首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decomposition of organic matter from 36 soils in a long-term pot experiment   总被引:5,自引:0,他引:5  
Wadman  W.P.  de Haan  S. 《Plant and Soil》1997,189(2):289-301
The organic matter contents of thirty-six soils were measured annually for twenty years in a pot experiment. The soils originated mainly from arable land and varied in initial organic matter content, texture and pH. The soils were stored at an average air temperature of around 13 °C and every year each soil was mixed thoroughly. Throughout the experiment, soil moisture was kept between 50-70% of its water holding capacity. No organic matter was added during the experiment, so that gross soil organic matter decomposition could be assessed. Relative decomposition rates of soil organic matter decreased as time proceeded. Despite the wide range of soils studied, it was found that during the initial decades, the pattern of soil organic matter degradation was strongly correlated with the organic matter content of the soils at the start of the experiment. This means that during this period the time course of the organic matter content of the soils in our experiment can be estimated from the initial soil organic matter content alone.  相似文献   

2.
重金属污染对土壤有机质积累的影响   总被引:1,自引:0,他引:1  
采用田间采样分析与室内培养试验相结合的方法,研究了不同重金属污染土壤中有机质积累的差异及重金属污染强度对土壤有机质矿化动态变化的影响.结果表明:污染土壤中重金属的大量积累可减弱有机物质的矿化速率,增加土壤有机质的积累.土壤中颗粒态有机质及其占总有机碳的比例随重金属积累的增加而增加;而微生物生物量碳占总碳的比例却随土壤重金属污染水平的提高而下降.污染土壤中颗粒态有机质对重金属有显著的富集,这可能是影响土壤有机物质进一步矿化的原因之一.重金属污染可改变土壤有机质的矿化速率,影响土壤有机质的积累与分配.  相似文献   

3.
Many mine spoils present at the surface of reclamation sites in the Lower Lusatian mining district are carboniferous substrates, i.e. contain geogenic organic matter. Depending on its susceptibility to microbial degradation, geogenic organic matter might influence the establishment of a carbon requiring microflora in mine spoils. As geogenic organic matter contains substantial amounts of organic nitrogen it is also a potential source for plant available N. The objective of the present study was to quantify C and N mineralisation and microbial biomass in geogenic organic matter present at reclamation sites in Lower Lusatia. We also studied, whether these properties can be influenced by raising the originally low pH to near neutral conditions. In laboratory incubation studies, the rates of CO2 evolution and net N mineralisation were determined in geogenic organic matter and carboniferous mine spoil with and without addition of lime. At the same time, microbial biomass carbon was estimated. As a reference, soil organic matter originating from the humus layer of a 60-year-old Pinus sylvestris stand was used. As indicated by the initial rates of C mineralisation, geogenic carbon was microbially available but to a lower extent than soil organic carbon. During incubation, C mineralisation remained constant or tended to increase with time, depending on the origin of the sample, while it decreased in soil organic matter. Unlike in soil organic matter, in geogenic organic matter and carboniferous mine spoil, C mineralisation was not consistently promoted by lime addition. Prior to incubation, microbial biomass in geogenic organic matter and carboniferous mine spoil was about 10-fold lower than in soil organic matter and tended to increase with incubation time while it decreased in soil organic matter. Similar to C mineralisation, microbial biomass in geogenic organic matter increased after liming, while it declined in carboniferous mine spoil immediately after lime addition. Rates of net N mineralisation were very low in geogenic organic matter and carboniferous mine spoil regardless of the length of incubation and could not be enhanced by raising the pH. It was concluded, that in mine spoils where accumulation of soil organic matter has not yet occurred, geogenic organic matter can be favourable for the establishment of a heterotrophic microflora. However, in the short term, geogenic matter is no source for plant available N in mine spoils. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Soil samples from natural forests and adjacent farmland were analyzed to investigate the dynamics of soil organic matter of red soil in Southern, China. Based on the δ13C values and the content of soil organic matter, the data indicated that the turnover of soil organic matter under the virgin forest was slower than that under cultivation. Soil organic matter is fresh in coarse sand and oldest in fine silt and clay. Also, the soil light fraction contained the younger organic matter than soil heavy fraction and bulk soil. Deforestation has accelerated the decomposition rate of soil organic matter and reduced the proportion of active components in SOM and thus soil fertility.  相似文献   

5.
We report here the first comprehensive seasonal study of benthic microbial activity in an Antarctic coastal environment. Measurements were made from December 1990 to February 1992 of oxygen uptake and sulfate reduction by inshore coastal sediments at Signy Island, South Orkney Islands, Antarctica. From these measurements the rate of benthic mineralization of organic matter was calculated. In addition, both the deposition rate of organic matter to the bottom sediment and the organic carbon content of the bottom sediment were measured during the same period. Organic matter input to the sediment was small under winter ice cover, and the benthic respiratory activity and the organic content of the surface sediment declined during this period as available organic matter was depleted. On an annual basis, about 32% of benthic organic matter mineralization was anoxic, but the proportion of anoxic compared with oxic mineralization increased during the winter as organic matter was increasingly buried by the amphipod infauna. Fresh organic input occurred as the sea ice melted and ice algae biomass sedimented onto the bottom, and input was sustained during the spring after ice breakup by continued primary production in the water column. The benthic respiratory rate and benthic organic matter content correspondingly increased towards the end of winter with the input of this fresh organic matter. The rates of oxygen uptake during the southern summer (80 to 90 mmol of O2 m-2 day-1) were as high as those reported for other sediments at much higher environmental temperatures, and the annual mineralization of organic matter was equally high (12 mol of C m-2 year-1). Seasonal variations of benthic activity in this antarctic coastal sediment were regulated by the input and availability of organic matter and not by seasonal water temperature, which was relatively constant at between -1.8 and 0.5°C. We conclude that despite the low environmental temperature, organic matter degradation broadly balanced organic matter production, although there may be significant interrannual variations in the sources of the organic matter inputs.  相似文献   

6.
The organic matter reserves and the soil humus state are assessed in three types of landscapes of the middle taiga (Karelia). Peat soils are the main organic matter reservoir. Hence, the greater their area, the higher the organic matter reserves in a particular landscape. The organic matter stocks in the group of semihydromorphic and hydromorphic soils clearly correlate with the degree of their waterlogging. The distribution of organic matter reserves within these soils depends on the ratio between the areas of boggy forests and open mires. The forest supporting quality of the soil is related to the organic matter composition and parent rock (the properties of the soil mineral horizons) rather than to the organic matter stocks. The data obtained may be used for assessing the forest supporting qualities of the soils and the basis for estimating the carbon budget in the landscapes.  相似文献   

7.
Two organic matter horizons developed under a spruce forest and grass vegetation were chosen to demonstrate the impact of a different vegetation cover on the micromorphology, porous system and hydraulic properties of surface soils. Micromorphological studies showed that the decomposed organic material in the organic matter horizon under the grass vegetation was more compact compared to the decomposed organic material in the organic matter horizon under the spruce forest. The detected soil porous system in the organic matter horizon under the spruce forest consisted of two clusters of pores with different diameters that were highly connected within and between both clusters. The soil porous system in the organic matter horizon under the grass vegetation consisted of one cluster of pores with the larger diameters and isolated pores with the smaller diameter. The retention ability of the organic matter horizon under the grass vegetation was higher than the retention ability of the organic matter horizon under the spruce forest. Presented at the International Conference on Bioclimatology and Natural Hazards, Poľana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

8.
基于激光雷达数据的森林表层土壤机质空间格局反演   总被引:1,自引:0,他引:1  
森林土壤是陆地生态系统的主要碳库,其有机质含量是估算碳储量的基础数据,也是评价土壤碳汇功能的重要指标.利用2009年8月采集的凉水自然保护区激光雷达(LiDAR)数据和55块固定样地土壤有机质含量数据,结合偏最小二乘算法,反演森林表层土壤有机质的空间格局,提取并筛选出与土壤有机质分布相关的变量,分析并确定变量(强度、点数、高程、坡度和坡向)值与土壤有机质含量的相关关系,建立土壤有机质含量的预测模型并检验.结果表明:研究区域表层土壤有机质含量与强度、点数和高程3变量呈极显著相关(r分别为0.765、0.423和0.475);基于此3变量的预测模型对研究区域表层土壤有机质含量的预测结果可靠(精度83.3%,R2=0.725,RMSE=1.955).研究区林缘和郁闭度较小林分的表层土壤有机质含量<100 g·kg-1;大部分区域表层土壤有机质含量为I00~ 150 g·kg-1,少部分区域为150 ~318.4 g· kg-1.  相似文献   

9.
Biodegradation of ferrihydrite-associated organic matter   总被引:3,自引:0,他引:3  
The association of organic molecules with mineral surfaces is a major mechanism to stabilize soil organic matter against biodegradation. We performed microbial incubation experiments to quantify the mineralization of soil organic matter associated with ferrihydrite by adsorption and coprecipitation. Samples were produced using either water-extractable organic matter of a Podzol forest-floor layer (FFE) or a sulfonated lignin. Incubation was carried out with an inoculum extracted from the forest-floor layer under oxic conditions at pH 4.8 over 68 days. Our data show that the association with ferrihydrite stabilized the associated organic matter: the degradation of the polysaccharide-rich FFE was slowed down, while the degradation of lignin was inhibited. Since differences in the degradability of adsorbed and coprecipitated organic matter were small, we conclude that coprecipitation did not lead to a significant formation of microbial inaccessible organic matter domains in our experiments.  相似文献   

10.
The digestibility of dry matter, organic matter and energy, and the content of digested energy, were determined on 56 diets, including hay, haylage, silage and pellets, in balance trials with wethers. All diets were analysed for solubility of organic matter in KOH, total protein, crude fibre, N-free extract and digestible organic matter content determined in vitro (D value).The D value proved to be the most accurate in vitro method for predicting digestible energy value in vivo. Solubility of organic matter in KOH and crude-fibre content predicted the energy value of the diet with less accuracy.Regression equations are presented for predicting the organic matter digestibility and energy value of the diets from the results of laboratory analyses.  相似文献   

11.
An agriculturally-impacted stream in northern Idaho was examined over a two-year period to determine seasonal and longitudinal patterns of the storage and decomposition of particulate organic matter. Biomass of benthic organic matter (BOM) was considerably less than values reported in the literature for comparable, undisturbed streams. Coarse, fine, and total benthic particulate organic matter were not correlated with parameters pertaining to stream size (e.g., stream order), but were correlated with sample site and amount of litterfall. The association of BOM with site and litterfall suggests that storage of particulate organic matter is a function of local characteristics rather than stream size. Low biomass of stored organic matter is a response to the low input of terrestrially-derived organic matter resulting from removal of climax vegetation.Leaf packs of alder, Alnus sp., were placed in the stream seasonally for 30 and 60 d. While there were significant differences for months, there was no significant difference among sites for leaf packs exposed for 30 d. Significant differences were observed among both sites and months for leaf packs exposed for 60 d; however, differences among sites accounted for only 5% of the variance. The absence of differences in decomposition of organic matter along the gradient of Lapwai Creek, despite heterogeneity of the drainage basin and availability of organic matter, may be in response to the overall low biomass of stored benthic organic matter. This study demonstrates that agricultural activity can substantially influence instream heterotrophic processes through reduced availability of organic matter and can shape community structure and ecosystem dynamics of streams flowing through agricultural drainage basins.  相似文献   

12.
土地利用方式对土壤有机质的影响   总被引:56,自引:5,他引:56  
通过对地带性常绿阔叶林、杉木人工林、农田、竹林等不同土地利用方式下土壤有机质总量、活性有机质及其组分的研究,发现土地利用方式对土壤有机质和活性有机质各组分的影响差异显著,其中阔叶林含量最高,杉木人工林低于阔叶林,竹林和农田最低。这些差别主要是由于凋落物的数量、质量以及各种管理措施不同所致。  相似文献   

13.
贵州山区土壤中微生物担是能源物质碳流动的源与汇   总被引:7,自引:0,他引:7  
在传统的农业生态系统的研究中 ,主要精力放在营养物 (如N)上 ,认为它们是限制生产力的因素 ;而往往忽略了土壤中碳的重要性 ,认为收获不受C限制的影响。然而 ,碳循环中的有机碳的分解作用部分控制着出现在地表下和显露在地表上的农业过程[4]。土壤中所储存的有机质 ,其数量既反映土壤从植物残留物的输入所获得的有机质与微生物群落的能量和营养需求之间的平衡 ,又反映植物对营养物的需求与有机质分解作用之间的平衡。因此 ,土壤中碳的平衡能反映出有机质中能量物质的储存[5]。大部分由光合作用形成的碳 ,是通过地表下的生态系统来流动的[…  相似文献   

14.
森林土壤是陆地生态系统的主要碳库,其有机质含量是估算碳储量的基础数据,也是评价土壤碳汇功能的重要指标.利用2009年8月采集的凉水自然保护区激光雷达(LiDAR)数据和55块固定样地土壤有机质含量数据,结合偏最小二乘算法,反演森林表层土壤有机质的空间格局,提取并筛选出与土壤有机质分布相关的变量,分析并确定变量(强度、点数、高程、坡度和坡向)值与土壤有机质含量的相关关系,建立土壤有机质含量的预测模型并检验.结果表明: 研究区域表层土壤有机质含量与强度、点数和高程3变量呈极显著相关(r分别为0.765、0.423和0.475);基于此3变量的预测模型对研究区域表层土壤有机质含量的预测结果可靠(精度83.3%,R2=0.725,RMSE=1.955).研究区林缘和郁闭度较小林分的表层土壤有机质含量<100 g·kg-1;大部分区域表层土壤有机质含量为100~150 g·kg-1,少部分区域为150~318.4 g·kg-1.  相似文献   

15.
徐华林  金亮  蔡立哲  厉红梅  高阳  王勇军 《生态科学》2006,25(5):437-439,444
根据1999年1月至2002年10月在深圳湾福田潮滩A、D、E三个断面获得的大型底栖动物奇异稚齿虫(Paraprionospiopinnata)和有机质数据,分析了深圳湾福田潮滩奇异稚齿虫对有机质含量的效应特征。结果表明,深圳湾福田潮滩奇异稚齿虫有明显的季节变化,即3、4月密度高,形成全年的高峰期,9、10月密度低,形成全年低谷期。奇异稚齿虫密度随着有机质含量的增加逐渐降低,前者密度和生物量大小是:A>D>E,而有机质大小也是:A相似文献   

16.
武夷山不同海拔森林表层土壤轻组有机质特征   总被引:1,自引:1,他引:0  
土壤轻组有机质是土壤有机质的重要组分,研究轻组有机质在不同森林生态系统土壤中的变化规律对理解土壤有机质形成与转换具有重要意义。以福建省武夷山国家级自然保护区不同海拔的常绿阔叶林(海拔600 m)、针阔混交林(海拔1000 m)和针叶林(海拔1400 m)为研究对象,利用密度分组方法分离了表层(0-5 cm和5-10 cm)土壤轻组有机质,研究了不同海拔森林土壤轻组有机质特征及其影响因素。结果表明:针阔混交林表层土壤的轻组有机质含量大于针叶林和常绿阔叶林(P < 0.05),并且轻组有机碳的含量变化亦是如此(P < 0.05),而轻组有机氮的含量无显著差异(P > 0.05)。表层土壤对应土层的轻组C:N大于土壤C:N,针阔混交林轻组C:N和土壤C:N均大于其他林分类型。0-5 cm与5-10 cm土层针阔混交林的轻组有机碳、氮储量均大于针叶林和常绿阔叶林(P < 0.05),并且针阔混交林的轻组有机碳、氮储量所占土壤有机碳与总氮的比重均大于其余两种林分。0-10 cm土层针叶林土壤有机碳与总氮含量与储量最高,并随海拔降低而减小,但差异不显著(P > 0.05)。相关分析结果表明,轻组有机碳、氮储量与SOC、DOC、MBC和细根生物量具有显著相关关系(P < 0.05),而与年凋落物量无关(P > 0.05),说明地下细根可能是土壤轻组有机质的重要来源。因此,在未来气候和植被变化共同作用下,地下细根对土壤轻组有机质的形成可能具有不可忽视的作用。  相似文献   

17.
Exoenzymatic activities (aminopeptidase and b-glucosidase) and organic matter composition were investigated in June 1996 and February 1997 in the sediment of two areas of the Adriatic Sea differently influenced by the Po river. Protein, carbohydrate, and lipid concentrations were comparable to those reported in most productive systems. Sediment chlorophyll a and biopolymeric carbon concentrations in June were twice as high as in February, but highest exoenzymatic activities and organic matter turnover rates were observed in February (with aminopeptidase activities 10 times higher than in June). The accumulation of organic matter and lower protein and carbohydrate turnover rates observed in June were the result of a different biochemical composition of organic matter in the two sampling periods. In June, organic matter was characterized by a more refractory composition. The consequent reduction of available organic substrate was associated with a decrease in the exoenzymatic substrate affinity. Lower organic matter turnover rates were also observed in deeper sediment layers. In February, the freshwater plume was almost completely confined to the northern area, whereas in June it was extended to the southern area. The results suggest that river inputs influence the biochemical composition and distribution of the sediment organic matter and exoenzymatic activities in coastal marine sediments.  相似文献   

18.
Plant mycorrhizal associations influence the accumulation and persistence of soil organic matter and could therefore shape ecosystem biogeochemical responses to global changes that are altering forest composition. For instance, arbuscular mycorrhizal (AM) tree dominance is increasing in temperate forests, and ericoid mycorrhizal (ErM) shrubs can respond positively to canopy disturbances. Yet how shifts in the co-occurrence of trees and shrubs with different mycorrhizal associations will affect soil organic matter pools remains largely unknown. We examine the effects of ErM shrubs on soil carbon and nitrogen stocks and indicators of microbial activity at different depths across gradients of AM versus ectomycorrhizal (EcM) tree dominance in three temperate forest sites. We find that ErM shrubs strongly modulate tree mycorrhizal dominance effects. In surface soils, ErM shrubs increase particulate organic matter accumulation and weaken the positive relationship between soil organic matter stocks and indicators of microbial activity. These effects are strongest under AM trees that lack fungal symbionts that can degrade organic matter. In subsurface soil organic matter pools, by contrast, tree mycorrhizal dominance effects are stronger than those of ErM shrubs. Ectomycorrhizal tree dominance has a negative influence on particulate and mineral-associated soil organic matter pools, and these effects are stronger for nitrogen than for carbon stocks. Our findings suggest that increasing co-occurrence of ErM shrubs and AM trees will enhance particulate organic matter accumulation in surface soils by suppressing microbial activity while having little influence on mineral-associated organic matter in subsurface soils. Our study highlights the importance of considering interactions between co-occurring plant mycorrhizal types, as well as their depth-dependent effects, for projecting changes in soil carbon and nitrogen stocks in response to compositional shifts in temperate forests driven by disturbances and global change.  相似文献   

19.
Approximately half of the global annual production of wastewater is released untreated into aquatic environments, which results in worldwide organic matter pollution in urban rivers, especially in highly populated developing countries. Nonetheless, information on microbial community assembly and assembly-driving processes in organic matter–polluted urban rivers remains elusive. In this study, a field study based on water and sediment samples collected from 200 organic matter–polluted urban rivers of 82 cities in China and Indonesia is combined with laboratory water-sediment column experiments. Our findings demonstrate a unique microbiome in these urban rivers. Among the community assembly-regulating factors, both organic matter and geographic conditions play major roles in determining prokaryotic and eukaryotic community assemblies, especially regarding the critical role of organic matter in regulating taxonomic composition. Using a dissimilarity-overlap approach, we found universality in the dynamics of water and sediment community assembly in organic matter–polluted urban rivers, which is distinctively different from patterns in eutrophic and oligotrophic waters. The prokaryotic and eukaryotic communities are dominated by deterministic and stochastic processes, respectively. Interestingly, water prokaryotic communities showed a three-phase cyclic succession of the community assembly process before, during, and after organic matter pollution. Our study provides the first large-scale and comprehensive insight into the prokaryotic and eukaryotic community assembly in organic matter–polluted urban rivers and supports their future sustainable management.  相似文献   

20.
The investigation aimed to present mathematical models for describing the dynamic behavior of the dissolved organic matter removal and nitrification in the Aerated Submerged Bio-Film (ASBF) for a plug-flow reactor. Based on the experimental data from the batch system of the ASBF pilot plant, mathematical models for the plug-flow reactor were developed to predict dissolved organic matter and ammonia nitrogen removal rates as a function of heterotrophic and autotrophic bacteria populations, dissolved organic matter concentrations, ammonia nitrogen concentrations, dissolved oxygen concentrations, and temperature. The mathematical models for dissolved organic matter and ammonia nitrogen removal in ASBF include two differential equations reflecting heterotrophic and autotrophic bacteria populations, and a number of kinetic parameters. Consequently, the results present a better insight into the dynamics behavior of heterotrophic and autotrophic biofilm growth and their practical application to wastewater for dissolved organic matter and ammonia nitrogen removal process. The mathematical model for ammonia nitrogen and dissolved organic matter removals present good results for the plug-flow reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号