首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Staphylococcus aureus is a highly versatile and evolving bacterium of great clinical importance. S. aureus can evolve by acquiring single nucleotide polymorphisms and mobile genetic elements and by recombination events. Identification and location of novel genomic elements in a bacterial genome are not straightforward, unless the whole genome is sequenced. Optical mapping is a new tool that creates a high-resolution, in situ ordered restriction map of a bacterial genome. These maps can be used to determine genomic organization and perform comparative genomics to identify genomic rearrangements, such as insertions, deletions, duplications, and inversions, compared to an in silico (virtual) restriction map of a known genome sequence. Using this technology, we report here the identification, approximate location, and characterization of a genetic inversion of ∼500 kb of a DNA element between the NRS387 (USA800) and FPR3757 (USA300) strains. The presence of the inversion and location of its junction sites were confirmed by site-specific PCR and sequencing. At both the left and right junction sites in NRS387, an IS1181 element and a 73-bp sequence were identified as inverted repeats, which could explain the possible mechanism of the inversion event.Staphylococcus aureus is a gram-positive bacterium of immense clinical importance. This opportunistic pathogen is capable of causing a wide range of diseases from skin and soft-tissue infections to life-threatening bacteremia, endocarditis, and osteomyelitis (14). Approximately 75% of the S. aureus genome is composed of a core genome that is common in all strains, and 25% of the genome is composed of variable regions which can differ between different strains (4, 16, 24-26). S. aureus evolves primarily by introducing single nucleotide polymorphisms in its core genome and by acquiring mobile genetic elements (MGEs) through horizontal gene transfer. These MGEs include pathogenicity/genomic islands, plasmids, transposons, and bacteriophages that become integrated in the chromosome (4, 11, 16, 31, 32). Despite being a heterogeneous organism, genetic recombination in S. aureus is proposed to be rather rare (20, 24, 29, 35). Its clones are more likely to evolve by point mutations than by recombination events (12). The MGEs contribute to the phenotypic and genotypic diversity seen with the S. aureus population. Acquisition of the staphylococcal cassette chromosome (SCCmec) elements through site-specific recombinases has led to the epidemic of methicillin-resistant S. aureus (MRSA) strains in hospitals and communities all over the world (6, 10, 15). In recent years, the integration of arginine catabolite mobile element in the USA300 lineage of MRSA has been proposed to give the pathogen its epidemiological advantage, including traits for surviving in low-pH conditions and oxygen tension environments (11). In addition, chromosomal replacements have been observed within lineages of sequence type 34 (ST34) and ST42 (34) and ST8 and ST30 (13).Genomic rearrangements, such as inversions, have been observed with genomes of enteric bacteria, such as Salmonella enterica, Shigella flexneri, Yersinia pestis KIM, Escherichia coli (K12 and O157:H7), and group A Streptococcus pyogenes (8, 9, 18, 27, 28, 30, 37). No genomic inversions in S. aureus have been reported to date. With the use of optical mapping, large genomic rearrangements, such as inversions, that would otherwise be missed with other comparative genotyping approaches, including microarray analysis, can be identified. Optical mapping uses high-resolution restriction maps (optical maps) of a bacterial genome to determine its genomic organization (5, 21, 23, 33, 36). These optical maps can be compared to an in silico (virtual) restriction map of a known genome sequence and can be used to identify gene rearrangements and their locations. Using optical mapping in conjunction with subsequent site-specific PCR and sequencing, we report the identification, approximate location, and partial characterization of an ∼500-kb DNA element in NRS387, a USA800 strain that was found to be inverted relative to USA300FPR3757. Identification of IS1181 elements and a novel 73-bp element at both ends of the ∼500-kb element in NRS387 could suggest the possibility of an inversion event in an ancestral strain of NRS387.  相似文献   

2.
The restriction-modification (R-M) systems of many bacteria present a barrier to the stable introduction of foreign DNA. The Lyme disease spirochete Borrelia burgdorferi has two plasmid-borne putative R-M genes, bbe02 and bbq67, whose presence limits transformation by shuttle vector DNA from Escherichia coli. We show that both the bbe02 and bbq67 loci in recipient B. burgdorferi limit transformation with shuttle vector DNA from E. coli, irrespective of its dam, dcm, or hsd methylation status. However, plasmid DNA purified from B. burgdorferi transformed naïve B. burgdorferi much more efficiently than plasmid DNA from E. coli, particularly when the bbe02 and bbq67 genotypes of the B. burgdorferi DNA source matched those of the recipient. We detected adenine methylation of plasmid DNA prepared from B. burgdorferi that carried bbe02 and bbq67. These results indicate that the bbe02 and bbq67 loci of B. burgdorferi encode distinct R-M enzymes that methylate endogenous DNA and cleave foreign DNA lacking the same sequence-specific modification. Our findings have basic implications for horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. Further characterization and identification of the nucleotide sequences recognized by BBE02 and BBQ67 will facilitate efficient genetic manipulation of this pathogenic spirochete.Borrelia burgdorferi sensu lato is a zoonotic pathogen whose natural infectious cycle alternates between a tick vector and rodent or bird reservoir hosts (1, 7, 8, 14, 32, 33, 36). Transmission of B. burgdorferi to humans occurs through the bite of an infected tick and can lead to Lyme disease, which is a major public health concern in areas of North America and Europe where B. burgdorferi is endemic (8, 53).The genomic structure of the spirochete B. burgdorferi is unique, consisting of a linear chromosome of approximately 900 kb and more than 20 linear (lp) and circular (cp) plasmids, ranging in size from ∼5 kb to 56 kb, in the type strain B31 (9, 10, 11, 19, 42). The plasmids of B. burgdorferi are present at unit copy number relative to the chromosome (22), and some are relatively unstable during in vitro propagation (52, 57). The loss of linear plasmids lp25, lp28-1, and lp36 by strain B31 was found to correlate with the loss of infectivity in mice (20, 31, 45, 56), leading to the identification of genes carried on these plasmids that are dispensable in vitro but required in vivo during an experimental infectious cycle (21, 26, 35, 44, 47). The loss of two linear plasmids, lp25 and lp56, was shown to correlate with enhanced shuttle vector transformation, suggesting that specific lp25 and lp56 gene products present a barrier to stable introduction of foreign DNA (34). Further studies linked the transformation phenotype of B. burgdorferi strain B31 with the bbe02 and bbq67 genes on lp25 and lp56, respectively, and the putative restriction-modification (R-M) enzymes that they encode (11, 27, 29, 34). The recent demonstration by Chen and colleagues of enhanced transformation of B. burgdorferi following in vitro methylation of DNA (13) further supports the hypothesis that these B. burgdorferi plasmids encode R-M enzymes that degrade foreign DNA lacking the appropriate modification.The barrier to foreign DNA presented by the bbe02 and bbq67 loci of B. burgdorferi implies that genomic DNA should be modified in spirochetes carrying these plasmid genes. To test this hypothesis, we compared the transformation of B. burgdorferi with shuttle vector DNA isolated from either Escherichia coli or B. burgdorferi, as outlined in Fig. Fig.1.1. We also examined whether and how the presence of putative R-M genes in either the donor or recipient B. burgdorferi strain influenced transformation. Finally, we analyzed the type of modification present on DNA isolated from B. burgdorferi with different plasmid or gene contents. Our data indicate that the bbe02 and bbq67 loci of B. burgdorferi encode enzymes that both methylate endogenous DNA and restrict foreign DNA lacking these modifications. These findings have basic implications regarding horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. These results also help elucidate the molecular mechanisms underlying the relative inefficiency of genetic transformation of B. burgdorferi and suggest ways in which genetic manipulation of this pathogenic spirochete could be enhanced.Open in a separate windowFIG. 1.Shuttle vector transformations. Schematic representation of the various DNA sources, strains and methods used to assess the contributions of bbe02 and bbq67 to the restriction-modification (R-M) systems of B. burgdorferi.  相似文献   

3.
Staphylococcal enterotoxins (SE) can cause toxin-mediated disease, and those that function as superantigens are implicated in the pathogenesis of allergic diseases. The prevalence of 19 enterotoxin genes was determined by PCR in clinical S. aureus strains derived from wounds (108) and blood (99). We performed spa typing and multilocus sequence typing (MLST) to determine clonal origin, and for selected strains staphylococcal enterotoxin B (SEB) production was measured by enzyme-linked immunosorbent assay. Strains carried a median of five SE genes. For most SE genes, the prevalence rates among methicillin-resistant and methicillin-sensitive S. aureus isolates, as well as wound- and blood-derived isolates, did not differ. At least one SE gene was detected in all except two S. aureus isolates (>99%). Complete egc clusters were found in only 11% of S. aureus isolates, whereas the combination of sed, sej, and ser was detected in 24% of clinical strains. S. aureus strains exhibited distinct combinations of SE genes, even if their pulsed-field gel electrophoresis and MLST patterns demonstrated clonality. USA300 strains also showed considerable variability in SE content, although they contained a lower number of SE genes (mean, 3). By contrast, SE content was unchanged in five pairs of serial isolates. SEB production by individual strains varied up to 200-fold, and even up to 15-fold in a pair of serial isolates. In conclusion, our results illustrate the genetic diversity of S. aureus strains with respect to enterotoxin genes and suggest that horizontal transfer of mobile genetic elements encoding virulence genes occurs frequently.As a commensal, Staphylococcus aureus colonizes the nasal mucosa of 20 to 40% of humans (54), and as a pathogen it causes pyogenic diseases and toxin-mediated diseases (38). S. aureus produces many different virulence factors, including enterotoxins (SEs), which can cause defined toxic shock syndromes (4). The characterization of some of these toxins led to the discovery of superantigens (41), which bind to major histocompatibility complex class II molecules and Vβ chains of T-cell receptors, resulting in the activation of large numbers of T cells (20 to 30%) and massive cytokine production (10, 18). These superantigen-induced “cytokine storms” are responsible for the toxic effects seen in staphylococcal entertoxin B (SEB)- and toxic shock syndrome toxin (TSST)-associated shock syndromes in S. aureus infections (13, 40, 47). To date, 19 SEs have been identified based on sequence homologies, and studies have reported enterotoxin genes in up to 80% of all S. aureus strains (4, 21). Although many new enterotoxins have been identified, i.e., seg ser and seu (33, 37, 44, 49), their precise functions have not been characterized yet. The majority of experimental work with SEs is still done with SEB, toxic shock syndrome toxin 1, and SEA (27, 31), because these toxins are commercially available. Most SEs are located on mobile elements in bacterial genomes such as plasmids or pathogenicity islands and can thus be easily transferred horizontally between strains (5, 34, 35). Certain SE genes are grouped together. For instance seg, sei, sem, sen, and seo are commonly found in a gene cluster (egc) on genomic island νSAβ (34), and sel and sek are often found together with seb or sec on S. aureus pathogenicity islands. Other staphylococcal superantigen genes are encoded on plasmids (sed, sej, and ser) or are linked to the antibiotic resistance cassette SCCmec (seh) (44, 55). Phage φ3 carries either sea (strain Mu50), sep (N315), or sea sek seq (MW2) (1, 29).Although a few clinical studies have attempted to correlate shock and outcome with the presence of certain SEs in patients with S. aureus infections (17, 28), the contribution of these toxins to outcome is still unclear. Recent papers have proposed the SEs are immunomodulators and that colonization with S. aureus strains that produce SEB may contribute to the pathogenesis of asthma, chronic rhinitis, and dermatitis (2, 36, 46, 48, 56). The superantigen function of SEs in supernatants of S. aureus cultures can be neutralized by serum of colonized patients (21, 23). With new data emerging implicating SEs in the pathogenesis of chronic allergic syndromes, production of monoclonal antibodies and or vaccine strategies targeting SEs may be considered (6, 24, 26, 30) in the future. It is therefore important to characterize the prevalence of SE genes in clinical S. aureus strains.In this study, we analyzed SE content in both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains that were cultured from wounds (including USA300) and bloodstream infections of patients from a defined geographical area. In addition, SEB production was quantified by enzyme-linked immunosorbent assay (ELISA) in S. aureus strains carrying the seb gene, and spa typing confirmed clonal diversity among S. aureus isolates from different patients, as well as clonal stability in serial isolates, and multilocus sequence typing (MLST) done on a subset of less common spa types. We conclude that SE genes are abundant in S. aureus strains, albeit less abundant in USA300. SE content and combination are highly diverse and therefore more discriminatory than pulsed-field gel electrophoresis (PFGE) and MLST typing, albeit stable in serial isolates. Quantification of SEB production demonstrates that enterotoxin secretion can vary greatly among strains, even if they belong to the same S. aureus lineage. Given the complexities of SE prevalence, regulation, and possible function, we propose that the association of these toxins with chronic allergic diseases or outcome may be oversimplified at present. Precise characterizations of SE function and secretion patterns in individual S. aureus clones are warranted.  相似文献   

4.
Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims, patients with traumatic wounds, necrotic lesions in people with diabetes, and patients with surgical wounds. Within a wound, infecting bacteria frequently develop biofilms. Many current wound dressings are impregnated with antimicrobial agents, such as silver or antibiotics. Diffusion of the agent(s) from the dressing may damage or destroy nearby healthy tissue as well as compromise the effectiveness of the dressing. In contrast, the antimicrobial agent selenium can be covalently attached to the surfaces of a dressing, prolonging its effectiveness. We examined the effectiveness of an organoselenium coating on cellulose discs in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. Colony biofilm assays revealed that cellulose discs coated with organoselenium completely inhibited P. aeruginosa and S. aureus biofilm formation. Scanning electron microscopy of the cellulose discs confirmed these results. Additionally, the coating on the cellulose discs was stable and effective after a week of incubation in phosphate-buffered saline. These results demonstrate that 0.2% selenium in a coating on cellulose discs effectively inhibits bacterial attachment and biofilm formation and that, unlike other antimicrobial agents, longer periods of exposure to an aqueous environment do not compromise the effectiveness of the coating.Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims (10), patients with traumatic wounds (33), people with diabetes (27), and patients with surgical wounds (29, 31). Two of the more common causative agents of wound infections are Staphylococcus aureus and Pseudomonas aeruginosa (10, 27, 29, 31, 33). Such infections often lead to fatality; the mortality rate among patients infected with P. aeruginosa ranges from 26% to 55% (9, 49), while mortality from S. aureus infection ranges from 19% to 38% (28, 46, 50). As opportunistic pathogens, S. aureus and P. aeruginosa cause few infections in healthy individuals but readily cause infection once host defenses are compromised, such as with the removal of skin from burns (10). S. aureus infection originates from the normal flora of either the patient or health care workers (48), while P. aeruginosa is acquired from the environment surrounding the patient (41). Once established on the skin, S. aureus and P. aeruginosa are then able to colonize the wound. Infection results if the organisms proliferate in the wound environment.Both P. aeruginosa and S. aureus often exist within burn wounds as biofilms (43, 47). A biofilm is presently defined as a sessile microbial community characterized by cells that are irreversibly attached either to a substratum or to each other (16). Biofilms, which can attain over 100 μm in thickness, are made up of multiple layers of bacteria in an exopolysaccharide matrix (12, 16, 42). Sauer et al. showed that P. aeruginosa biofilms form in distinct developmental stages: reversible attachment, irreversible attachment, two stages of maturation, and a dispersion phase (42). Clinically, biofilms present serious medical management problems through their association with different chronic infections (37). During vascular catheter-related infections and sepsis, biofilms serve as a reservoir of bacteria from which planktonic cells detach and spread throughout the tissue and/or enter the circulatory system, resulting in bacteremia or septicemia (15). Factors specific to the bacterium may influence the formation of bacterial biofilms at different infection sites or surfaces. For example, during the initial attachment stage the flagellum, lipopolysaccharide, and possibly outer membrane proteins play a major role in bringing P. aeruginosa into proximity with the surface as well as mediating the interaction with the substratum (12). Using the murine model of thermal injury, we recently showed that P. aeruginosa forms a biofilm within the thermally injured tissues (43). Clinically, the surgeons debride the infected or dead tissues; however, a few microorganisms may remain on the tissue surface and reinitiate biofilm formation.Antibiotics, silver, or chitosan, attached to or embedded in gauze, have been shown to be efficacious in preventing wound infection (21, 24, 26, 36). However, the resistance of P. aeruginosa and S. aureus to available antibiotics severely limits the choices for antibiotic treatment (13, 40). Additionally, silver compounds, such as silver nitrate and silver sulfadiazine, leaching from dressings are toxic to human fibroblasts even at low concentrations (20, 25). Thus, effective alternative antimicrobial agents that contact the thermally injured/infected tissues and prevent the development of bacterial biofilms are required. Previous studies have shown that selenium (Se) can be covalently bound to a solid matrix and retain its ability to catalyze the formation of superoxide radicals (O2·−) (30). These superoxide radicals inhibit bacterial attachment to the solid surface (30). In this study, we examined the ability of a newly synthesized organoselenium-methacrylate polymer (Se-MAP) to block biofilm formation by both S. aureus and P. aeruginosa. These bacteria were chosen since they cause a major share of wound infections and because drug-resistant forms of these bacteria have become a serious problem in the treatment and management of these wound infections (6, 13, 17, 18, 38). Results of the study show that 0.2% (wt/wt) Se in Se-MAP covalently attached to cellulose discs inhibited P. aeruginosa and S. aureus biofilm formation. This could lead to the development of a selenium-based antimicrobial coating for cotton materials that will prevent the bacterial attachment and colonization that can ultimately lead to bacterial biofilm formation during chronic infections.  相似文献   

5.
6.
7.
8.
9.
A survey of chromosomal variation in the ST239 clonal group of methicillin-resistant Staphylococcus aureus (MRSA) revealed a novel genetic element, ICE6013. The element is 13,354 bp in length, excluding a 6,551-bp Tn552 insertion. ICE6013 is flanked by 3-bp direct repeats and is demarcated by 8-bp imperfect inverted repeats. The element was present in 6 of 15 genome-sequenced S. aureus strains, and it was detected using genetic markers in 19 of 44 diverse MRSA and methicillin-susceptible strains and in all 111 ST239 strains tested. Low integration site specificity was discerned. Multiple chromosomal copies and the presence of extrachromosomal circular forms of ICE6013 were detected in various strains. The circular forms included 3-bp coupling sequences, located between the 8-bp ends of the element, that corresponded to the 3-bp direct repeats flanking the chromosomal forms. ICE6013 is predicted to encode 15 open reading frames, including an IS30-like DDE transposase in place of a Tyr/Ser recombinase and homologs of gram-positive bacterial conjugation components. Further sequence analyses indicated that ICE6013 is more closely related to ICEBs1 from Bacillus subtilis than to the only other potential integrative conjugative element known from S. aureus, Tn5801. Evidence of recombination between ICE6013 elements is also presented. In summary, ICE6013 is the first member of a new family of active, integrative genetic elements that are widely dispersed within S. aureus strains.ST239 is a globally distributed clonal group of methicillin-resistant Staphylococcus aureus (MRSA). Currently, ST239 is a major cause of MRSA infections in Asian hospitals (5, 18, 25, 37, 45, 64, 74). Pulsed-field gel electrophoresis has detected extensive chromosomal variation in local ST239 populations (3, 24, 52, 72). As ST239 has geographically spread and diversified, its variants have been given more than a dozen different names (20, 22, 24, 25, 49, 52, 61, 67, 68, 73), which reflects their clinical significance in various locales. The molecular basis for the ecological success of ST239 is unclear, but virulence-associated traits such as enhanced biofilm development and epidemiological characteristics such as a propensity to cause device-associated bacteremia and pulmonary infections have been highlighted (3, 19, 27, 54).Multilocus genetic investigations of the ST239 chromosome revealed that it is a hybrid with estimated parental contributions of approximately 20% and 80% from distantly related ST30- and ST8-like parents, respectively (58). Unusual for naturally isolated bacteria was the finding that these parental contributions were large chromosomal replacements rather than a patchwork of localized recombinations. It was postulated that conjugation might be responsible for the natural transfer of hundreds of kilobases of contiguous chromosomal DNA that resulted in ST239 (58). Recent genomic investigations have presented evidence that large chromosomal replacements also occur within Streptococcus agalactiae strains and that they can be mimicked with laboratory conjugation experiments (12). Importantly, conjugative transfer frequencies in S. agalactiae were found to be highest near three genomic islands (12), two of which were identified as being integrative conjugative elements (ICEs) (13).ICEs and conjugative transposons are synonyms and refer to genetic elements that are maintained by integration into a replicon and are transmitted by self-encoded conjugation functions (56). ICEs abound in the genomes of S. agalactiae (11), but only one potential ICE has been identified in staphylococci to date: Tn5801 was discovered through the genomic sequencing of S. aureus strain Mu50 (46). Tn5801 is most similar to a truncated genetic element, CW459tet(M), from Clostridium perfringens (57). Both Tn5801 and CW459tet(M) have Tyr recombinases, regulatory genes, and tetM modules that are similar to those of the prototypical gram-positive conjugative transposon, Tn916. Moreover, both Tn5801 and CW459tet(M) integrate into the same locus, guaA, at a nearly identical 11-bp sequence. Although the conjugative transfer module of CW459tet(M) is deleted (57), the conjugative transfer module of Tn5801 is similar to that of Tn916.We suspected that ST239 strains might carry novel accessory genes that contribute to their chromosomal variation and ecological success. To explore this possibility, we conducted a survey of chromosomal variation in ST239 using a PCR scanning approach. We report the discovery and partial characterization of a novel genetic element, ICE6013, that resulted from the survey.  相似文献   

10.
11.
Extracellular DNA (eDNA) is produced by several bacterial species and appears to contribute to biofilm development and cell-cell adhesion. We present data showing that the oral commensals Streptococcus sanguinis and Streptococcus gordonii release DNA in a process induced by pyruvate oxidase-dependent production of hydrogen peroxide (H2O2). Surprisingly, S. sanguinis and S. gordonii cell integrity appears unaffected by conditions that cause autolysis in other eDNA-producing bacteria. Exogenous H2O2 causes release of DNA from S. sanguinis and S. gordonii but does not result in obvious lysis of cells. Under DNA-releasing conditions, cell walls appear functionally intact and ribosomes are retained over time. During DNA release, intracellular RNA and ATP are not coreleased. Hence, the release mechanism appears to be highly specific for DNA. Release of DNA without detectable autolysis is suggested to be an adaptation to the competitive oral biofilm environment, where autolysis could create open spaces for competitors to invade. Since eDNA promotes cell-to-cell adhesion, release appears to support oral biofilm formation and facilitates exchange of genetic material among competent strains.The release of bacterial DNA into the environment is of recent interest since this polymer is now recognized to stabilize cell-to-cell adherence and biofilm architecture (1, 35, 37). Treatment of extracellular DNA (eDNA) with DNase results in reduced intercellular stickiness, consistent with an adhesive function for eDNA. Furthermore, eDNA from Neisseria meningitis appears to have sufficient structural integrity to transform competent strains (11), indicating chromosomal origin. Since the abundance of eDNA is influenced by growth conditions, DNA release can also be regulated (40).DNA release is typically a consequence of cell lysis. Linked to DNA release, genetic transformation is the natural ability of competent bacterial species to take up DNA from the environment (13, 34, 42). During competence development, Streptococcus pneumoniae DNA is released by lysis of a subpopulation of cells (30, 42). Cell lysis and DNA release are controlled in a cell density-dependent signal transduction process. The S. pneumoniae comX regulon, carrying late competence genes, also includes the murein hydrolase genes lytA and cbpD (19, 42). Murein hydrolases digest structural components of the peptidoglycan, contributing to remodeling, recycling, and daughter cell separation. Furthermore, murein hydrolases trigger autolytic cell wall digestion, leading to release of DNA and other cellular content into the environment (36). The autolysis of bacterial cells as part of a regulated death program seems to be an important source for eDNA in diverse species, including Staphylococcus aureus (4, 36, 37), Staphylococcus epidermidis (35), Enterococcus faecalis (44), and Pseudomonas aeruginosa (1). In these species, the eDNA contributes to biofilm formation as a component of the extracellular biofilm matrix (35, 37, 44).Unlike for cell lysis-dependent release, the oral streptococci appear to induce eDNA release by a novel mechanism. In dual-species cultures, the oral commensals Streptococcus sanguinis and Streptococcus gordonii release eDNA in a manner dependent on pyruvate oxidase (Pox) generation of hydrogen peroxide (H2O2) under the control of ambient oxygen (23). In this report, we now provide direct evidence of selective H2O2-induced eDNA release by these oral commensal streptococci.  相似文献   

12.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

13.
14.
During recent years, the animal-associated methicillin-resistant Staphylococcus aureus clone ST398 has extensively been studied. The DNA of these isolates turned out to be refractory to SmaI restriction, and consequently, SmaI is unsuitable for subtyping this clone by standard pulsed-field gel electrophoresis (PFGE). Very recently, ST398 DNA was shown to be digested by Cfr9I, a neoschizomer of SmaI. In the present study, we employed Cfr9I PFGE on 100 German and 5 Dutch ST398 isolates and compared their PFGE profiles, protein A gene variable repeat regions (spa types), and types of the staphylococcal cassette chromosome mec (SCCmec). The isolates (from healthy carrier pigs, clinical samples from pigs, dust from farms, milk, and meat) were assigned to 35 profiles, which were correlated to the SCCmec type. A dendrogram with the Cfr9I patterns assigned all profiles to two clusters. Cluster A grouped nearly all isolates with SCCmec type V, and cluster B comprised all SCCmec type IVa and V* (a type V variant first identified as III) carriers plus one isolate with SCCmec type V. Both clusters also grouped methicillin-susceptible S. aureus isolates. The association of the majority of isolates with SCCmec type V in one large cluster indicated the presence of a successful subclone within the clonal complex CC398 from pigs, which has diversified. In general, the combination of Cfr9I PFGE with spa and SCCmec typing demonstrated the heterogeneity of the series analyzed and can be further used for outbreak investigations and traceability studies of the MRSA ST398 emerging clone.Methicillin-resistant Staphylococcus aureus (MRSA) strains are an important cause of hospital-acquired infections worldwide (8). However, MRSA strains are not confined to health care settings, and during the last 10 years community-acquired MRSA has increasingly been reported (8). In 2003, a clone of MRSA associated with pig farming and not related to the traditional hospital- and community-acquired MRSA emerged in the Netherlands (37), where it now amounts to >30% of human MRSA cases (16). This clone has also been detected in healthy and sick animals, in food of animal origin, and in humans from other European countries, Canada, the United States, the Dominican Republic, and China (5, 7, 31, 38, 39). This emerging MRSA clone belongs to the multilocus sequence type ST398, which includes different spa types (mainly t011, t034, and t108). The majority of the ST398 isolates reported are MRSA, although methicillin-susceptible (MSSA) strains have been described as well (15, 34). Resistance to methicillin and other β-lactam antibiotics is caused by the mecA gene, which is located on a mobile genetic element, the staphylococcal cassette chromosome mec (SCCmec). The SCCmec cassette consists of the mec gene complex, the ccr gene complex, and the junkyard regions. Based on the variability and combinations of these genetic elements, several types of SCCmec and several variants of the types have been described (9). Three SCCmec types (III, IVa, and V) were identified in ST398 isolates (25). However, recent investigations have shown that some ST398 isolates typed as SCCmec type III using the method of Zhang et al. (40) proved to be type V after further sequencing (21, 35).For typing S. aureus, pulsed-field gel electrophoresis (PFGE) of the whole genome by macrorestriction with the SmaI endonuclease is still considered as the “gold standard” (26). However, the isolates of the ST398 clone are nontypeable (NT) by PFGE using SmaI (3, 4). Consequently, comparison between these isolates and the typeable ones from humans and animals is not possible. The nontypeability is due to the action of a novel C5-cytosine methyltransferase which modifies the consensus sequence CmCNGG at the second cytosine (3, 4). Other enzymes with a different recognition sequence from SmaI have been used for PFGE typing of the ST398 clone, including EagI and ApaI (22, 28, 31, 38), but the patterns obtained cannot be compared to S. aureus patterns generated with SmaI. XmaI, a neoschizomer of SmaI that recognizes the same sequence cutting at a different position, only generates partial digestions (3, 4). Recently, the use of Cfr9I, another neoschizomer of SmaI whose activity is not reduced on ST398 methylated DNA, has been recommended. This enzyme had been successfully used for typing SmaI NT macrolide-resistant Streptococcus pyogenes isolates (6, 30), and now it is being applied for typing ST398 isolates, i.e., from human origin (5, 11, 36) and, to a lesser extent, from animals (3, 36). The aim of this study was to characterize a large collection of recent ST398 isolates by Cfr9I PFGE as well as other methods (spa typing, multilocus sequence typing [MLST], and SCCmec typing). Most of them were recovered in Germany from different sources, including animals and foods.  相似文献   

15.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

16.
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.Cronobacter strains were originally described as Enterobacter sakazakii (12), but they are now known to comprise a novel genus consisting of six separate genomospecies (20, 21). These opportunistic pathogens are ubiquitous in the environment and various types of food and are occasionally found in the normal human flora (11, 12, 16, 32, 47). Based on case reports, Cronobacter infections in adults are generally less severe than Cronobacter infections in newborn infants, with which a high fatality rate is associated (24).The ability to detect Cronobacter and trace possible sources of infection is essential as a means of limiting the impact of these organisms on neonatal health and maintaining consumer confidence in powdered infant formula (PIF). Conventional methods, involving isolation of individual colonies followed by biochemical identification, are more time-consuming than molecular methods, and the reliability of some currently proposed culture-based methods has been questioned (28). Recently, several PCR-based techniques have been described (23, 26, 28-31, 38). These techniques are reported to be efficient even when low levels of Cronobacter cells are found in a sample (0.36 to 66 CFU/100 g). However, PCR requires DNA extraction and does not allow direct, in situ visualization of the bacterium in a sample.Fluorescence in situ hybridization (FISH) is a method that is commonly used for bacterial identification and localization in samples. This method is based on specific binding of nucleic acid probes to particular DNA or RNA target regions (1, 2). rRNA has been regarded as the most suitable target for bacterial FISH, allowing differentiation of potentially viable cells. Traditionally, FISH methods are based on the use of conventional DNA oligonucleotide probes, and a commercial system, VIT-E sakazakii (Vermicon A.G., Munich, Germany), has been developed based on this technology (25). However, a recently developed synthetic DNA analogue, peptide nucleic acid (PNA), has been shown to provide improved hybridization performance compared to DNA probes, making FISH procedures easier and more efficient (41). Taking advantage of the PNA properties, FISH using PNA has been successfully used for detection of several clinically relevant microorganisms (5, 15, 17, 27, 34-36).  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号