首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 471 毫秒
1.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

2.
Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9), a recently identified coronavirus of novel Betacoronavirus subgroup D, from Leschenault''s rousette, was previously found to display marked sequence polymorphism among genomes of four strains. Among 10 bats with complete RNA-dependent RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes sequenced, three and two sequence clades for all three genes were codetected in two and five bats, respectively, suggesting the coexistence of two or three distinct genotypes of Ro-BatCoV HKU9 in the same bat. Complete genome sequencing of the distinct genotypes from two bats, using degenerate/genome-specific primers with overlapping sequences confirmed by specific PCR, supported the coexistence of at least two distinct genomes in each bat. Recombination analysis using eight Ro-BatCoV HKU9 genomes showed possible recombination events between strains from different bat individuals, which may have allowed for the generation of different genotypes. Western blot assays using recombinant N proteins of Ro-BatCoV HKU9, Betacoronavirus subgroup A (HCoV-HKU1), subgroup B (SARSr-Rh-BatCoV), and subgroup C (Ty-BatCoV HKU4 and Pi-BatCoV HKU5) coronaviruses were subgroup specific, supporting their classification as separate subgroups under Betacoronavirus. Antibodies were detected in 75 (43%) of 175 and 224 (64%) of 350 tested serum samples from Leschenault''s rousette bats by Ro-BatCoV HKU9 N-protein-based Western blot and enzyme immunoassays, respectively. This is the first report describing coinfection of different coronavirus genotypes in bats and coronavirus genotypes of diverse nucleotide variation in the same host. Such unique phenomena, and the unusual instability of ORF7a, are likely due to recombination which may have been facilitated by the dense roosting behavior and long foraging range of Leschenault''s rousette.Coronaviruses infect a wide variety of animals in which they can cause respiratory, enteric, hepatic, and neurological diseases of various severities. Based on genotypic and serological characterization, coronaviruses were traditionally classified into three distinct groups, groups 1, 2, and 3 (3, 27, 59). Recently, the Coronavirus Study Group of the International Committee for Taxonomy of Viruses has renamed the traditional group 1, 2, and 3 coronaviruses as Alphacoronavirus, Betacoronavirus, and Gammacoronavirus, respectively (http://talk.ictvonline.org/media/p/1230.aspx). Coronaviruses are known to have a high frequency of recombination as a result of their unique mechanism of viral replication (27). Such tendency for recombination and high mutation rates may allow them to adapt to new hosts and ecological niches (24, 47, 52).The severe acute respiratory syndrome (SARS) epidemic has boosted interest in the study of coronaviruses in humans and animals (21, 34, 38, 41, 54). In the past few years, there has been a dramatic increase in the number of newly described human and animal coronaviruses (2, 4, 5, 8-10, 15-20, 23, 25, 28, 30, 32, 35, 36, 39, 43, 45, 50, 51, 53, 56, 58). Two novel human coronaviruses, human coronavirus NL63 (HCoV-NL63) and human coronavirus HKU1 (HCoV-HKU1), belonging to Alphacoronavirus and Betacoronavirus, respectively, have been discovered, in addition to the human coronavirus OC43 (HCoV-OC43), human coronavirus 229E (HCoV-229E), and SARS coronavirus (SARS-CoV) (17, 29, 45, 53, 55). We have also previously described the discovery of a diversity of novel coronaviruses in wild bats and birds in China, including SARSr-Rh-BatCoV, belonging to Betacoronavirus subgroup B, from Chinese horseshoe bats (30, 48, 56). Among these novel coronaviruses, three avian coronaviruses were found to belong to a novel subgroup of Gammacoronavirus (Gammacoronavirus subgroup C), while three bat coronaviruses were found to belong to two novel subgroups of Betacoronavirus (Betacoronavirus subgroups C and D) (48, 50). Based on the presence of the huge diversity of coronaviruses in Alphacoronavirus and Betacoronavirus among various bat species, bats are likely the reservoir for the ancestor of these two coronavirus genera (47).During our genome analysis of these novel coronaviruses, one of them, Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9), belonging to Betacoronavirus subgroup D, which was identified in Leschenault''s rousette bats, was found to display marked nucleotide and amino acid sequence polymorphism among the four strains with complete genome sequences (50). In our study on HCoV-HKU1, it has been shown that such sequence polymorphisms may indicate the presence of different genotypes (52). By complete genome sequence analysis of the potentially different genotypes of HCoV-HKU1, we have demonstrated for the first time natural recombination in a human coronavirus, resulting in the generation of at least three genotypes (52). We have also recently shown that recombination between different strains of SARSr-Rh-BatCoV from different regions of China may have given rise to the emergence of civet SARSr-CoV (31). To investigate the presence of different genotypes of Ro-BatCoV HKU9, the complete RNA-dependent RNA polymerase (RdRp) (corresponding to nsp12), spike (S), and nucleocapsid (N) gene sequences of Ro-BatCoV HKU9 from 10 additional bats were determined. Since sequence analysis showed the possible coexistence of different genotypes in seven bat individuals, complete genome sequencing of these distinct genotypes from two bats was carried out to investigate for possible recombination events among the different genotypes. In addition, serological characterization of Ro-BatCoV HKU9 was also performed by Western blot and enzyme immunoassays using recombinant Ro-BatCoV HKU9 nucleocapsid proteins and recombinant nucleocapsid proteins of Betacoronavirus subgroup A, B, and C coronaviruses to determine possible cross-reactivity among the different Betacoronavirus subgroups and the seroepidemiology of Ro-BatCoV HKU9 in Leschenault''s rousette bats.  相似文献   

3.
Bacteria often infect their hosts from environmental sources, but little is known about how environmental and host-infecting populations are related. Here, phylogenetic clustering and diversity were investigated in a natural community of rhizobial bacteria from the genus Bradyrhizobium. These bacteria live in the soil and also form beneficial root nodule symbioses with legumes, including those in the genus Lotus. Two hundred eighty pure cultures of Bradyrhizobium bacteria were isolated and genotyped from wild hosts, including Lotus angustissimus, Lotus heermannii, Lotus micranthus, and Lotus strigosus. Bacteria were cultured directly from symbiotic nodules and from two microenvironments on the soil-root interface: root tips and mature (old) root surfaces. Bayesian phylogenies of Bradyrhizobium isolates were reconstructed using the internal transcribed spacer (ITS), and the structure of phylogenetic relatedness among bacteria was examined by host species and microenvironment. Inoculation assays were performed to confirm the nodulation status of a subset of isolates. Most recovered rhizobial genotypes were unique and found only in root surface communities, where little bacterial population genetic structure was detected among hosts. Conversely, most nodule isolates could be classified into several related, hyper-abundant genotypes that were phylogenetically clustered within host species. This pattern suggests that host infection provides ample rewards to symbiotic bacteria but that host specificity can strongly structure only a small subset of the rhizobial community.Symbiotic bacteria often encounter hosts from environmental sources (32, 48, 60), which leads to multipartite life histories including host-inhabiting and environmental stages. Research on host-associated bacteria, including pathogens and beneficial symbionts, has focused primarily on infection and proliferation in hosts, and key questions about the ecology and evolution of the free-living stages have remained unanswered. For instance, is host association ubiquitous within a bacterial lineage, or if not, do host-infecting genotypes represent a phylogenetically nonrandom subset? Assuming that host infection and free-living existence exert different selective pressures, do bacterial lineages diverge into specialists for these different lifestyles? Another set of questions addresses the degree to which bacteria associate with specific host partners. Do bacterial genotypes invariably associate with specific host lineages, and is such specificity controlled by one or both partners? Alternatively, is specificity simply a by-product of ecological cooccurrence among bacteria and hosts?Rhizobial bacteria comprise several distantly related proteobacterial lineages, most notably the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium (52), that have acquired the ability to form nodules on legumes and symbiotically fix nitrogen. Acquisition of nodulation and nitrogen fixation loci has likely occurred through repeated lateral transfer of symbiotic loci (13, 74). Thus, the term “rhizobia” identifies a suite of symbiotic traits in multiple genomic backgrounds rather than a taxonomic classification. When rhizobia infect legume hosts, they differentiate into specialized endosymbiotic cells called bacteroids, which reduce atmospheric nitrogen in exchange for photosynthates from the plant (35, 60). Rhizobial transmission among legume hosts is infectious. Rhizobia can spread among hosts through the soil (60), and maternal inheritance (through seeds) is unknown (11, 43, 55). Nodule formation on hosts is guided by reciprocal molecular signaling between bacteria and plant (5, 46, 58), and successful infection requires a compatible pairing of legume and rhizobial genotypes. While both host and symbiont genotypes can alter the outcome of rhizobial competition for adsorption (34) and nodulation (33, 39, 65) of legume roots, little is known about how this competition plays out in nature.Rhizobia can achieve reproductive success via multiple lifestyles (12), including living free in the soil (14, 44, 53, 62), on or near root surfaces (12, 18, 19, 51), or in legume nodules (60). Least is known about rhizobia in bulk soil (not penetrated by plant roots). While rhizobia can persist for years in soil without host legumes (12, 30, 61), it appears that growth is often negligible in bulk soil (4, 10, 14, 22, 25). Rhizobia can also proliferate in the rhizosphere (soil near the root zone) of legumes (4, 10, 18, 19, 22, 25, 51). Some rhizobia might specialize in rhizosphere growth and infect hosts only rarely (12, 14, 51), whereas other genotypes are clearly nonsymbiotic because they lack key genes (62) and must therefore persist in the soil. The best-understood rhizobial lifestyle is the root nodule symbiosis with legumes, which is thought to offer fitness rewards that are superior to life in the soil (12). After the initial infection, nodules grow and harbor increasing populations of bacteria until the nodules senesce and the rhizobia are released into the soil (11, 12, 38, 40, 55). However, rhizobial fitness in nodules is not guaranteed. Host species differ in the type of nodules they form, and this can determine the degree to which differentiated bacteroids can repopulate the soil (11, 12, 38, 59). Furthermore, some legumes can hinder the growth of nodules with ineffective rhizobia, thus punishing uncooperative symbionts (11, 27, 28, 56, 71).Here, we investigated the relationships between environmental and host-infecting populations of rhizobia. A main objective was to test the hypothesis that rhizobia exhibit specificity among host species as well as among host microenvironments, specifically symbiotic nodules, root surfaces, and root tips. We predicted that host infection and environmental existence exert different selective pressures on rhizobia, leading to divergent patterns of clustering, diversity, and abundance of rhizobial genotypes.  相似文献   

4.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

5.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

6.
7.
Paenibacillus larvae is the etiological agent of American foulbrood (AFB) in honeybees. Recently, different genotypes of P. larvae (ERIC I to ERIC IV) were defined, and it was shown that these genotypes differ inter alia in their virulence on the larval level. On the colony level, bees mitigate AFB through the hygienic behavior of nurse bees. Therefore, we investigated how the hygienic behavior shapes P. larvae virulence on the colony level. Our results indicate that P. larvae virulence on the larval level and that on the colony level are negatively correlated.American foulbrood (AFB) is among the economically most important honeybee diseases. The etiological agent of AFB is the gram-positive, spore-forming bacterium Paenibacillus larvae (9). The extremely tenacious spores are the infectious form of this organism. These spores drive disease transmission within colonies (11), as well as between colonies as soon as they end up in the honey stores of an infected colony (12).The species P. larvae can be subdivided into four different genotypes designated ERIC I to ERIC IV based on results from repetitive-element PCR (20) using enterobacterial repetitive intergenic consensus (ERIC) primers (9, 10), with P. larvae ERIC I and ERIC II being the two practically most important genotypes (1, 2, 9, 10, 13, 16). The four genotypes were shown previously to differ in phenotype, including virulence on the larval level (8, 9). While larvae infected with genotypes ERIC II to ERIC IV were killed within only 6 to 7 days, it took P. larvae ERIC I around 12 to 14 days to kill all infected individuals. Therefore, genotype ERIC I was considered to be less virulent and the other three genotypes were considered to be highly virulent (7-9) on the larval level.P. larvae is an obligately killing pathogen which must kill its host to be transmitted. The virulence of such an obligate killer is thought to be determined primarily by two factors, (i) the probability of infecting a host and (ii) the time to host death (6). The problem of ensuring a high enough probability of infecting the next host is solved for P. larvae by (i) the tenacious exospores, which remain infectious for over half a century (17) and, therefore, can wait for decades for the next host to pass by, and (ii) a high pathogen reproduction rate (23) and, thus, the production of an extremely high number of spores within each infected larva.For evaluating the second factor determining P. larvae virulence, the time to host death, it is important to consider the two levels of honeybee hosts, the level of the individual larva dying from AFB and the level of the colony succumbing to AFB.The virulence of P. larvae genotypes on the larval level has been analyzed recently (8, 9). We have now determined the colony-level virulence for the two most common and practically important (10, 16) genotypes of P. larvae, ERIC I and ERIC II, significantly differing in virulence on the larval level (8). We will discuss how the time to larval death relates to the time to colony death and how the hygienic response shapes P. larvae virulence.  相似文献   

8.
The highly conserved bacterial ybeY gene is a heat shock gene whose function is not fully understood. Previously, we showed that the YbeY protein is involved in protein synthesis, as Escherichia coli mutants with ybeY deleted exhibit severe translational defects in vivo. Here we show that the in vitro activity of the translation machinery of ybeY deletion mutants is significantly lower than that of the wild type. We also show that the lower efficiency of the translation machinery is due to impaired 30S small ribosomal subunits.Many heat shock proteins are chaperones and proteases that constitute the protein quality control system (4, 5, 13, 18). Recent studies demonstrated that beyond protein quality control, the heat shock response includes proteins implemented in the translation machinery (16, 17), such as FtsJ (2, 3) and Hsp15 (11).FtsJ catalyzes methylation of U2552 in 23S rRNA (3). This modification occurs during the final steps of 50S biogenesis and is important for the structural stability of the 50S subunit (2). ftsJ deletion mutants accumulate ribosomal subunits at the expense of polysomes (2). Consequently, crude ribosome extracts prepared from ftsJ deletion mutants are far less active than wild-type preparations (3). Hsp15 recognizes and binds with high affinity to the aberrant state of the 50S subunit in complex with peptidyl tRNA positioned at the A site (10), which is more frequent at high temperatures (10). It has been proposed that Hsp15 participates in releasing the bound peptide and thereby helps recycle the 50S subunit (8, 10). Thus, heat shock proteins play a significant role both in the biogenesis of ribosomes and in the translation process.YbeY is a 17-kDa heat shock protein, highly conserved among bacteria, that belongs to the UPF0054 family of metal-dependent hydrolases, suggesting that it may have a potential hydrolytic function (14, 21). In Aquifex aeolicus, analysis of YbeY structure homology showed similarity to eukaryotic extracellular proteinases such as collagenase and gelatinase. However, in vitro experiments could not detect collagenase, gelatinase, or other hydrolase activity in YbeY (14).Recently, we showed that ybeY deletion mutants exhibit severe translational defects manifested by a very low level of polysomes and accumulation of free ribosomes and ribosomal subunits, indicating that most ribosomes in the cell are not engaged in translation. This translational defect intensifies at elevated temperatures (42°C) and results in growth arrest (17).Here we present in vitro studies indicating that the activity of the translation machinery prepared from ybeY deletion mutants is lower than in the wild type. In addition, we show that this lower activity stems specifically from a defective 30S ribosomal subunit.  相似文献   

9.
10.
11.
12.
《Journal of bacteriology》2009,191(6):1951-1960
We have identified a clonal complex of Mycobacterium bovis present at high frequency in cattle in population samples from several sub-Saharan west-central African countries. This closely related group of bacteria is defined by a specific chromosomal deletion (RDAf1) and can be identified by the absence of spacer 30 in the standard spoligotype typing scheme. We have named this group of strains the African 1 (Af1) clonal complex and have defined the spoligotype signature of this clonal complex as being the same as the M. bovis BCG vaccine strain but with the deletion of spacer 30. Strains of the Af1 clonal complex were found at high frequency in population samples of M. bovis from cattle in Mali, Cameroon, Nigeria, and Chad, and using a combination of variable-number tandem repeat typing and spoligotyping, we show that the population of M. bovis in each of these countries is distinct, suggesting that the recent mixing of strains between countries is not common in this area of Africa. Strains with the Af1-specific deletion (RDAf1) were not identified in M. bovis isolates from Algeria, Burundi, Ethiopia, Madagascar, Mozambique, South Africa, Tanzania, and Uganda. Furthermore, the spoligotype signature of the Af1 clonal complex has not been identified in population samples of bovine tuberculosis from Europe, Iran, and South America. These observations suggest that the Af1 clonal complex is geographically localized, albeit to several African countries, and we suggest that the dominance of the clonal complex in this region is the result of an original introduction into cows naïve to bovine tuberculosis.Mycobacterium bovis causes bovine tuberculosis (TB), an important disease of domesticated cattle that has a major economic and health impact throughout the world (61, 64, 65). The pathogen is a member of the Mycobacterium tuberculosis complex, which includes many species and subspecies that cause similar pathologies in a variety of mammalian hosts. The most notable member of the complex is M. tuberculosis, the most important bacterial pathogen of humans. In contrast to M. tuberculosis, which is largely host restricted to humans, M. bovis is primarily maintained in bovids, in particular, domesticated cattle, although the pathogen can frequently be recovered from other mammals, including humans (61). Bovine TB is found in cattle throughout the world and has been reported on every continent where cattle are farmed (3).Bovine TB has been reduced or eliminated from domestic cattle in many developed countries by the application of a test-and-cull policy that removes infected cattle (3, 8, 16, 17, 61, 64, 65). However, in Africa, although bovine TB is known to be common in both cattle and wildlife, control policies have not been enforced in many countries due to cost implications, lack of capacity, and infrastructure limitations (8, 16, 17, 57). In 1998, Cosivi et al. reported of bovine TB, “Of all nations in Africa, only seven apply disease control measures as part of a test-and-slaughter policy and consider bovine TB a notifiable disease; the remaining 48 control the disease inadequately or not at all” (16). In the intervening years, the situation is not thought to have improved (8); however, preliminary surveys of bovine TB have been carried out in some African countries (4, 7, 12, 37, 44, 49, 53, 54, 56).The most common epidemiological molecular-typing method applied to strains of M. bovis is spoligotyping. This method identifies polymorphism in the presence of spacer units in the direct-repeat (DR) region in strains of the M. tuberculosis complex (36, 67). The DR is composed of multiple, virtually identical 36-bp regions interspersed with unique DNA spacer sequences of similar size (direct variant repeat [DVR] units). Spacer sequences are unique to the DR region, and copies are not located elsewhere in the chromosome (68). The DR region may contain over 60 DVR units; however, 43 of the spacer units were selected from the spacer sequences of the M. tuberculosis reference strain H37Rv and M. bovis BCG strain P3 and are used in the standard application of spoligotyping to strains of the M. tuberculosis complex (29, 36). The DR region is polymorphic because of the loss (deletion) of single or multiple spacers, and each spoligotype pattern from strains of M. bovis is given an identifier (http://www.Mbovis.org).Several studies of the DR regions in closely related strains of M. tuberculosis have concluded that the evolutionary trend for this region is primarily loss of single DVRs or multiple contiguous DVRs (22, 29, 68); duplication of DVR units or point mutations in spacer sequences were found to be rare. The loss of discrete units observed by Groenen et al. (29) led them to suggest that the mechanism for spacer loss was homologous recombination between repeat units. However, a study by Warren et al. (69) suggested that for strains of M. tuberculosis, insertion of IS6110 sequences into the DR region and recombination between adjacent IS6110 elements were more important mechanisms for the loss of spacer units.The population structure of the M. tuberculosis group of organisms is apparently highly clonal, without any transfer and recombination of chromosomal sequences between strains (15, 30, 60, 61). In a strictly clonal population, the loss by deletion of unique chromosomal DNA cannot be replaced by recombination from another strain, and the deleted region will act as a molecular marker for the strain and all its descendants. Deletions of specific chromosomal regions (regions of difference [RDs] or large sequence polymorphisms) have been very successful at identifying phylogenetic relationships in the M. tuberculosis complex (11, 25, 26, 35, 48, 50, 61, 62, 66). However, because the loss of spoligotype spacer sequences is so frequent, identical spoligotype patterns can occur independently in unrelated lineages (homoplasy), and therefore, the deletion of spoligotype spacers may be an unreliable indicator of phylogenetic relationship (61, 69).In samples of M. bovis strains from Cameroon, Nigeria, Chad, and Mali, spoligotyping was used to show that many of the strains had similar spoligotype patterns that lacked spacer 30, and it has been suggested that strains from these four countries are phylogenetically related (12, 18, 49, 53). We have extended the previous observations of spoligotype similarities between strains from these countries and confirmed the existence of a unique clonal complex of M. bovis, all descended from a single strain in which a specific deletion of chromosomal DNA occurred. We have named this clonal complex of M. bovis strains African 1 (Af1), and we show that this clonal complex is dominant in these four west-central African countries but rare in eastern and southern Africa. Extended genotyping, using variable-number tandem repeats (VNTR), of strains with the most common spoligotype patterns suggests that each of these four west-central African countries has a unique population structure. Evolutionary scenarios that may have led to the present day distribution of the Af1 clonal complex are discussed.  相似文献   

13.
Helicobacter pylori is the dominant member of the gastric microbiota and has been associated with an increased risk of gastric cancer and peptic ulcers in adults. H. pylori populations have migrated and diverged with human populations, and health effects vary. Here, we describe the whole genome of the cag-positive strain V225d, cultured from a Venezuelan Piaroa Amerindian subject. To gain insight into the evolution and host adaptation of this bacterium, we undertook comparative H. pylori genomic analyses. A robust multiprotein phylogenetic tree reflects the major human migration out of Africa, across Europe, through Asia, and into the New World, placing Amerindian H. pylori as a particularly close sister group to East Asian H. pylori. In contrast, phylogenetic analysis of the host-interactive genes vacA and cagA shows substantial divergence of Amerindian from Old World forms and indicates new genotypes (e.g., VacA m3) involving these loci. Despite deletions in CagA EPIYA and CRPIA domains, V225d stimulates interleukin-8 secretion and the hummingbird phenotype in AGS cells. However, following a 33-week passage in the mouse stomach, these phenotypes were lost in isolate V225-RE, which had a 15-kb deletion in the cag pathogenicity island that truncated CagA and eliminated some of the type IV secretion system genes. Thus, the unusual V225d cag architecture was fully functional via conserved elements, but the natural deletion of 13 cag pathogenicity island genes and the truncation of CagA impaired the ability to induce inflammation.Helicobacter pylori is a microaerophilic bacterium of the Epsilonproteobacteria that has colonized the stomach since early in human evolution (45) and diverged with ancient human migrations (24, 45, 92). Thus, several major H. pylori populations, such as hpAfrica1, hpEurope, hspEAsia, and hspAmerind, whose names indicate their original geographic associations (45, 51), have been defined. In particular, similarities between the hspAmerind and hspEAsia populations suggest that the first colonizers of the New World brought H. pylori with them (24, 28). With recent mixing of human groups, H. pylori populations are also mixing and competing, with an apparent dominance by the hpEurope population at least in Latin America (19).H. pylori usually does not cause illness, but colonization with strains bearing the cag (cytotoxin-associated gene) pathogenicity island (cag PAI) (3, 7, 25, 52, 57, 61, 63) is associated with an increased risk of noncardia gastric adenocarcinoma and peptic ulcer disease (56, 64). Nonetheless, a high prevalence of cag-positive H. pylori strains occurs concurrently with low gastric cancer rates in Africa (40) and some regions in Latin America, such as the Venezuelan savannas and Amazonas (29, 53). Moreover, clinical and epidemiological data provide evidence for an inverse relationship between H. pylori colonization and the prevalence of certain metabolic disorders, esophageal diseases, asthma and allergic disorders, and acute infectious diseases, as well as a direct relationship with improved nutritional status of rural children (3, 14, 34, 37, 49, 68). That the host interaction with an indigenous gastric microbe provides some health benefits to the host is not unexpected given the well-established role of gastrointestinal microflora in maintaining gastroenteric homeostasis (8).The most thoroughly studied H. pylori proteins that interact with human cells are CagA and VacA. CagA is an effector protein injected into gastric epithelial cells by a type IV secretion system encoded by the cag PAI (10, 12, 15, 83). VacA is initially secreted from the bacterial cell by an autotransporter mechanism (16). Both proteins have multiple effects on host cells. Inside the host cell, phosphorylation of CagA on EPIYA repeats in the phosphotyrosine (PY) region (73) induces cellular elongation known as the hummingbird phenotype (72). CagA may also induce secretion of interleukin-8 (IL-8) (11), a process commonly attributed to NF-κB, and disrupt the barrier function of the tight junctions in polarized epithelial cells, leading to a loss of adhesion (1, 5). Other motifs in the PY region promote phosphorylation-independent effects (79). In addition, cagA may be considered an oncogene (60), since transgenic expression of cagA in mice leads to gastric epithelial hyperplasia through aberrant epithelial cell signaling and gastric carcinogenesis (60, 62). In contrast, VacA is a multifunctional protein with several activities in epithelial and immune cells (16). VacA induces cell vacuolation (43), alters mitochondrial membrane permeability (27, 41, 90), and increases epithelial monolayer permeability. VacA also activates several signal transduction pathways that are important in immune and epithelial cells, including the mitogen-activated protein (MAP) kinase and p38/ATF-2-mediated signal pathways (9, 55).Genomic analysis provides insights into the evolution of H. pylori strains and their relation with their human hosts and may be useful for the development of diagnostic tools and novel therapies. To date, there are six published complete H. pylori genomes, mostly from the hpEurope population (see Table SA1 in the supplemental material). Here, we report the whole genome of a newly characterized hspAmerind strain, V225d, and assess its genetic structure in comparison to those of Old World H. pylori strains through a comprehensive multiprotein phylogenetic analysis, as well as through single-gene examination of cagA and vacA, revealing clues to the evolution and migration of this strain into the New World and the implications for human health. We also present the results of functional and genomic studies using gastric epithelial cells demonstrating that V225d can induce an inflammatory host response, an effect that was lost following passage through the mouse stomach.  相似文献   

14.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

15.
16.
Multilocus phylogenetic analysis of small-subunit (SSU) rRNA and actin from Cryptosporidium molnari clustered this species with the C. molnari-like genotype of an isolate from the guppy, although the two fish isolates seem to be distinct species. The analysis of available piscine genotypes provides some support for cladistic congruence of the genus Piscicryptosporidium, but additional piscine genotypes are needed.Recent reviews accept more than 20 valid cryptosporidium species (7, 20), and characterization of additional isolates is expanding this list rapidly (http://www.vetsci.usyd.edu.au/staff/JanSlapeta/icrypto/index.htm). In addition, numerous morphotypes or genotypes have been proposed whose taxonomic affiliation is unsettled due to incomplete characterization according to minimum consensus standards (5, 7, 24). Five species have been proposed for fish isolates (15), but only Cryptosporidium molnari and Cryptosporidium scophthalmi (2, 4) stand as valid species (20), although not without discussion (7). Fish cryptosporidia present some unique features, which have even led to the genus Piscicryptosporidium being proposed (13). However, lack of genetic support keeps this genus and several fish morphotypes as incertae sedis (12, 15, 24). Detailed biological data on C. molnari and C. scophthalmi have been previously presented (3, 18, 19), but no molecular characterization has yet been conducted, thus hampering species identification of other fish isolates (7, 24) and evaluation of their relationships within the genus (15). Ribosomal and actin gene data on an isolate from guppy fish (Poecilia reticulata) have been obtained, and preliminary analyses of these sequences indicated a basal position in the cryptosporidial tree (17). Although it was regarded as C. molnari-like, biological characterization of this isolate was limited. The purpose of this work was to provide the necessary C. molnari comparative genetic data and to clarify the relationship of available fish isolates in a phylogenetic context.  相似文献   

17.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

18.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

19.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

20.
The effects of nitrite and ammonium on cultivated methanotrophic bacteria were investigated. Methylomicrobium album ATCC 33003 outcompeted Methylocystis sp. strain ATCC 49242 in cultures with high nitrite levels, whereas cultures with high ammonium levels allowed Methylocystis sp. to compete more easily. M. album pure cultures and cocultures consumed nitrite and produced nitrous oxide, suggesting a connection between denitrification and nitrite tolerance.The application of ammonium-based fertilizers has been shown to immediately reduce the uptake of methane in a number of diverse ecological systems (3, 5, 7, 8, 11-13, 16, 27, 28), due likely to competitive inhibition of methane monooxygenase enzymes by ammonia and production of nitrite (1). Longer-term inhibition of methane uptake by ammonium has been attributed to changes in methanotrophic community composition, often favoring activity and/or growth of type I Gammaproteobacteria methanotrophs (i.e., Gammaproteobacteria methane-oxidizing bacteria [gamma-MOB]) over type II Alphaproteobacteria methanotrophs (alpha-MOB) (19-23, 25, 26, 30). It has been argued previously that gamma-MOB likely thrive in the presence of high N loads because they rapidly assimilate N and synthesize ribosomes whereas alpha-MOB thrive best under conditions of N limitation and low oxygen levels (10, 21, 23).Findings from studies with rice paddies indicate that N fertilization stimulates methane oxidation through ammonium acting as a nutrient, not as an inhibitor (2). Therefore, the actual effect of ammonium on growth and activity of methanotrophs depends largely on how much ammonia-N is used for assimilation versus cometabolism. Many methanotrophs can also oxidize ammonia into nitrite via hydroxylamine (24, 29). Nitrite was shown previously to inhibit methane consumption by cultivated methanotrophs and by organisms in soils through an uncharacterized mechanism (9, 17, 24), although nitrite inhibits purified formate dehydrogenase from Methylosinus trichosporium OB3b (15). Together, the data from these studies show that ammonium and nitrite have significant effects on methanotroph activity and community composition and reveal the complexity of ammonia as both a nutrient and a competitive inhibitor. The present study demonstrates the differential influences of high ammonium or nitrite loads on the competitive fitness of a gamma-MOB versus an alpha-MOB strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号