首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although no naturally infected sheep with bovine spongiform encephalopathy (BSE) has ever been discovered, it remains possible that BSE once infected the UK sheep population, has been transmitted between sheep, and is still present today. We constructed a mathematical model to assess the current maximum theoretical exposure to consumers from BSE-infected ovine material and to estimate the risk reduction that could be achieved by abattoir-based control options if BSE-infected sheep were ever found in the national flock. We predict that, if present, the exposure to consumers from a single BSE-infected sheep would be high: one sheep, close to the end of its incubation period, is likely to contribute 10-1000 times more infectious material than a fully infectious cow. Furthermore, 30% of this exposure comes from infectivity residing in lymphatic and peripheral tissue that cannot be completely removed from a carcass.We are 95% confident that throughout Great Britain, no more than four sheep flocks currently harbour an ongoing BSE epidemic. However, since the exposure from a single infected sheep is high, the annual human exposure from four 'typical' BSE-infected flocks could be considerable. Small reductions in exposure could be achieved by strategies based on tissue testing, a 12-month age restriction or expanded definitions of high-risk tissues. A six-month age restriction is likely to be more effective and genotype-based strategies the most effective.  相似文献   

2.
Vargas WA  Pontis HG  Salerno GL 《Planta》2007,226(6):1535-1545
It is well accepted that sucrose (Suc) metabolism is involved in responses to environmental stresses in many plant species. In the present study we showed that alkaline invertase (A-Inv) expression is up-regulated in wheat leaves after an osmotic stress or a low-temperature treatment. We demonstrated that the increase of total alkaline/neutral Inv activity in wheat leaves after a stress could be due to the induction of an A-Inv isoform. Also, we identified and functionally characterized the first wheat cDNA sequence that codes for an A-Inv. The wheat leaf full-length sequence encoded a protein 70% similar to a neutral Inv of Lolium temulentum; however, after functional characterization, it resulted to encode a protein that hydrolyzed Suc to hexoses with an optimum pH of 8, and, consequently, the encoding sequence was named Ta-A-Inv. By RT-PCR assays we demonstrated that Ta-A-Inv expression is induced in response to osmotic and cold stress in mature primary wheat leaves. We propose that Ta-A-Inv activity could play an important role associated with a more efficient cytosolic Suc hydrolysis during environmental stresses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Sun YC  Wen JL  Xu F  Sun RC 《Bioresource technology》2011,102(10):5947-5951
Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-d-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1 → 4)-linked d-xylopyranosyl residues, having ramifications of α-l-arabinofuranose and 4-O-methyl-d-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400 °C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions.  相似文献   

4.
An investigation on the properties of an alkaline protease secreted by Bacillus circulans BM15 strain isolated from a mangrove sediment sample was carried out in order to characterize the enzyme and to test its potency as a detergent additive. The protease was purified to apparent homogeneity by ammonium sulphate precipitation and was a 30-kDa protease as shown by SDS-PAGE and its proteolytic activity was detected by casein zymography. It had optimum activity at pH 7, was stable at alkaline pH range (7 to 11), had optimum temperature of activity 40°C and was stable up to a temperature of 55°C after incubation for one hour. Hg2+, Zn2+, Co2+, and Cu2+completely inhibited the enzyme activity, while Ca2+, Mg2+, K+ and Fe3+ were enhancing the same. The serine protease inhibitor PMSF and metal chelator EDTA inhibited the activity of this protease while the classic metalloprotease inhibitor 1, 10 phenanthroline did not show inhibition. The enzyme was stable in SDS, Triton-X-100 and H2 O2 as well as in various commercial detergents after incubation for one hour. The extracellular production of the enzyme, the pH and temperature stability and stability in presence of oxidants, surfactants and commercial detergents suggest its possible use as a detergent additive.  相似文献   

5.
可可西里是位于青海玉树藏族自治州的自然环境保护区,由于当地的恶劣气候特点,其土壤微生物多样性很少被研究.采用5种分离培养基对来源于可可西里的12个盐碱土壤样品进行选择性分离,共分离得到5株细菌.其中4株菌分别属于游动微菌属(Planomicrobium)、库克菌属(Kocuria)、气球菌属(Aerococcus)和芽...  相似文献   

6.
The detergent-compatible alkaline protease was produced from the bacterial strain Bacillus sp. APP-07 isolated from Laundromat soil of Solapur, Maharashtra, India. The culture was grown in 1000?ml capacity baffled flask with a working volume of 100?ml and incubated at 55?°C for 33?h on a rotary shaker. After incubation, alkaline protease was partially purified by the sequential method of acetone precipitation followed by nominal molecular weight limit (NMWL) cut-off ultrafiltration using 50?K and 10?K filters. Finally, Sephadex G-100 gel filtration chromatographic purification was performed to obtain 3.12 fold purified alkaline protease enzyme with a 66.67% final yield. The purified enzyme showed 31907.269 units (U) of enzyme activity containing 8741.718?U/mg of specific enzyme activity. The molecular weight of the enzyme was confirmed about 33.0?kDa (kDa) by the SDS-PAGE analysis. The purified enzyme was stable at higher pH and temperature range, with an optimum pH 10.5 and temperature 55?°C. The enzyme showed excellent stability and compatibility in various detergents, surfactants, bleach, and oxidizing agents. The enzyme activity enhanced in the presence of Ca2+, Cu2+, and surfactants, whereas; the phenylmethylsulphonyl fluoride (PMSF) and Diisopropyl fluorophosphate (DFP) completely inhibit the enzymatic activity, which pointed out that the enzyme affiliated to serine-centered metalloproteases family.In conclusion, the remarkable tolerance and stability of the enzyme explored the promising candidature for the several potential applications in the laundry detergents. The sustainability of the enzyme might serve several possible applications in the laundry detergents, leather industries, and other harsh industrial processes.  相似文献   

7.
产碱性磷酸酶乳杆菌的筛选鉴定、酶的纯化及特性   总被引:1,自引:1,他引:0  
【背景】碱性磷酸酶(alkaline phosphatase,ALP)是生物体内参与磷酸代谢的调控酶,不同物种的ALP性质与其生理功能有关,提纯后的ALP常用作工具酶,广泛应用于基因工程中,但目前关于乳酸菌中ALP的相关研究甚少。【目的】筛选出一株产ALP且具有潜在益生作用的乳杆菌,对该酶进行分离纯化,并对其性质进行探究,为今后益生菌的开发利用和ALP的工业化生产提供新的微生物资源。【方法】采集蒙古国4个地区的酸马奶样品,通过显色反应初筛和酶活检测复筛对产酶菌株进行筛选,经形态学观察、生理生化鉴定及16S rRNA基因序列同源性比较分析进行菌种鉴定。采用超声破碎法提取ALP,经硫酸铵沉淀、DEAE-52离子交换层析、Sephadex G-200凝胶过滤层析纯化该酶,SDS-PAGE电泳法检测其纯度。【结果】从78株乳酸菌中分离筛选出一株产ALP酶活性最高的乳杆菌(编号为Z23),16S rRNA基因序列长度为1 473 bp,鉴定结果表明为鼠李糖乳杆菌。纯化后的酶比活力为180.27 U/mg,纯化倍数为48.37,酶活回收率为17.05%,该酶亚基相对分子质量为46.7 kD。菌株所产ALP的最适温度为37℃,4℃时酶活最为稳定;最适pH为9.5,在pH 9.0-10.0之间,酶活稳定性可达90%以上;Mg2+和K+对ALP有明显激活作用,Ba2+和Cu2+在低浓度时对ALP有激活作用,高浓度时有抑制作用,Ca~(2+)、Zn~(2+)和EDTA对ALP有强烈的抑制作用。以不同浓度的p-NPP为底物,测得酶的Km值为3.42 mmol/L,Vmax值为1.24 mmol/(L·min)。【结论】本研究对蒙古国地区酸马奶中的益生菌资源有了更为明确的认知,为今后碱性磷酸酶产生菌的筛选和酶的应用开辟了新途径。  相似文献   

8.
Eight hemicellulosic fractions were obtained by sequential treatment of dewaxed barley straw with 0.1 M NaOH at 45 °C for 3 h, 0.25, 0.5, 1.0, 1.5, 2.0, and 3.0% H2O2 at 45 °C for 3 h at pH 11.5, and 10% KOH–1% Na2B4O7·10H2O at 28 °C for 15 h under continuous agitation. The yields of the fractions were 8.0, 3.1, 3.3, 3.3, 2.2, 2.0, 2.0, and 9.9%, respectively, of the initial amount of barley straw, corresponding to the dissolution of 21.6, 8.4, 8.9, 8.9, 5.9, 5.4, 5.4, and 26.7% of the original hemicelluloses. Meanwhile, the successive treatment also solubilized 29.1, 15.8, 14.6, 10.8, 4.5, 3.2, 2.7, and 3.7% of the original lignin, respectively. This sequential extraction together resulted in dissolution of 91.1% of the original hemicelluloses and 84.8% of the original lignin. The 0.1 M NaOH-soluble hemicellulosic fraction contained mainly xylose, glucose, and arabinose, 44.2, 15.7, and 15.2%, respectively, while the 10% KOH–1% Na2B4O7·10H2O-soluble fraction predominated in xylose, 75.0%. The six alkaline peroxide-soluble fractions were composed of 50.3–54.4% xylose, 14.7–16.9% arabinose, 6.8–10.7% glucose, 6.8–8.5% glucuronic acid or 4-O-methyl- -glucuronic acid, 0.4–1.5% mannose, and 0.3–1.2% rhamnose. All the hemicellulosic fractions contained substantial amounts of glucuronoarabinoxylans and noticeable quantities of β-glucans. In comparison, the six hemicellulosic fractions, isolated with alkaline peroxide, had much higher molecular weights (56,890–63,810 g mol−1) than those of the two hemicellulosic preparations (28,000–29,080 g mol−1), isolated with alkali in the absence of hydrogen peroxide. The thermal stability of the hemicelluloses increased with an increment of their molar mass.  相似文献   

9.
Proteases are the hydrolytic enzymes which hydrolyzes peptide bond between proteins with paramount applications in pharmaceutical and industrial sector. Therefore production of proteases with efficient characteristics of biotechnological interest from novel strain is significant. Hence, in this study, an alkaline serine protease produced by Bacillus cereus strain S8 (MTCC NO 11901) was purified and characterized. The alkaline protease was purified by ammonium sulfate precipitation (50%), ion exchange (DEAE-Cellulose) and gel filtration (Sephadex G-100) chromatographic techniques. As a result of this purification, a protein with specific activity of 300U/mg protein was obtained with purification fold 17.04 and recovery percentage of 34.6%. The molecular weight of the purified protease was determined using SDS-PAGE under non-reducing (71?kDa) and reducing conditions (35?kDa and 22?kDa). Zymogram analysis revealed that proteolytic activity was only associated with 22?kDa. These results indicate that existence of the enzyme as dimer in its native state. The molecular weight of the protease (22?kDa) was also determined by gel filtration (Sephadex G-200) chromatography and it was calculated as 21.8?kDa. The optimum activity of the protease was observed at pH 10.0 and temperature 70?°C with great stability towards pH and temperature with casein as a specific substrate. The enzyme was completely inhibited by PMSF and TLCK indicating that it is a serine protease of trypsin type. The enzyme exhibits a great stability towards organic solvents, oxidizing and bleaching agents and it is negatively influenced by Li2+ and Co2+ metal ions. The purified protein was further characterized by Matrix Assisted Laser Desorption Ionization/Mass Spectroscopy (MALDI/MS) analysis which reveals that total number of amino acids is 208 with isoelectric point 9.52.  相似文献   

10.
《Process Biochemistry》2014,49(6):955-962
An extracellular protease from a newly isolated seawater haloalkaliphilic bacterium, haloalkaliphilic bacteria Ve2-20-91 [HM047794], was purified and characterized. The enzyme is a monomer with a 37.2 kDa estimated molecular weight. It catalyzed reactions in the pH range 8–11 and performed optimally at pH 10. While maximal activity occurred at 50 °C, the temperature profile shifted from 50 to 80 °C in 1–3 M NaCl. The enzyme's thermal stability was probed using circular dichroism (CD) spectroscopy with NaCl at 50 and 70 °C. The changes in the enzyme's secondary structure were also analyzed using Fourier transform infrared spectroscopy (FTIR). The N-terminal amino acid sequence GKDGPPGLCGFFGCI exhibited low homology with other bacterial proteases, which highlights the enzyme's novelty. The enzyme was labile in anionic surfactant (1% w/v SDS) but showed stability in non-ionic surfactants (Tween 20, Tween 80 and Triton X-100 all 1% v/v), commercial detergents, and oxidizing and reducing agents. The enzyme's excellent stability in commercial detergents highlights its potential as a detergent additive.  相似文献   

11.
 Fourier transform infrared (FTIR) spectroscopy is used to compare the thermally induced conformational changes in horse, bovine and tuna ferricytochromes c in 50 mM phosphate/0.2 M KCl. Thermal titration in D2O at pD 7.0 of the amide II intensity of the buried peptide NH protons reveals tertiary structural transitions at 54  °C in horse and at 57  °C in bovine c. These transitions, which occur well before loss of secondary structure, are associated with the alkaline isomerization involving Met80 heme-ligand exchange. In tuna c, the amide-II-monitored alkaline isomerization occurs at 35  °C, followed by a second amide II transition at 50  °C revealing a hitherto unreported conformational change in this cytochrome. Amide II transitions at 50  °C (tuna) and 54  °C (horse) are also observed during the thermal titration of the CN-ligated cytochromes (where CN displaces the Met80 ligand), but a well-defined 35  °C amide II transition is absent from the titration curve of the CNadduct of tuna c. The different mechanisms suggested by the FTIR data for the alkaline isomerization of tuna and the mammalian cytochromes c are discussed. After the alkaline isomerization, loss of secondary structure and protein aggregation occur within a 5  °C range with T m values at 74  °C (bovine c), 70  °C (horse c) and 65  °C (tuna c), as monitored by changes in the amide I′ bands. The FTIR spectra were also used to compare the secondary structures of the ferricytochromes c at 25  °C. Curve fitting of the amide I (H2O) and amide I′ (D2O) bands reveals essentially identical secondary structure in horse and bovine c, whereas splitting of the α-helical absorption of tuna c indicates the presence of less-stable helical structures. CN adduct formation results in no FTIR-detectable changes in the secondary structures of either tuna or horse c, indicating that Met80 ligation does not influence the secondary structural elements in these cytochromes. The data provided here demonstrate for the first time that the selective thermal titration of the amide II intensity of buried peptide NH protons in D2O is a powerful tool in protein conformational analysis. Received: 1 April 1999 / Accepted: 24 August 1999  相似文献   

12.
A psychrotolerant Bacillus sp. from Antarctica produced an alkaline phosphatase in the culture supernatant. The strain showed 98.4% 16s rDNA sequence identity with Bacillus sphaericus. The 76 kDa protein was purified 11.1-fold showing alkaline phosphomonoesterase activity. Enzyme was optimally produced at 25 °C and pH 7.0. This cold active alkaline phosphatase is heat labile and gets completely inactivated at 60 °C in 50 min and is active in broad pH range.  相似文献   

13.
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40°C. The enzyme retained activity after incubation at pHs ranging from 8 to11 for 12 h at 37°C and 6 to 8 for 24 h at 37°C. It retained 80% of its activity after incubation at 30 to 70°C for 30 min and lost 50% of its activity after incubation for 15 min at 80°C. Noticeable activation of the enzyme is observed when Fe2+ ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu2+, Fe3+, Hg2+, and Zn2+ ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.  相似文献   

14.
A digestive protease from Spilosoma obliqua (Lepidoptera: Arctiidae) fifth instar larval guts was purified and characterized. The protease was purified using ammonium sulfate fractionation, ion-exchange chromatography, and hemoglobin-sepharose affinity chromatography. The purification procedure resulted in a 37-fold increase in the specific activity of the protease. Protease thus obtained was found to be electrophoretically pure under native and denaturing conditions. The purified protease had a molecular mass of 90 kDa as determined by gel filtration, and a pH optimum of 11.0. The purified protease optimally hydrolyzed casein at 50 degrees C. A Km of 2 x10(-6) M was obtained using BApNA as a substrate for the purified alkaline protease. The ability of S. obliqua protease and bovine trypsin to hydrolyze various synthetic substrates (BApNA, BAEE, and BAME), and the inhibition patterns of S. obliqua and bovine trypsin with "classical" trypsin inhibitors are also reported.  相似文献   

15.
The following fractions were obtained from the wall material of Gliocladium viride : F1 (27.5%), a glucan, containing xylose, mannose and galactose, coluble in 1 M NaOH at 20°C; F2 (6.7%), a β-glucan-chitin complex, solubilized with 1 M NaOH at 20°C from the previous residue left overnight at −20°C; F3 (8.1%), a glucan, containing mannose and galactose solubilized with 1 M NaOH at 70°C; and F4, the insoluble residue, a β-glucan-chitin complex similar to F2, amounting to 31.3% of the wall material.
F1 was extracted with distilled water. The soluble material (F1S) was a galactomannoglucan (54.7%) and the inscluble (F1P) a glucan (45.3%). Periodate oxidation revealed the presence of glycerol, erythritol, threitol, ribitol, arabitol, mannose, galactose and glucose in F1S, and glycerol and glucose as the main components in F1P. The fractions obtained when F1S was purified through Sepharose CL6B, were methylated.  相似文献   

16.
In this study, the extracellular thermostable alkaline protease out of A10 strain was purified 1.38-fold with 9.44% efficiency through the ammonium sulfate precipitation-dialysis and DE52 anion exchange chromatography methods. The molecular weight of the enzyme in question along with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was determined to be approximately 40.55?kDa, whereas the optimum pH and temperature ratings were identified as 9.0 and 70?°C, respectively. It was seen that the enzyme had remained stable between pH 7.5–10.5 range, protecting more than 90% of its activity in the wake of 1?h incubation at 60–70?°C. It was also observed that the enzyme enhanced its activity in the presence of Mg2+, Mn2+, K+, while Fe2+, Ni2+, Zn2+, Ag+?and Co2+? decreased the activity. Ca2+, however, did not cause any change in the activity. The enzyme was seen to have been totally inhibited by phenylmethylsulfonyl fluoride, therefore, proved to be a serine alkaline protease.  相似文献   

17.
18.
An obligatory alkalophilic Bacillus sp. P-2, which produced a thermostable alkaline protease was isolated by selective screening from water samples. Protease production at 30 °C in static conditions was highest (66 U/ml) when glucose (1% w/v) was used with combination of yeast extract and peptone (0.25% w/v, each), in the basal medium. Protease production by Bacillus sp. P-2 was suppressed up to 90% when inorganic nitrogen sources were supplemented in the production medium. Among the various agro-byproducts used in different growth systems (solid state, submerged fermentation and biphasic system), wheat bran was found to be the best in terms of maximum enhancement of protease yield as compared to rice bran and sunflower seed cake. The protease was optimally active at pH 9.6, retaining more than 80% of its activity in the pH range of 7–10. The optimum temperature for maximum protease activity was 90 °C. The enzyme was stable at 90 °C for more than 1h and retained 95 and 37% of its activity at 99 °C and 121 °C, respectively, after 1 h. The half-life of protease at 121 °C was 47 min.  相似文献   

19.
A psychrothermotolerant alkaline protease isolated from Bacillus pumilus MP27 with a molecular mass ∼53 kDa was isolated from Southern ocean water samples. It was partially purified by single step TPP with purity fold of 16.65. The enzyme was found to be widely stable within a range of temperature and pH, maintaining 52.25% of its activity at 50 °C and 92% at pH 12. The enzyme exhibited an exceptional activity along with tested detergents, showing 98% stability with SDS (10 mg/ml) and ̴ 99% stability with Tide detergent (7 mg/ml). Further, the alkaline protease gene of 1152 bp was successfully cloned in pGEM-T Easy vector in E. coli DH5α. The gene sequence was further translated, modeled and molecular dynamic simulation was performed. The modeled protein was highly unstable during the first 5 ns and therefore could not able to form bonds with the ligand after 1 ns of simulation.  相似文献   

20.
The tumor suppressor protein, p53 plays a crucial role in protecting genetic integrity. Once activated by diverse cell stresses, p53 reversibly activates downstream target genes to regulate cell cycle and apoptosis. However, few studies have investigated the effects of thermal stress in turbot, specifically the p53 signaling pathway. In this study, the rapid amplification of cDNA ends was used to obtain a full-length cDNA of the turbot p53 gene (Sm-p53) and perform bioinformatics analysis. The results showed that the cDNA of the Sm-p53 gene was 2928 bp in length, encoded a 381 amino acid protein, with a theoretical isoelectric point of 6.73. It was composed of a DNA binding and a tetramerization domain. Expression of Sm-p53 in different tissues was detected and quantified by qRT-PCR, and was highest in the liver. We also investigated the expression profiles of Sm-p53 in different tissue and TK cells after thermal stress. These result suggested that Sm-p53 plays a key role, and provides a theoretical basis for Sm-p53 changes in environmental stress responses in the turbot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号