首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellulose resource has got much attention as a promising replacement of fossil fuel. The hydrolysis of cellulose is the key step to chemical product and liquid transportation fuel. In this paper a serials of chloride, acetate, and formate based ionic liquids were used as solvents to dissolve cellulose. The cellulose regenerated from ILs was characterized by FTIR and X-ray powder diffraction. From the characterization and analysis, it was found that the original close and compact structure has changed a lot. After enzymatic hydrolysis, different kinds of ionic liquids (ILs) have different yields of the reducing sugar (TRS). They are 100%, 90.72%, and 88.92% from 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), 1-butyl-3-methylimidazolium formate ([BMIM][HCOO]) respectively after enzymatic hydrolysis at 50 °C for 5 h. The results indicated that the yields and the hydrolysis rates were improved apparently after ILs pretreatment comparing with the untreated substrates.  相似文献   

2.
《Process Biochemistry》2014,49(7):1144-1151
Ionic liquids (ILs) have been widely used as alternative solvents for biomass pretreatment, however, efficient methods that enable economically use of ILs at large scale have not been established. In this study, a new method in which ILs and polar organic solvents (ILs/co-solvent systems) was proposed for efficient pretreatment of lignocellulosic materials. The combination use of appropriate ILs and organic co-solvents can significantly enhance the solubility of lignocellulose due to the lower viscosity of ILs/co-solvent mixture as compared to those of pure ILs while the hydrogen bond basicity was maintained. In addition, the solubility of lignocellulosic materials in ILs/co-solvent system was found to be correlated with the Kamlet-Taft solvent parameters. Moreover, the use of microwave heating also enhances the efficiency of lignocellulose pretreatment. For example, the microwave-assisted [Emim][OAc]-DMSO (1:1 volume ratio) treated-rice straw could be hydrolyzed at least 22 times faster than that of untreated-rice straw by cellulase from Trichoderma reesei. This enhancement was attributed by several factors including more efficient lignin extraction, less crystalline cellulose and lower residual ILs in treated-rice straw. The produced sugars can be effectively fermented by Pichia stipitis for ethanol production. Moreover, [Emim][OAc]-DMSO mixture could be reused at least 5 times without significantly decrease in effectiveness demonstrated that the use of ILs/co-solvent was potential alternative method for large-scale biomass pretreatment.  相似文献   

3.
The potential of 1-buthyl-3-methylpyridinium chloride, [Bmpy][Cl], as a pretreatment solvent for lignocellulosic biomasses, Bagasse and Eucalyptus, was investigated. The yields of regenerated biomasses ranged between 35% and 96%, and varied according to the pretreatment time, type of ionic liquid (IL) and biomass. The pretreatment of the biomass with [Bmpy][Cl] resulted in up to 8-fold increase in the cellulose conversion when compared with the untreated biomass. For a short pretreatment period (i.e., 10 min), [Bmpy][Cl] showed better performance than 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) with respect to the initial enzymatic saccharification rates. The increase in the reaction rates with [Emim][OAc] treatment was because of a reduction in the cellulose crystallinity. In contrast, a decrease in the crystallinity index was not clearly observed for the biomass pretreated with [Bmpy][Cl], and the enhancement of the enzymatic saccharification rates using this IL is presumably due to a reduction in the degree of polymerization of cellulose in the biomass.  相似文献   

4.
Aqueous ionic liquid pretreatment of straw   总被引:1,自引:0,他引:1  
Fu D  Mazza G 《Bioresource technology》2011,102(13):7008-7011
Pretreatment is the key to unlock the recalcitrance of lignocellulose for cellulosic biofuels production. Increasing attention has been drawn to ionic liquids (ILs) for pretreatment of lignocellulosic biomass, because this approach has several advantages over conventional methods. However, cost and energy-intensive recycling of the solvents are major constraints preventing ILs from commercial viability. In this work, a mixture of ionic liquid 1-ethyl-3-methylimidazolium acetate and water was demonstrated to be effective for pretreatment of lignocellulosic biomass, evidenced by the removal of lignin and a reduction in cellulose crystallinity. A higher fermentable sugar yield (81%) was obtained than for pure ionic liquid pretreatment under the same conditions (67%). Aqueous ionic liquid pretreatment has the advantages of less usage and easier recycling of ILs, and reduced viscosity.  相似文献   

5.
Wang K  Yang HY  Xu F  Sun RC 《Bioresource technology》2011,102(6):4524-4529
This study aims to establish an efficient pretreatment process using cellulose-dissolution solvents to enhance the enzymatic saccharification. LiOH/urea, LiCl/DMAc, concentrated phosphoric acid, ionic liquid (1-butyl-3-methylimidazolium chloride; [BMIM]Cl) and N-methyl-morpholine-N-oxide (NMMO) were selected as the cellulose dissolution agents. Except the cellulosic sample regenerated from LiCl/DMAc system, all the other treated samples exhibited lower cellulose crystallinity and degree of polymerization (DP), and consequently, exhibited a significant enhancement on enzymatic hydrolysis kinetic. Ionic liquid pretreatment offered unique advantages in the hydrolysis rate in the first 10 h, probably due to the extensively structural transformation of cellulose from the crystalline to the amorphous region. Meanwhile, the regenerated cellulose from concentrated phosphoric acid almost completely consisted of cellulose II, and achieved the highest saccharification yield.  相似文献   

6.
This study demonstrates for the first time that the enzymatic hydrolysis of cellulose is drastically enhanced following ultrasonic pretreatment of lignocellulosic material in ionic liquids (ILs) when compared to conventional thermal pretreatment. Five types of ILs, 1-buthyl-3-methylimidazolium chloride (BmimCl), 1-allyl-3-methylimidazolium chloride (AmimCl), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDep), and 1-ethyl-3-methylimidazolium acetate (EmimOAc) were tested. Cellulose saccharification ratio was about 20% for kenaf powders pretreated in BmimCl, AmimCl, EmimCl, and EmimDep by conventional heating at 110 °C for 120 min. Conversely, 60-95% of cellulose was hydrolyzed to glucose, subsequent to ultrasonic pretreatment in the same ILs for 120 min at 25 °C. The cellulose saccharification ratio of kenaf powder in EmimOAc was 86% after only 15 min of the ultrasonic pretreatment at 25 °C, compared to only 47% in that case of thermal pretreatment in the IL.  相似文献   

7.
This study aims to establish a cellulose pretreatment process using ionic liquids (ILs) for efficient enzymatic hydrolysis. The IL 1-ethyl-3-methyl imidazolium diethyl phosphate ([EMIM]DEP) was selected in view of its low viscous and the potential of accelerating enzymatic hydrolysis, and it could be recyclable. The yield of reducing sugars from wheat straw pretreated with this IL at 130 °C for 30 min reached 54.8% after being enzymatically hydrolyzed for 12 h. Wheat straw regenerated were hydrolyzed more easily than that treated with water. The fermentability of the hydrolyzates, obtained after enzymatic saccharification of the regenerated wheat straw, was evaluated using Saccharomyces cerevisiae. This microbe could ferment glucose efficiently, and the ethanol production was 0.43 g/g glucose within 26 h. In conclusion, the IL [EMIM]DEP shows promise as pretreatment solvent for wheat straw, although its cost should be reduced and in-depth exploration of this subject is needed.  相似文献   

8.
9.
The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariella volvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.  相似文献   

10.
A recombinant Trichoderma reesei cellulase was used for the ultrasound‐mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4–11.8 W cm?2 sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis‐Menten kinetics. The Michaelis‐Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm?2. Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm?2 power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1448–1457, 2013  相似文献   

11.
Although the effects of cellulose crystallinity and lignin content as two major structural features on enzymatic hydrolysis have been extensively studied, debates regarding their effects still exist. In this study, reconstitution of cellulose and lignin after 1‐ethyl‐3‐methylimidazolium acetate ([C2mim][OAc]) pretreatment was proposed as a new method to study their effects on enzymatic digestibility. Different mechanisms of lignin content for reduction of cellulose hydrolysis were found between the proposed method and the traditional method (mixing of cellulose and lignin). The results indicated that a slight change of the crystallinity of the reconstituted materials may play a minor role in the change of enzyme efficiency. In addition, the present study suggested that the lignin content does not significantly affect the digestibility of cellulose, whereas the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase plays an important role when an ionic liquid pretreatment of biomass was conducted. Biotechnol. Bioeng. 2013; 110: 729–736. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The enzymatic selective acylations of carbohydrates in ionic liquids were explored in both organic solvents and ionic liquids to see any significant differences in terms of reactivity and regioselectivity between two different classes of reaction media. Monoprotected glycosides (methyl-6-O-trityl-glucosides and galactosides) were chosen as the substrates with Candida rugosa lipase as an acylation enzyme. Two organic solvents, THF and chloroform, and two ionic liquids, [BMIM]+PF6 ([BMIM]+ = 1-butyl-3-methylimidazolium) and [MOEMIM]+PF6 ([MOEMIM]+ = 1-methoxyethyl-3-methylimidazolium), were employed as reaction media. The enzymatic reactions were performed in the presence of vinyl acetate at room temperature. It was observed that the reactions in ionic liquids took place more rapidly and more selectively than those in conventional organic solvents.  相似文献   

13.
Two kinds of alkylimidazolium salts containing dimethyl phosphate or diethyl phosphate were obtained as room temperature ionic liquids synthesized by one step, and both of them have the ability to dissolve untreated cellulose. Especially, 1-ethyl-3-methylimidazolium diethylphosphonate ([EMIM]DEP) could obtain 4 wt% cellulose solution within 10 min under 90. The effects of dissolution temperature on cellulose dissolution time and degree of polymerization were investigated. As dissolution temperature increased, dissolution time was greatly reduced. Both the original and regenerated cellulose samples were characterized with wide-angle X-ray diffraction, thermogravimetric analysis and scanning electron micrograph. The results showed that the crystalline structure of cellulose was converted to cellulose II from cellulose I in native cellulose. It was also found that the regenerated cellulose had good thermal stability with [EMIM]DEP ionic liquid.  相似文献   

14.
The slow down in enzymatic hydrolysis of cellulose with conversion has often been attributed to declining reactivity of the substrate as the more easily reacted material is thought to be consumed preferentially. To better understand the cause of this phenomenon, the enzymatic reaction of the nearly pure cellulose in Avicel was interrupted over the course of nearly complete hydrolysis. Then, the solids were treated with proteinase to degrade the cellulase enzymes remaining on the solid surface, followed by proteinase inhibitors to inactive the proteinase and successive washing with water, 1.0 M NaCl solution, and water. Next, fresh cellulase and buffer were added to the solids to restart hydrolysis. The rate of cellulose hydrolysis, expressed as a percent of substrate remaining at that time, was approximately constant over a wide range of conversions for restart experiments but declined continually with conversion for uninterrupted hydrolysis. Furthermore, the cellulose hydrolysis rate per adsorbed enzyme was approximately constant for the restart procedure but declined with conversion when enzymes were left to react. Thus, the drop off in reaction rate for uninterrupted cellulose digestion by enzymes could not be attributed to changes in substrate reactivity, suggesting that other effects such as enzymes getting "stuck" or otherwise slowing down may be responsible.  相似文献   

15.
Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis   总被引:5,自引:0,他引:5  
Production of ethanol by bioconversion of lignocellulosic biomass has attracted much interest in recent years. However, the pretreatment process for increasing the enzymatic digestibility of cellulose has become a key step in commercialized production of cellulosic ethanol. During the last decades, many pretreatment processes have been developed for decreasing the biomass recalcitrance, but only a few of them seem to be promising. From the point of view for integrated utilization of lignocellulosic biomass, organosolv pretreatment provides a pathway for biorefining of biomass. This review presents the progress of organosolv pretreatment of lignocellulosic biomass in recent decades, especially on alcohol, organic acid, organic peracid and acetone pretreatments, and corresponding action mechanisms. Evaluation and prospect of organosolv pretreatment were performed. Finally, some recommendations for future investigation of this pretreatment method were given.  相似文献   

16.
17.
Loss of hemicellulose and inability to effectively decrystallize cellulose, result in low yield and high cost of sugars derived from biomass. In this work, dilute sulfuric acid pretreatment could easily remove most of hemicellulose as sugars. The sugars were successfully used for 2,3-butanediol production with relative high yield (36.1%). Then, the remained solid residue after acid-pretreatment was further pretreated by ionic liquid (IL) to decrease its crystallinity for subsequent enzymatic saccharification. The combination of dilute acid- and IL-pretreatments resulted in significant higher glucose yield (95.5%) in enzymatic saccharification, which was more effective than using dilute acid- or IL-pretreatment alone. This strategy seems a promising route to achieve high yield of sugars from both hemicellulose and cellulose for biorefinery.  相似文献   

18.
Preparation of chitin/cellulose composite gels and films with ionic liquids   总被引:1,自引:0,他引:1  
In this study, we performed preparation and characterizations of the chitin/cellulose composite gels and films using the two ionic liquids, 1-allyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium chloride. First, chitin and cellulose were dissolved in each appropriate ionic liquid. Then, the two liquids were mixed in the desired ratios at 100 °C to give the homogeneous mixtures. The gels were obtained by standing the mixtures for 4 days. On the other hand, the films were obtained by casting the mixtures on glass plates, followed by soaking in water and drying. The obtained gels and films were characterized by XRD and TGA measurements. The mechanical properties of the gels and films were evaluated under compressive and tensile modes, respectively.  相似文献   

19.
Expansin is a plant protein family that induces plant cell wall‐loosening and cellulose disruption without exerting cellulose‐hydrolytic activity. Expansin‐like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a β‐expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose‐binding and cellulose‐weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7‐fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non‐eukaryotic source. Biotechnol. Bioeng. 2009;102: 1342–1353. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号