromatography on an ODS column. The IC50 value of purified ACE inhibitory peptide was 9.64 μM, and Lineweaver–Burk plots suggest that the peptide purified from rotifer protein acts as a competitive inhibitor against ACE. Amino acid sequence of the peptide was identified as Asp-Asp-Thr-Gly-His-Asp-Phe-Glu-Asp-Thr-Gly-Glu-Ala-Met, with a molecular weight 1538 Da. The results of this study suggest that peptides derived from rotifers may be beneficial as anti-hypertension compounds in functional foods resource.  相似文献   

11.
Inhibition of angiotensin I-converting enzyme (ACE) has become an effective strategy in the treatment of hypertension and cardiovascular disease. Keto-ACE, a previously described C-domain selective ACE inhibitor, was used as the basis for the design, synthesis and molecular modelling of a series of novel ketomethylene derivatives for which ACE inhibition profiles and structural characterisation are reported. Ki determinations indicated that the introduction of a bulky aromatic tryptophan at the P2' position of keto-ACE significantly increased selectivity for the C-domain, while an aliphatic P2 Boc group conferred N-domain selectivity. These data were supported by the potential energies of the compounds docked with the C- and N-domains of ACE.  相似文献   

12.
Using a highly sensitive fluorimetric assay, significant levels of angiotensin I -converting enzyme-like activity (ACELA) were detected in a range of tissues (branchial heart, gill, kidney with associated vasculature and archinephric duct, liver, whole brain and gut) from the Atlantic hagfish (Myxine glutinosa). The highest ACELA occurred in heart and gill (1.8 and 1.5 nmol His–Leu min−1 mg protein−1, respectively). The mammalian angiotensin I-converting enzyme (ACE) inhibitor, captopril, at 10−5 M was a potent inhibitor of the ACELA found in all hagfish tissues. Radioimmunoassay showed that immunoreactive angiotensins (251.8±11.8 pM) were detectable in hagfish plasma. The validity of the assay for measurement of hagfish angiotensins was indicated by the parallelism of the angiotensin II standard curve against serially diluted hagfish plasma. Measurement of immunoreactive plasma angiotensins and detection of significant levels of ACELA in a wide range of tissues gives indirect evidence for the presence of a renin–angiotensin system in hagfishes, the earliest evolved group of craniates.  相似文献   

13.
A series of novel diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate embedded triazole and mannich bases were synthesized, and evaluated for their angiotensin converting enzyme (ACE) inhibitory activity. Screening of above synthesized compounds for ACE inhibition showed that triazoles functionalized compounds have better ACE inhibitory activity compared to that of mannich bases analogues. Among all triazoles we found 6h, 6i and 6j to have good ACE inhibition activity with IC50 values 0.713 μM, 0.409 μM and 0.653 μM, respectively. Among mannich bases series compounds, only 7c resulted as most active ACE inhibitor with IC50 value of 0.928 μM.  相似文献   

14.
The angiotensin I-converting enzyme (ACE I) inhibitory activities of 108 aqueous ethanol extracts obtained from Russian plants were evaluated in vitro. Activity was assessed with a two-stage colorimetric assay using N-[3-(2-furyl)acryloyl]-L-phenylalanyl-glycyl-glycine (FA-PGG) as a substrate and 2,4,6-trinitrobenzenesulfonic acid (TNBS) as a coloring reagent for the enzymatic cleavage product glycylglycine (GG). Extracts from eleven plants, seven of which belong to the family Rosaceae, were found to inhibit ACE I with an IC50 < 0.3 mg/mL. Among these, the Geranium pratense extract was the most active and had an IC50 value of 81 μg/mL.  相似文献   

15.
Ni H  Li L  Liu G  Hu SQ 《PloS one》2012,7(5):e37077
Angiotensin I-converting enzyme (ACE) has an important function in blood pressure regulation. ACE-inhibitory peptides can lower blood pressure by inhibiting ACE activity. Based on the sequence of an ACE-inhibitory hexapeptide (TPTQQS) purified from yeast, enzyme kinetics experiments, isothermal titration calorimetry (ITC), and a docking simulation were performed. The hexapeptide was found to inhibit ACE in a non-competitive manner, as supported by the structural model. The hexapeptide bound to ACE via interactions of the N-terminal Thr1, Thr3, and Gln4 residues with the residues on the lid structure of ACE, and the C-terminal Ser6 attracted the zinc ion, which is vital for ACE catalysis. The displacement of the zinc ion from the active site resulted in the inhibition of ACE activity. The structural model based on the docking simulation was supported by experiments in which the peptide was modified. This study provides a new inhibitory mechanism of ACE by a peptide which broads our knowledge for drug designing against enzyme targets.  相似文献   

16.
SARS-CoV-2, the newly identified human coronavirus causing severe pneumonia pandemic, was probably originated from Chinese horseshoe bats. However, direct transmission of the virus from bats to humans is unlikely due to lack of direct contact, implying the existence of unknown intermediate hosts. Angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2s of certain species can be utilized by SARS-CoV-2. Here, we evaluated and ranked the receptor-utilizing capability of ACE2s from various species by phylogenetic clustering and sequence alignment with the currently known ACE2s utilized by SARS-CoV-2. As a result, we predicted that SARS-CoV-2 tends to utilize ACE2s of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2.  相似文献   

17.
Angiotensin converting enzyme 2 (ACE2) is a component of the renin-angiotensin system (RAS) which converts Ang II, a potent vasoconstrictor peptide into Ang 1-7, a vasodilator peptide which may act as a negative feedback hormone to the actions of Ang II. The discovery of this enzyme added a new level of complexity to this system. The mesangial cells (MC) have multiple functions in glomerular physiology and pathophysiology and are able to express all components of the RAS. Despite of being localized in these cells, ACE2 has not yet been purified or characterized. In this study ACE2 from mice immortalized MC (IMC) was purified by ion-exchange chromatography. The purified enzyme was identified as a single band around 60-70 kDa on SDS-polyacrylamide gel and by Western blotting using a specific antibody. The optima pH and chloride concentrations were 7.5 and 200 mM, respectively. The N-terminal sequence was homologous with many species ACE2 N-terminal sequences as described in the literature. ACE2 purified from IMC was able to hydrolyze Ang II into Ang 1-7 and the Km value for Ang II was determined to be 2.87 ± 0.76 μM. In conclusion, we purified and localized, for the first time, ACE2 in MC, which was able to generate Ang 1-7 from Ang II. Ang 1-7 production associated to Ang II degradation by ACE2 may exert a protective effect in the renal hemodynamic.  相似文献   

18.
Proteolytic digestion of gelatin extracts from Alaska Pollack (Theragra chalcogramma) skin brings about a high angiotensin I converting enzyme (ACE) inhibitory activity. Gelatin extracts were hydrolyzed by serial protease-treatments in the order of Alcalase, pronase E, and collagenase using a three-step recycling membrane reactor. Fragments arising from the third step were composed of peptides ranging from 0.9 to 1.9 kDa and responsible for ACE inhibitory activity. Catalytically active two peptides were separated by the consecutive chromatographic methods including gel filtration, ion-exchange chromatography, and reverse-phase high performance liquid chromatography. The isolated peptides were composed of Gly-Pro-Leu and Gly-Pro-Met and showed IC50 values of 2.6 and 17.13 μM, respectively. These results suggested that Gly-Pro-Leu would be useful as a new antihypertensive agent.  相似文献   

19.
Marine Chlorella ellipsoidea protein was hydrolyzed using Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase, trypsin, α-chymotrypsin, pepsin and papain. Alcalase-proteolytic hydrolysate exhibited the highest ACE inhibitory activity among them and was fractionated into three ranges of molecular weight (below 5 kDa, 5–10 kDa and above 10 kDa). The below 5 kDa fraction showed the highest ACE inhibitory activity and was used for subsequent purification steps. During consecutive purification, a potent ACE inhibitory peptide from marine C. ellipsoidea, which was composed of 4 amino acids, Val–Glu–Gly–Tyr (MW: 467.2 Da, IC50 value: 128.4 μM), was isolated. Lineweaver–Burk plots suggest that the peptide purified acts as a competitive inhibitor against ACE and stable against gastrointestinal enzymes of pepsin, trypsin and α-chymotrypsin. Furthermore, antihypertensive effect in spontaneously hypertensive rats (SHRs) also revealed that oral administration of purified peptide can decrease systolic blood pressure significantly. The results suggest that marine C. ellipsoidea would be an attractive raw material for the manufacture of antihypertensive nutraceutical ingredients.  相似文献   

20.
Catalase plays a major role in the protection of tissues from toxic effects of H2O2 and partially reduced oxygen species. In the present study catalase was extracted and purified 330-fold from goat lung by acetone fractionation and successive chromatographies on DEAE-cellulose, Sephadex G-200, Blue Sepharose CL-6B and Ultrogel AcA-34. The purified enzyme was almost homogeneous as judged by polyacrylamide gel electrophoresis and FPLC. The molecular weight and Stokes' radius of the purified enzyme were 339 kDa and 127±2 Å. The enzyme had 11 sulfhydryl groups and 15 tryptophan groups per mol of the enzyme. A broad pH optimum in the range 5.2 to 7.8 was obtained. Sulfhydryl group binding agents, thiol reagents and N-Bromosuccinimide inhibited the enzyme activity. The kinetic data show no cooperativity between the substrate binding sites. Tryptophan, indole acetic acid, cysteine, formaldehyde and sodium azide inhibited the enzyme non-competitively with Ki values of 1.5, 1.6, 6.7, 0.55 and 0.0017 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号