首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
The structural precursor polyprotein, Gag, encoded by all retroviruses, including the human immunodeficiency virus type 1 (HIV-1), is necessary and sufficient for the assembly and release of particles that morphologically resemble immature virus particles. Previous studies have shown that the addition of Ca2+ to cells expressing Gag enhances virus particle production. However, no specific cellular factor has been implicated as mediator of Ca2+ provision. The inositol (1,4,5)-triphosphate receptor (IP3R) gates intracellular Ca2+ stores. Following activation by binding of its ligand, IP3, it releases Ca2+ from the stores. We demonstrate here that IP3R function is required for efficient release of HIV-1 virus particles. Depletion of IP3R by small interfering RNA, sequestration of its activating ligand by expression of a mutated fragment of IP3R that binds IP3 with very high affinity, or blocking formation of the ligand by inhibiting phospholipase C-mediated hydrolysis of the precursor, phosphatidylinositol-4,5-biphosphate, inhibited Gag particle release. These disruptions, as well as interference with ligand-receptor interaction using antibody targeted to the ligand-binding site on IP3R, blocked plasma membrane accumulation of Gag. These findings identify IP3R as a new determinant in HIV-1 trafficking during Gag assembly and introduce IP3R-regulated Ca2+ signaling as a potential novel cofactor in viral particle release.Assembly of the human immunodeficiency virus (HIV) is determined by a single gene that encodes a structural polyprotein precursor, Gag (71), and may occur at the plasma membrane or within late endosomes/multivesicular bodies (LE/MVB) (7, 48, 58; reviewed in reference 9). Irrespective of where assembly occurs, the assembled particle is released from the plasma membrane of the host cell. Release of Gag as virus-like particles (VLPs) requires the C-terminal p6 region of the protein (18, 19), which contains binding sites for Alix (60, 68) and Tsg101 (17, 37, 38, 41, 67, 68). Efficient release of virus particles requires Gag interaction with Alix and Tsg101. Alix and Tsg101 normally function to sort cargo proteins to LE/MVB for lysosomal degradation (5, 15, 29, 52). Previous studies have shown that addition of ionomycin, a calcium ionophore, and CaCl2 to the culture medium of cells expressing Gag or virus enhances particle production (20, 48). This is an intriguing observation, given the well-documented positive role for Ca2+ in exocytotic events (33, 56). It is unclear which cellular factors might regulate calcium availability for the virus release process.Local and global elevations in the cytosolic Ca2+ level are achieved by ion release from intracellular stores and by influx from the extracellular milieu (reviewed in reference 3). The major intracellular Ca2+ store is the endoplasmic reticulum (ER); stores also exist in MVB and the nucleus. Ca2+ release is regulated by transmembrane channels on the Ca2+ store membrane that are formed by tetramers of inositol (1,4,5)-triphosphate receptor (IP3R) proteins (reviewed in references 39, 47, and 66). The bulk of IP3R channels mediate release of Ca2+ from the ER, the emptying of which signals Ca2+ influx (39, 51, 57, 66). The few IP3R channels on the plasma membrane have been shown to be functional as well (13). Through proteomic analysis, we identified IP3R as a cellular protein that was enriched in a previously described membrane fraction (18) which, in subsequent membrane floatation analyses, reproducibly cofractionated with Gag and was enriched in the membrane fraction only when Gag was expressed. That IP3R is a major regulator of cytosolic calcium concentration (Ca2+) is well documented (39, 47, 66). An IP3R-mediated rise in cytosolic Ca2+ requires activation of the receptor by a ligand, inositol (1,4,5)-triphosphate (IP3), which is produced when phospholipase C (PLC) hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] at the plasma membrane (16, 25, 54). Paradoxically, PI(4,5)P2 binds to the matrix (MA) domain in Gag (8, 55, 59), and the interaction targets Gag to PI(4,5)P2-enriched regions on the plasma membrane; these events are required for virus release (45). We hypothesized that PI(4,5)P2 binding might serve to target Gag to plasma membrane sites of localized Ca2+ elevation resulting from PLC-mediated PI(4,5)P2 hydrolysis and IP3R activation. This idea prompted us to investigate the role of IP3R in Gag function.Here, we show that HIV-1 Gag requires steady-state levels of IP3R for its efficient release. Three isoforms of IP3R, types 1, 2, and 3, are encoded in three independent genes (39, 47). Types 1 and 3 are expressed in a variety of cells and have been studied most extensively (22, 39, 47, 73). Depletion of the major isoforms in HeLa or COS-1 cells by small interfering RNA (siRNA) inhibited viral particle release. Moreover, we show that sequestration of the IP3R activating ligand or blocking ligand formation also inhibited Gag particle release. The above perturbations, as well as interfering with receptor expression or activation, led to reduced Gag accumulation at the cell periphery. The results support the conclusion that IP3R activation is required for efficient HIV-1 viral particle release.  相似文献   

8.
9.
JC virus (JCV) is a human polyomavirus and the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). JCV infection of host cells is dependent on interactions with cell surface asparagine (N)-linked sialic acids and the serotonin 5-hydroxytryptamine2A receptor (5-HT2AR). The 5-HT2AR contains five potential N-linked glycosylation sites on the extracellular N terminus. Glycosylation of other serotonin receptors is essential for expression, ligand binding, and receptor function. Also, glycosylation of cellular receptors has been reported to be important for JCV infection. Therefore, we hypothesized that the 5-HT2AR N-linked glycosylation sites are required for JCV infection. Treatment of 5-HT2AR-expressing cells with tunicamycin, an inhibitor of N-linked glycosylation, reduced JCV infection. Individual mutation of each of the five N-linked glycosylation sites did not affect the capacity of 5-HT2AR to support JCV infection and did not alter the cell surface expression of the receptor. However, mutation of all five N-linked glycosylation sites simultaneously reduced the capacity of 5-HT2AR to support infection and altered the cell surface expression. Similarly, tunicamycin treatment reduced the cell surface expression of 5-HT2AR. Mutation of all five N-linked glycosylation sites or tunicamycin treatment of cells expressing wild-type 5-HT2AR resulted in an altered electrophoretic mobility profile of the receptor. Treatment of cells with PNGase F, to remove N-linked oligosaccharides from the cell surface, did not affect JCV infection in 5-HT2AR-expressing cells. These data affirm the importance of 5-HT2AR as a JCV receptor and demonstrate that the sialic acid component of the receptor is not directly linked to 5-HT2AR.The initial interaction between virus and host occurs via molecular interactions of viral attachment proteins and receptors on host cells. Therefore, receptor recognition is a critical host cell determinant and may play a key regulatory role in viral pathogenesis. The polyomavirus JC virus (JCV) is a ubiquitous human pathogen (21, 25, 32) that is initially subclinical yet establishes a persistent infection in the kidney (11). In immunosuppressed individuals JCV can become reactivated, leading to infection in the central nervous system (CNS) (13-15, 20), where the virus specifically targets glial cells, including astrocytes and the myelin-producing cells, oligodendrocytes (40, 48). JCV infection and cytolytic destruction of oligodendroglia cause the fatal disease progressive multifocal leukoencephalopathy (PML) (1, 22). The most common cause of PML is associated with human immunodeficiency virus (HIV) and AIDS (10, 23). However, in recent years PML has been reported in patients receiving immunosuppressive therapies for autoimmune diseases such as Crohn''s disease (44), multiple sclerosis (MS) (24, 26, 28, 47), systemic lupus erythematosus (5, 33), and rheumatoid arthritis (5, 19, 37). The prognosis of PML is bleak, as the disease progresses rapidly and usually proves fatal within 1 year of the onset of symptoms. While current treatment options for PML are limited (23), recent studies suggest that mirtazapine, a serotonin receptor antagonist, may be capable of slowing the progression of PML (6, 27, 45, 46).JCV has a nonenveloped, icosahedral capsid that encapsidates a circular double-stranded DNA (dsDNA) genome (39). JCV attachment to cells is mediated by an N-linked glycoprotein with either α(2,3)- or α(2,6)-linked sialic acid (16, 31), suggesting that N-linked glycosylation of cellular receptors is important for JCV infection. N-linked glycosylation is a posttranslational process by which oligosaccharides are added to asparagine residues, and this modification is important for protein processing, folding, expression, and function (43). Previous studies from our laboratory revealed that the JCV also requires the serotonin 5-hydroxytryptamine2A receptor (5-HT2AR) to mediate JCV infection (18, 35, 38), while others report that JCV infection can occur in the absence of 5-HT2AR (7, 8). 5-HT2AR is a seven-transmembrane-spanning G-protein-coupled receptor that belongs to a large family of 5-HT serotonin receptors. 5-HT2AR is abundantly expressed on cells in the brain (4), including glial cells (3), and in the kidney (4), which parallels the sites of JCV infection. N-linked glycosylation plays a key regulatory role in the function of serotonin receptors. Mutation of N-linked glycosylation sites in human 5-HT3AR and 5-HT5AR results in decreased expression at the plasma membrane, which is critical for receptor function (17, 34). N-linked glycosylation of murine 5-HT3AR regulates plasma membrane targeting, ligand binding, Ca2+ flux, and receptor trafficking (36), suggesting that glycosylation is essential for expression and function of serotonin receptors.While previous studies have concluded that JCV utilizes an N-linked glycoprotein with α(2,3)-linked sialic acid (31) or α(2,6)-linked sialic acid (16) and 5-HT2AR (18) to initiate infection in host cells, the mechanism(s) by which JCV engages its cellular receptors and the importance of receptor glycosylation remain unclear. 5-HT2AR contains potential asparagine (N)-linked glycosylation sites, five of which are predicted to be expressed in the extracellular amino-terminal region, where they could be accessible to the virus (2). The goal of this study was to determine whether potential N-linked glycosylation sites expressed in 5-HT2AR are required for JCV infection. We found that N-linked glycosylation of 5-HT2AR is important for receptor expression but not necessary for JCV infection.  相似文献   

10.
Little is known about the transmission or tropism of the newly discovered human retrovirus, human T-cell lymphotropic virus type 3 (HTLV-3). Here, we examine the entry requirements of HTLV-3 using independently expressed Env proteins. We observed that HTLV-3 surface glycoprotein (SU) binds efficiently to both activated CD4+ and CD8+ T cells. This contrasts with both HTLV-1 SU, which primarily binds to activated CD4+ T cells, and HTLV-2 SU, which primarily binds to activated CD8+ T cells. Binding studies with heparan sulfate proteoglycans (HSPGs) and neuropilin-1 (NRP-1), two molecules important for HTLV-1 entry, revealed that these molecules also enhance HTLV-3 SU binding. However, unlike HTLV-1 SU, HTLV-3 SU can bind efficiently in the absence of both HSPGs and NRP-1. Studies of entry performed with HTLV-3 Env-pseudotyped viruses together with SU binding studies revealed that, for HTLV-1, glucose transporter 1 (GLUT-1) functions at a postbinding step during HTLV-3 Env-mediated entry. Further studies revealed that HTLV-3 SU binds efficiently to naïve CD4+ T cells, which do not bind either HTLV-1 or HTLV-2 SU and do not express detectable levels of HSPGs, NRP-1, and GLUT-1. These results indicate that the complex of receptor molecules used by HTLV-3 to bind to primary T lymphocytes differs from that of both HTLV-1 and HTLV-2.The primate T-cell lymphotropic virus (PTLV) group of deltaretroviruses consists of three types of human T-cell lymphotropic viruses (HTLVs) (HTLV-1, HTLV-2, HTLV-3), their closely related simian T-cell lymphotropic viruses (STLVs) (STLV-1, STLV-2, STLV-3), an HTLV (HTLV-4) for which a simian counterpart has not been yet identified, and an STLV (STLV-5) originally described as a divergent STLV-1 (5-7, 30, 35, 37, 38, 45, 51, 53). HTLV-1 and HTLV-2, which have a 70% nucleotide homology, differ in both their pathobiology and tropism (reviewed in reference 13). While HTLV-1 causes a neurological disorder (tropical spastic paraparesis/HTLV-1-associated myelopathy) and a hematological disease (adult T-cell leukemia/lymphoma) (15, 42, 55), HTLV-2 is only rarely associated with tropical spastic paraparesis/HTLV-1-associated myelopathy-like disease and is not definitively linked to any lymphoproliferative disease (12, 20). In vivo, both HTLV-1 and HTLV-2 infect T cells. Although HTLV-1 is primarily found in CD4+ T cells, other cell types in the peripheral blood of infected individuals have been found to contain HTLV-1, including CD8+ T cells, dendritic cells, and B cells (19, 29, 33, 36, 46).Binding and entry of retroviruses requires specific interactions between the Env glycoproteins on the virus and cell surface receptor complexes on target cells. For HTLV-1, three molecules have been identified as important for entry, as follows: heparan sulfate proteoglycans (HSPGs), neuropilin-1 (NRP-1), and glucose transporter 1 (GLUT-1) (16, 22, 26, 28, 29, 34, 39, 44). Recent studies support a model in which HSPG and NRP-1 function during the initial binding of HTLV-1 to target cells, and GLUT-1 functions at a postattachment stage, most likely to facilitate fusion (29, 34, 49). Efficient HTLV-2 binding and entry requires NRP-1 and GLUT-1 but not HSPGs (16, 26, 39, 49).This difference in the molecules required for binding to target cells reflects differences in the T-cell tropisms of these two viruses. Activated CD4+ T cells express much higher levels of HSPGs than CD8+ T cells (26). In infected individuals, HTLV-1 is primarily found in CD4+ T cells, while HTLV-2 is primarily found in CD8+ T cells (21, 43, 46). In vitro, HTLV-1 preferentially transforms CD4+ T cells while HTLV-2 preferentially transforms CD8+ T cells, and this difference has been mapped to the Env proteins (54).We and others have reported the discovery of HTLV-3 in two Cameroonese inhabitants (6, 7, 53). We recently uncovered the presence of a third HTLV-3 strain in a different population living several hundred kilometers away from the previously identified groups (5), suggesting that this virus may be common in central Africa. Since the HTLV-3 sequences were obtained by PCR amplification of DNA isolated from peripheral blood mononuclear cells (PBMCs) of infected individuals, little is known about its tropism and pathobiology in vivo. Based on the correlation between HSPG expression levels and viral tropisms of HTLV-1 and HTLV-2, we reasoned that knowledge about the HTLV-3 receptors might provide insight into the tropism of this virus. We therefore generated vectors expressing HTLV-3 Env proteins and used them to begin to characterize the receptor complex used by HTLV-3 to bind and enter cells.  相似文献   

11.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

12.
13.
14.
The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. While mTOR complex 1 (mTORC1) regulates mRNA translation and ribosome biogenesis, mTORC2 plays an important role in the phosphorylation and subsequent activation of Akt. Interestingly, mTORC1 negatively regulates Akt activation, but whether mTORC1 signaling directly targets mTORC2 remains unknown. Here we show that growth factors promote the phosphorylation of Rictor (rapamycin-insensitive companion of mTOR), an essential subunit of mTORC2. We found that Rictor phosphorylation requires mTORC1 activity and, more specifically, the p70 ribosomal S6 kinase 1 (S6K1). We identified several phosphorylation sites in Rictor and found that Thr1135 is directly phosphorylated by S6K1 in vitro and in vivo, in a rapamycin-sensitive manner. Phosphorylation of Rictor on Thr1135 did not affect mTORC2 assembly, kinase activity, or cellular localization. However, cells expressing a Rictor T1135A mutant were found to have increased mTORC2-dependent phosphorylation of Akt. In addition, phosphorylation of the Akt substrates FoxO1/3a and glycogen synthase kinase 3α/β (GSK3α/β) was found to be increased in these cells, indicating that S6K1-mediated phosphorylation of Rictor inhibits mTORC2 and Akt signaling. Together, our results uncover a new regulatory link between the two mTOR complexes, whereby Rictor integrates mTORC1-dependent signaling.The mammalian target of rapamycin (mTOR) is an evolutionarily conserved phosphatidylinositol 3-kinase (PI3K)-related Ser/Thr kinase that integrates signals from nutrients, energy sufficiency, and growth factors to regulate cell growth as well as organ and body size in a variety of organisms (reviewed in references 4, 38, 49, and 77). mTOR was discovered as the molecular target of rapamycin, an antifungal agent used clinically as an immunosuppressant and more recently as an anticancer drug (5, 20). Recent evidence indicates that deregulation of the mTOR pathway occurs in a majority of human cancers (12, 18, 25, 46), suggesting that rapamycin analogs may be potent antineoplastic therapeutic agents.mTOR forms two distinct multiprotein complexes, the rapamycin-sensitive and -insensitive mTOR complexes 1 and 2 (mTORC1 and mTORC2), respectively (6, 47). In cells, rapamycin interacts with FKBP12 and targets the FKBP12-rapamycin binding (FRB) domain of mTORC1, thereby inhibiting some of its function (13, 40, 66). mTORC1 is comprised of the mTOR catalytic subunit and four associated proteins, Raptor (regulatory associated protein of mTOR), mLST8 (mammalian lethal with sec13 protein 8), PRAS40 (proline-rich Akt substrate of 40 kDa), and Deptor (28, 43, 44, 47, 59, 73, 74). The small GTPase Rheb (Ras homolog enriched in brain) is a key upstream activator of mTORC1 that is negatively regulated by the tuberous sclerosis complex 1 (TSC1)/TSC2 GTPase-activating protein complex (reviewed in reference 35). mTORC1 is activated by PI3K and Ras signaling through direct phosphorylation and inactivation of TSC2 by Akt, extracellular signal-regulated kinase (ERK), and p90 ribosomal protein S6 kinase (RSK) (11, 37, 48, 53, 63). mTORC1 activity is also regulated at the level of Raptor. Whereas low cellular energy levels negatively regulate mTORC1 activity through phosphorylation of Raptor by AMP-activated protein kinase (AMPK) (27), growth signaling pathways activating the Ras/ERK pathway positively regulate mTORC1 activity through direct phosphorylation of Raptor by RSK (10). More recent evidence has also shown that mTOR itself positively regulates mTORC1 activity by directly phosphorylating Raptor at proline-directed sites (20a, 75). Countertransport of amino acids (55) and amino acid signaling through the Rag GTPases were also shown to regulate mTORC1 activity (45, 65). When activated, mTORC1 phosphorylates two main regulators of mRNA translation and ribosome biogenesis, the AGC (protein kinase A, G, and C) family kinase p70 ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and thus stimulates protein synthesis and cellular growth (50, 60).The second mTOR complex, mTORC2, is comprised of mTOR, Rictor (rapamycin-insensitive companion of mTOR), mSin1 (mammalian stress-activated mitogen-activated protein kinase-interacting protein 1), mLST8, PRR5 (proline-rich region 5), and Deptor (21, 39, 58, 59, 66, 76, 79). Rapamycin does not directly target and inhibit mTORC2, but long-term treatment with this drug was shown to correlate with mTORC2 disassembly and cytoplasmic accumulation of Rictor (21, 39, 62, 79). Whereas mTORC1 regulates hydrophobic motif phosphorylation of S6K1, mTORC2 has been shown to phosphorylate other members of the AGC family of kinases. Biochemical and genetic evidence has demonstrated that mTORC2 phosphorylates Akt at Ser473 (26, 39, 68, 70), thereby contributing to growth factor-mediated Akt activation (6, 7, 52). Deletion or knockdown of the mTORC2 components mTOR, Rictor, mSin1, and mLST8 has a dramatic effect on mTORC2 assembly and Akt phosphorylation at Ser473 (26, 39, 79). mTORC2 was also shown to regulate protein kinase Cα (PKCα) (26, 66) and, more recently, serum- and glucocorticoid-induced protein kinase 1 (SGK1) (4, 22). Recent evidence implicates mTORC2 in the regulation of Akt and PKCα phosphorylation at their turn motifs (19, 36), but whether mTOR directly phosphorylates these sites remains a subject of debate (4).Activation of mTORC1 has been shown to negatively regulate Akt phosphorylation in response to insulin or insulin-like growth factor 1 (IGF1) (reviewed in references 30 and 51). This negative regulation is particularly evident in cell culture models with defects in the TSC1/TSC2 complex, where mTORC1 and S6K1 are constitutively activated. Phosphorylation of insulin receptor substrate-1 (IRS-1) by mTORC1 (72) and its downstream target S6K1 has been shown to decrease its stability and lead to an inability of insulin or IGF1 to activate PI3K and Akt (29, 69). Although the mechanism is unknown, platelet-derived growth factor receptor β (PDGF-Rβ) has been found to be downregulated in TSC1- and TSC2-deficient murine embryonic fibroblasts (MEFs), contributing to a reduction of PI3K signaling (80). Interestingly, inhibition of Akt phosphorylation by mTORC1 has also been observed in the presence of growth factors other than IGF-1, insulin, or PDGF, suggesting that there are other mechanisms by which mTORC1 activation restricts Akt activity in cells (reviewed in references 6 and 31). Recent evidence demonstrates that rapamycin treatment causes a significant increase in Rictor electrophoretic mobility (2, 62), suggesting that phosphorylation of the mTORC2 subunit Rictor may be regulated by mTORC1 or downstream protein kinases.Herein, we demonstrate that Rictor is phosphorylated by S6K1 in response to mTORC1 activation. We demonstrate that Thr1135 is directly phosphorylated by S6K1 and found that a Rictor mutant lacking this phosphorylation site increases Akt phosphorylation induced by growth factor stimulation. Cells expressing the Rictor T1135A mutant were found to have increased Akt signaling to its substrates compared to Rictor wild-type- and T1135D mutant-expressing cells. Together, our results suggest that Rictor integrates mTORC1 signaling via its phosphorylation by S6K1, resulting in the inhibition of mTORC2 and Akt signaling.  相似文献   

15.
16.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

17.
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.Lentiviruses display an exquisite ability to infect dividing and nondividing cells alike that is unequalled among Retroviridae. This property is thought to be due to the particular behavior or composition of the viral nucleoprotein complexes (NPCs) that are liberated into the cytoplasm of target cells upon virus-to-cell membrane fusion and that allow lentiviruses to traverse an intact nuclear membrane (17, 28, 29, 39, 52, 55, 67, 79). In the case of the human immunodeficiency type I virus (HIV-1), several studies over the years identified viral components of such structures with intrinsic karyophilic properties and thus perfect candidates for mediation of the passage of viral DNA (vDNA) through the nuclear pore: the matrix protein (MA); Vpr; the integrase (IN); and a three-stranded DNA flap, a structure present in neo-synthesized viral DNA, specified by the central polypurine tract-central termination sequence (cPPT-CTS). It is clear that these elements may mediate nuclear import directly or via the recruitment of the host''s proteins, and indeed, several cellular proteins have been found to influence HIV-1 infection during nuclear import, like the karyopherin α2 Rch1 (38); importin 7 (3, 30, 93); the transportin SR-2 (13, 20); or the nucleoporins Nup98 (27), Nup358/RANBP2, and Nup153 (13, 56).More recently, the capsid protein (CA), the main structural component of viral nucleoprotein complexes at least upon their cytoplasmic entry, has also been suggested to be involved in nuclear import or in postnuclear entry steps (14, 25, 74, 90, 92). Whether this is due to a role for CA in the shaping of viral nucleoprotein complexes or to a direct interaction between CA and proteins involved in nuclear import remains at present unknown.Despite a large number of reports, no single viral or cellular element has been described as absolutely necessary or sufficient to mediate lentiviral nuclear import, and important controversies as to the experimental evidences linking these elements to this step exist. For example, MA was among the first viral protein of HIV-1 described to be involved in nuclear import, and 2 transferable nuclear localization signals (NLSs) have been described to occur at its N and C termini (40). However, despite the fact that early studies indicated that the mutation of these NLSs perturbed HIV-1 nuclear import and infection specifically in nondividing cells, such as macrophages (86), these findings failed to be confirmed in more-recent studies (23, 33, 34, 57, 65, 75).Similarly, Vpr has been implicated by several studies of the nuclear import of HIV-1 DNA (1, 10, 21, 43, 45, 47, 64, 69, 72, 73, 85). Vpr does not possess classical NLSs, yet it displays a transferable nucleophilic activity when fused to heterologous proteins (49-51, 53, 77, 81) and has been shown to line onto the nuclear envelope (32, 36, 47, 51, 58), where it can truly facilitate the passage of the viral genome into the nucleus. However, the role of Vpr in this step remains controversial, as in some instances Vpr is not even required for viral replication in nondividing cells (1, 59).Conflicting results concerning the role of IN during HIV-1 nuclear import also exist. Indeed, several transferable NLSs have been described to occur in the catalytic core and the C-terminal DNA binding domains of IN, but for some of these, initial reports of nuclear entry defects (2, 9, 22, 46, 71) were later shown to result from defects at steps other than nuclear import (60, 62, 70, 83). These reports do not exclude a role for the remaining NLSs in IN during nuclear import, and they do not exclude the possibility that IN may mediate this step by associating with components of the cellular nuclear import machinery, such as importin alpha and beta (41), importin 7 (3, 30, 93, 98), and, more recently, transportin-SR2 (20).The central DNA flap, a structure present in lentiviruses and in at least 1 yeast retroelement (44), but not in other orthoretroviruses, has also been involved in the nuclear import of viral DNA (4, 6, 7, 31, 78, 84, 95, 96), and more recently, it has been proposed to provide a signal for viral nucleoprotein complexes uncoating in the proximity of the nuclear pore, with the consequence of providing a signal for import (8). However, various studies showed an absence or weakness of nuclear entry defects in viruses devoid of the DNA flap (24, 26, 44, 61).Overall, the importance of viral factors in HIV-1 nuclear import is still unclear. The discrepancies concerning the role of MA, IN, Vpr, and cPPT-CTS in HIV-1 nuclear import could in part be explained by their possible redundancy. To date, only one comprehensive study analyzed the role of these four viral potentially karyophilic elements together (91). This study showed that an HIV-1 chimera where these elements were either deleted or replaced by their murine leukemia virus (MLV) counterparts was, in spite of an important infectivity defect, still able to infect cycling and cell cycle-arrested cell lines to similar efficiencies. If this result indicated that the examined viral elements of HIV-1 were dispensable for the cell cycle independence of HIV, as infections proceeded equally in cycling and arrested cells, they did not prove that they were not required in nuclear import, because chimeras displayed a severe infectivity defect that precluded their comparison with the wild type (WT).Nuclear import and cell cycle independence may not be as simply linked as previously thought. On the one hand, there has been no formal demonstration that the passage through the nuclear pore, and thus nuclear import, is restricted to nondividing cells, and for what we know, this passage may be an obligatory step in HIV infection in all cells, irrespective of their cycling status. In support of this possibility, certain mutations in viral elements of HIV affect nuclear import in dividing as well as in nondividing cells (4, 6, 7, 31, 84, 95). On the other hand, cell cycle-independent infection may be a complex phenomenon that is made possible not only by the ability of viral DNA to traverse the nuclear membrane but also by its ability to cope with pre- and postnuclear entry events, as suggested by the phenotypes of certain CA mutants (74, 92).Given that the cellular environment plays an important role during the early steps of viral infection, we chose to analyze the role of the four karyophilic viral elements of HIV-1 during infection either alone or combined in a wide comparison between cells highly susceptible to infection and more-restrictive primary cell targets of HIV-1 in vivo, such as primary blood lymphocytes (PBLs), monocyte-derived macrophages (MDM), and dendritic cells (DCs).In this study, we show that an HIV-1-derived virus in which the 2 NLSs of MA are mutated and the IN, Vpr, and cPPT-CTS elements are removed displays no detectable nuclear import defect in HeLa cells independently of their cycling status. However, this mutant virus is partially impaired for nuclear entry in primary cells and more specifically in DCs and PBLs. We found that this partial defect is specified by the cPPT-CTS, while the 3 remaining elements seem to play no role in nuclear import. Thus, our study indicates that the central DNA flap specifies the most important role among the viral elements involved thus far in nuclear import. However, it also clearly indicates that the role played by the central DNA flap is not absolute and that its importance varies depending on the cell type, independently from the dividing status of the cell.  相似文献   

18.
The lethal factor (LF) of Bacillus anthracis is a Zn2+-dependent metalloprotease which plays an important role in anthrax virulence. This study was aimed at identifying the histidine residues that are essential to the catalytic activities of LF. The site-directed mutagenesis was employed to replace the 10 histidine residues in domains II, III, and IV of LF with alanine residues, respectively. The cytotoxicity of these mutants was tested, and the results revealed that the alanine substitution for His-669 completely abolished toxicity to the lethal toxin (LT)-sensitive RAW264.7 cells. The reason for the toxicity loss was further explored. The zinc content of this LF mutant was the same as that of the wild type. Also this LF mutant retained its protective antigan (PA)-binding activity. Finally, the catalytic cleavage activity of this mutant was demonstrated to be drastically reduced. Thus, we conclude that residue His-669 is crucial to the proteolytic activity of LF.Anthrax is a zoonotic disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis (24). Because infections are highly fatal, the organisms are easily produced, and the spores spread easily, B. anthracis has been used as a bioweapon in biological war and biological terrorism (38). If inhaled, the spores are phagocytosed by alveolar macrophages, where they germinate to produce vegetative bacteria (10, 24). The vegetative bacteria further release anthrax toxins, which inhibit the innate and adaptive immune responses of the hosts. This enables the capsulated bacteria to escape the lymph node defense barrier to reach the blood system, causing bacteremia and toxemia, which can rapidly kill the hosts (24, 26). The great threat posed by anthrax to the public is not only due to the highly lethal rate of inhaled anthrax, but also is due to the social panic caused by the lethality. Therefore, efficient ways to defend against anthrax infection and spreading are greatly needed. This mostly depends on a full understanding of the mechanisms of anthrax infection and toxicities.Anthrax toxins are the dominant virulence factors of Bacillus anthracis (6, 33, 37). They consist of three proteins: protective antigen (PA; 83 kDa), lethal factor (LF; 90 kDa), and edema factor (EF; 89 kDa). The 83-kDa PA (PA83) directly binds to cellular membrane receptors and was cleaved to an active fragment of 63-kDa PA (PA63) by cellular proteases of the furin family or by serum proteases. The receptor-bound portion of PA63 self-assembles into either ring-shaped heptamers, which bind to three molecules of LF and/or EF, resulting in (PA63)7(LF/EF)3 (21), or octamers which bind up to four molecules of these moieties, resulting in (PA63)8(LF/EF)4 complexes (16, 17). The catalytic partners (EF and/or LF) are subsequently transported across the membrane to the cell cytosol (24, 27). EF is a Ca2+- and calmodulin-dependent adenylate cyclase that, together with PA, forms edema toxin. EF causes a rapid increase in intracellular cyclic AMP (cAMP) levels in host cells and alters the elaborate balance of intracellular signaling pathways (20, 23). LF is a Zn2+-dependent protease that, together with PA, forms lethal toxin (LT). It is a dominant virulence factor and the major cause of death for the B. anthracis-infected animals (1, 29, 30). LF specifically cleaves the N-terminal domain of mitogen-activated protein kinase kinases (MAPKKs) (11, 35). Because the N-terminal domain of MAPKKs is essential for the interaction between MAPKKs and MAPKs, the cleavage of this domain impairs the activation of MAPKs (8, 11, 15) and leads to the inhibition of three major cellular signaling pathways—the ERK (extracellular signal-regulated kinase), p38, and JNK (c-Jun N-terminal kinase) pathways (29, 31)—and thus induces the lysis of the host cells in an unknown mechanism.The crystal structure of LF with the N-terminal domain of MEK2 has been reported (28). LF has 776 amino acids and comprises four different domains. Domain I (residues 1 to 254) is a PA-binding domain which delivers the remaining domains of the LF to the cell cytoplasm (3). The interface among domains II, III, and IV creates long, deep, 40-Å-long catalytic grooves into which the N terminus of MEK fits and forms an active site complex (28). Domain IV is central to catalytic activities of LF, containing two zinc-binding motifs (residues 686 to 690 and residues E735 to E739) and bound to a single Zn ion (18). However, which residues of LF are critical for efficient catalytic activities and execute the substrate cleavage remains unclear.Histidine is the only naturally occurring amino acid to contain an imidazole residue as a side chain. The catalytic activity of histidine mostly depends on the special features of the imidazole residue. The logarithm of the proton dissociation constant of imidazolyl in the histidine residue is about 6.5; thus, under the physiological condition, it tends to form hydrogen bonds and shares donor and acceptor properties that can take part in either nucleophilic or base catalysis. The speed of the imidazole residue to give or accept protons is very fast, with a half-life of less than 10 s. So in the process of natural selection, histidine was chosen as the catalytic structure, indicating that it plays an important role in the catalysis process of enzymes (9, 12, 14). There are 21 histidines in LF, with 9 of them in LF domain I and 12 of them in domains II, III, and IV. The histidine residues important to LF activities in domain I have been identified (2, 22). The other 12 histidine residues in the remaining three domains include His-277, His-280, and His-424 in domain II; His-309 in domain III; and His-588, His-645, His-654, His-669, His-686, His-690, His-745, and His-749 in domain IV (28). His-686 and His-690 in domain IV were demonstrated to form a zinc binding site constituting a thermolysin-like zinc metalloprotease motif, HEXXH (18). The activities of the remaining 10 histidine residues in domains II, III, and IV have not been explored yet. In this study, we replaced these 10 histidine residues separately with alanine residues by site-directed mutagenesis. By the cytotoxicity assay of all these mutants, the H669A mutant was found to lose cell toxicity completely. Further assay revealed that residue His-669 was involved in neither zinc stabilization nor PA binding but participated in the substrate proteolytic activity of LF.  相似文献   

19.
20.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号