共查询到20条相似文献,搜索用时 0 毫秒
1.
Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem 总被引:3,自引:0,他引:3
Wenping Yuan Guangsheng Zhou Yuhui Wang Xi Han Yingshun Wang 《Ecological Research》2007,22(5):784-791
Vegetation phenology has a strong effect on terrestrial carbon cycles, local weather, and global radiation partitioning between
sensible and latent heat fluxes. Based on phenological data that were collected from a typical steppe ecosystem at Xilingol
Grazing and Meteorological Station from 1985 to 2003, we studied the phenological characteristics of Leymus chinensis and Stipa krylovii. We found that the dates for budburst of L. chinensis and S. krylovii were delayed with increasing temperature during winter and spring seasons; these results differed from existing research
in which earlier spring events were attributed to the changes in increasing air temperature in winter and spring. The results
also suggested that water availability was an important controlling factor for phenology in addition to temperature in grassland
plants. The classical cumulative temperature model simulated the phenology well in wet years, but not in the beginning of
growing season in all years from 1985 to 2003. The disparity between the simulation and the observation appeared to be related
to soil water. Based on our research findings, a water-heat-based phenological model was developed for simulating the beginning
of growing season for these two grass species. The simulated results of the new model showed a significant correlation with
the observation of beginning date of the growing season, and both mean values of the absolute error were less than 6 days. 相似文献
2.
Phenotypic diversity and litter chemistry affect nutrient dynamics during litter decomposition in a two species mix 总被引:2,自引:0,他引:2
We have previously demonstrated that the intraspecific diversity of leaf litter can influence ecosystem functioning during litter decomposition in the field. It is unknown whether the effects of phenotypic diversity persist when litter from an additional species is present. We used laboratory microcosms to determine whether the intraspecific diversity effects of turkey oak leaf litter on nutrient dynamics are confounded by the presence of naturally co-occurring longleaf pine litter. We varied the phenotypic diversity of oak litter (1, 3, and 6 phenotype combinations) in the presence and absence of pine litter and measured fluxes of carbon and nitrogen over a 42-week period. The average soil C:N ratio peaked at intermediate levels of oak phenotypic diversity and the total amount of dissolved organic carbon leached from microcosms decreased (marginally) with increasing oak phenotypic diversity. The soil carbon content, and the total amount of ammonium, nitrate, and dissolved organic carbon leached from microcosms were all influenced by initial litter chemistry. Our results suggest that the effects of phenotypic diversity can persist in the presence of another species, however specific litter chemistries (condensed and hydrolysable tannins, simple phenolics, C:N ratios) are more important than phenotypic litter diversity to most nutrient fluxes during litter decomposition. 相似文献
3.
Background and Aims
Calotropis procera and Calotropis gigantea, originally from warm parts of Africa and Asia, are now pan-tropical and in ecological terms considered an indicator of overgrazed, disturbed lands; they grow successfully in dry areas. Variations in water relations, morphology and photosynthesis of the two species growing in the same habitat were studied to assess possible mechanisms of tolerance to drought and how these relate to their ecophysiological success. Also the hypothesis that their photosynthetic rate (A) under drought would be affected by stomatal and non-stomatal limitations was tested.Methods
Water relations, gas exchange, water use efficiency (WUE), fluorescence parameters, pubescence and specific leaf area (SLA) of Calotropis procera and C. gigantea plants growing in the field were evaluated during the wet (WS) and dry (DS) seasons.Results
The xylem water potential (ψ) was similar in both species during the WS and DS; drought caused a 28 % decrease of ψ. In C. procera, A, stomatal conductance (gs) and carboxylation efficiency (CE) were higher in the WS with half the values of those during the DS, this species being more affected by drought than C. gigantea. A high δ13C of C. gigantea (–26·2 ‰) in the WS indicated a higher integrated WUE, in agreement with its lower gs. Leaves of C. gigantea were more pubescent than C. procera. Relative stomatal and non-stomatal limitation of A increased with drought in both species; no changes in maximum quantum yield of photosystem II (PSII; Fv/Fm) were observed. The decrease in the relative quantum yield of PSII (φPSII) and in the photochemical quenching coefficient (qP) was more pronounced in C. procera than in C. gigantea.Conclusions
The photosynthetic capacity of C. procera was higher than that of C. gigantea. During the DS, A was regulated by stomatal and non-stomatal factors in a coordinated manner and drought did not cause chronic photoinhibition. A higher density of trichomes and leaf angle in C. gigantea may contribute to the maintenance of A and confer more efficient protection of photochemical activity in the DS. Ecophysiological traits such as high photosynthetic rate throughout the year even during the DS, and high WUE, highly pubescent leaves and low SLA observed in both species contribute to the establishment and growth of Calotropis in dry conditions. 相似文献4.
Temporal dynamics of ultraviolet radiation impacts on litter decomposition in a semi-arid ecosystem 总被引:1,自引:0,他引:1
Jing Wang Sen Yang Beibei Zhang Weixing Liu Meifeng Deng Shiping Chen Lingli Liu 《Plant and Soil》2017,419(1-2):71-81
Background and aims
The emerging consensus posits that ultraviolet (UV) radiation accelerates litter decomposition in xeric environments mainly by preconditioning litter for subsequent microbial decomposition. However, how UV radiation affects the interactions among litter chemistry, microbes, and eventually litter mass during different decomposition stages is still poorly understood.Methods
Here, we conducted a 29-month in situ decomposition experiment with litter exposed to ambient and reduced UV in a semi-arid grassland.Results
The decomposition rate for Cleistogenes squarrosa and Stipa krylovii under ambient UV was 82 and 111% greater than that under reduced UV, respectively. UV’s positive effect showed three-stage temporal dynamics. During the early stage, UV had no impact on either litter chemistry or mass loss. During the intermediate stage, UV decreased litter carbon concentration and increased dissolved organic carbon concentration, but still had no effect on litter mass. During the late stage, UV exposure increased microbial population size in the surface soil and significantly increased litter mass loss.Conclusions
Overall, our study suggested that UV exposure accelerated litter decomposition first by improving litter biodegradability during the intermediate stage and then by enhancing microbial decomposition during the late stage. More long-term photodegradation experiments are needed to explore the biotic and abiotic interactions during different decomposition stages.5.
Decomposition of Carex and Sphagnum litter in two mesotrophic fens differing in dominant plant species 总被引:3,自引:0,他引:3
Peatlands can be classified into fens and bogs based on their hydrology. Development of fens to bogs is accompanied by the invasion of Sphagnum species. The purpose of this study was to determine how the decomposition process in fens is influenced by the transition from a vascular plant-dominated system to a Sphagnum -dominated system. We carried out a reciprocal litter bag experiment, using litter of Carex diandra , C. lasiocarpa , Sphagnum papillosum and S. squarrosum in a fen dominated by Sphagnum species and a fen without Sphagnum . Decomposition rate and nitrogen and phosphorus dynamics of the plant litter were measured in a field experiment for two years. Decomposition rate was highest for the Carex litter types and lowest for the Sphagnum litter types. Surprisingly, decomposition rates hardly differed between the two sites. Nutrient dynamics, however, showed a clear site-effect: In the Sphagnum site net mineralization was observed for all litter types whereas in the Carex site net immobilization was observed. These results show that carbon and nutrient cycles were coupled in a different way in a Sphagnum -dominated and a Carex -dominated site, respectively. Nutrient availability and adaptation of the microbial community to nutritional and other environmental conditions may be the main regulators of carbon and nutrient cycles in these peatlands. 相似文献
6.
Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem 总被引:5,自引:0,他引:5
LESLIE A. BRANDT JENNIFER Y. KING † DANIEL G. MILCHUNAS‡ 《Global Change Biology》2007,13(10):2193-2205
We examined the effect of altered levels of ultraviolet (UV) radiation (280–400 nm) and different amounts of precipitation on the decomposition rates of litter of contrasting carbon to nitrogen ratio (C : N) in a 3-year field experiment in a shortgrass steppe (SGS) ecosystem. UV radiation was either blocked or passed under clear plastic tents where precipitation was applied to simulate a very dry or very wet year. These treatments minimized or maximized the abiotic component (UV) or the biotic component (biological activity of decomposer organisms) of decomposition to assess potential interactions between the two. Initial litter chemistry varied in response to having been grown under ambient or elevated atmospheric CO2 concentrations. While precipitation and litter chemistry were the most important drivers in decomposition in this system, UV radiation increased decomposition rates under dry conditions in litter with higher C : N ratios. Exposure to UV radiation slightly increased the amount of holocellulose that was lost from the litter. UV exposure did not affect the decomposition of the lignin fraction. Increased decomposition with UV radiation was accompanied by a decrease in N immobilization over the summer months. These results suggest that the effects of UV radiation on decomposition rates may be primarily abiotic, caused by direct photochemical degradation of the litter. Our results demonstrate that the role of UV radiation in litter decomposition in semiarid systems depends on the aridity of the system and the chemistry of the litter. 相似文献
7.
Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland 总被引:1,自引:0,他引:1
Aimée T. Classen Steven T. Overby Stephen C. Hart George W. Koch Thomas G. Whitham 《Plant and Soil》2007,295(1-2):217-227
Herbivores can directly impact ecosystem function by altering litter quality of an ecosystem or indirectly by shifting the composition of microbial communities that mediate nutrient processes. We examined the effects of tree susceptibility and resistance to herbivory on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore driven changes in litter inputs and soil microclimate will feedback to the microbial community. Our study population consisted of individual piñon pine trees that were either susceptible or resistant to the stem-boring moth (Dioryctria albovittella) and susceptible piñon pine trees from which the moth herbivores have been manually removed since 1982. Moth herbivory increased piñon litter nitrogen concentrations (16%) and decreased canopy precipitation interception (28%), both potentially significant factors influencing litter and soil microbial communities. Our research resulted in three major findings: (1) In spite of an apparent increase in litter quality, herbivory did not change litter microarthropod abundance or species richness. (2) However, susceptibility to herbivores strongly influenced bulk soil microbial communities (i.e., 52% greater abundance beneath herbivore-resistant and herbivore-removal trees than susceptible trees) and alkaline phosphatase activity (i.e., 412% increase beneath susceptible trees relative to other groups). (3) Season had a strong influence on microbial communities (i.e., microbial biomass and alkaline phosphatase activity increased after the summer rains), and their response to herbivore inputs, in this semi-arid ecosystem. Thus, during the dry season plant resistance and susceptibility to a common insect herbivore had little or no observable effects on the belowground organisms and processes we studied, but after the rains, some pronounced effects emerged. 相似文献
8.
Denitrification in a semi-arid grazing ecosystem 总被引:3,自引:0,他引:3
The effect of large herbivores on gaseous N loss from grasslands, particularly via denitrification, is poorly understood. In this study, we examined the influence of native migratory ungulates on denitrification in grasslands of Yellowstone National Park in two ways, by (1) examining the effect of artificial urine application on denitrification, and (2) comparing rates inside and outside long-term exclosures at topographically diverse locations. Artificial urine did not influence denitrification 3 and 12 days after application at hilltop, mid-slope, and slope-bottom sites. Likewise, grazers had no effect on community-level denitrification at dry exclosure sites, where rates were low. At mesic sites, however, ungulates enhanced denitrification by as much as 4 kg N ha−1 year−1, which was double atmospheric N inputs to this ecosystem. Denitrification enzyme activity (DEA, a measure of denitrification potential) was positively associated with soil moisture at exclosure sites, and herbivores stimulated DEA when accounting for the soil moisture effect. Glucose additons to soils increased denitrification and nitrate additions had no influence, suggesting that denitrification was limited by the amount of labile soil carbon, which previously has been shown to be enhanced by ungulates in Yellowstone. These results indicate that denitrification can be an ecologically important flux in portions of semi-arid landscapes, and that there is a previously unsuspected regulation of this process by herbivores. Received: 6 March 1998 / Accepted: 28 August 1998 相似文献
9.
Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem 总被引:1,自引:0,他引:1
J. E. BARRETT ROSS A. VIRGINIA† DIANA H. WALL‡ BYRON J. ADAMS§ 《Global Change Biology》2008,14(8):1734-1744
Low-diversity ecosystems cover large portions of the Earth's land surface, yet studies of climate change on ecosystem functioning typically focus on temperate ecosystems, where diversity is high and the effects of individual species on ecosystem functioning are difficult to determine. We show that a climate-induced decline of an invertebrate species in a low-diversity ecosystem could contribute to significant changes in carbon (C) cycling. Recent climate variability in the McMurdo Dry Valleys of Antarctica is associated with changes in hydrology, biological productivity, and community composition of terrestrial and aquatic ecosystems. One of the greatest changes documented in the dry valleys is a 65% decrease in the abundance of the dominant soil invertebrate ( Scottnema lindsayae , Nematoda) between 1993 and 2005, illustrating sensitivity of biota in this ecosystem to small changes in temperature. Globally, such declines are expected to have significant influences over ecosystem processes such as C cycling. To determine the implications of this climate-induced decline in nematode abundance on soil C cycling we followed the fate of a 13 C tracer added to soils in Taylor Valley, Antarctica. Carbon assimilation by the dry valley nematode community contributed significantly to soil C cycling (2–7% of the heterotrophic C flux). Thus, the influence of a climate-induced decline in abundance of a dominant species may have a significant effect on ecosystem functioning in a low-diversity ecosystem. 相似文献
10.
O. Urban A. Ač J. Kalina T. Priwitzer M. Šprtová V. Špunda M. V. Marek 《Photosynthetica》2007,45(3):392-399
Temperature responses of carbon assimilation processes were studied in four dominant species from mountain grassland ecosystem,
i.e. Holcus mollis (L.), Hypericum maculatum (Cr.), Festuca rubra (L.), and Nardus stricta (L.), using the gas exchange technique. Leaf temperature (T
L) of all species was adjusted within the range 13–30 °C using the Peltier thermoelectric cooler. The temperature responses
of metabolic processes were subsequently modelled using the Arrhenius exponential function involving the temperature coefficient
Q
10. The expected increase of global temperature led to a significant increase of dark respiration rate (R
D; Q
10 = 2.0±0.5), maximum carboxylation rate (V
Cmax; Q
10 = 2.2±0.6), and maximum electron transport rate (J
max; Q
10 = 1.6±0.4) in dominant species of mountain grassland ecosystems. Contrariwise, the ratio between J
max and V
Cmax linearly decreased with T
L [y = −0.884 T
L + 5.24; r
2 = 0.78]. Hence temperature did not control the ratio between intercellular and ambient CO2 concentration, apparent quantum efficiency, and photon-saturated CO2 assimilation rate (P
max). P
max primarily correlated with maximum stomatal conductance irrespective of T
L. Water use efficiency tended to decrease with T
L [y = −0.21 T
L + 8.1; r
2 = 0.87]. 相似文献
11.
Arbuscular mycorrhizal (AM) symbiosis plays an important role in improving plant fitness and soil quality, particularly in fragile and stressed environments, as those in certain areas of Mediterranean ecosystems. AM fungal communities are usually affected by dynamic factors such as the plant community structure and composition, which in turn are imposed by seasonality. For this reason, a one-year-round time-course trial was performed by sampling the root system of two representative shrubland species (Rosmarinus officinalis and Thymus zygis) within a typical Mediterranean ecosystem from the Southeast of Spain. The 18S rDNA gene, of the AM fungal community in roots, was subjected to PCR-SSCP, sequencing, and phylogenetic analysis. Forty-three different AM fungal sequence types were found which clustered in 16 phylotypes: 14 belonged to the Glomeraceae and two to the Diversisporaceae. Surprisingly, only two of these phylotypes were related with sequences of morphologically defined species: Glomus intraradices and Glomus constrictum. Significant differences were detected for the relative abundance of some phylotypes while no effects were found for the calculated diversity indices. These results may help to design efficient mycorrhizal-based revegetation programs for this type of ecosystems. 相似文献
12.
Summary Carbon dioxide effluxes from plants, litter and soil were measured in two mixed-grassland sites in Saskatchewan, Canada. Ecosystems at both locations were dominated by Agropyron dasystachyum (Hook.) Scribn. Respiration rates of intact and experimentally-modified systems were measured in field chambers using alkali-absorption. Removal of green leaves, dead leaves, and litter from a wet sward reduced respiration to as low as 58% of the rate in an intact system. In a dry sward green shoots were the only significant above-ground source of CO2.Carbon dioxide effluxes from different parts of A. dasystachyum plants, and from soil samples were measured in laboratory vessels at 20° using alkali-absorption. Respiration of green leaves (1.46 mg CO2 g-1 h-1) was significantly higher than microbial respiration in moist, dead leaf samples (0.79 mg CO2 g-1 h-1) or litter (0.75 mg CO2 g-1 h-1). Microbial respiration in air-dried, dead plant material was very low. Average repiration rates of roots separated from soil cores (0.24 mg CO2 g-1 h-1) were lower than many values reported in the literature, probably because the root population sampled included inactive, suberized and senescent roots. Root respiration was estimated to be 17–26% of total CO2 efflux from intact cores.Laboratory data and field measurements of environmental conditions and plant biomass were combined in order to reconstruct the CO2 efflux from the shoot-root-soil system. Reconstructed rates were 1.3 to 2.3 times as large as field measured rates, apparently because of stimulation to respiration caused by the experimental manipulations. The standing dead and litter fractions contributed 26% and 23% of the total CO2 efflux in a wet sward. Both field-measured and reconstructed repiration values suggest that in situ decomposition of standing dead material under moist conditions can be a significant part of carbon balance in mixed grassland. 相似文献
13.
Alexandra Spyropoulou Sofie Spatharis Georgia Papantoniou George Tsirtsis 《Hydrobiologia》2013,705(1):87-99
Eastern Mediterranean gulfs, adjacent to small semi-arid watersheds are particularly susceptible to climate changes. In this study, an analysis was performed for air temperature and rainfall during 1955–2010 over a coastal ecosystem in NE Aegean, and potential effects of recent changes on the physical setting and ecological status of the marine system were studied. A trend toward drier conditions was revealed, and in order to assess possible effects on the surrounding basin, a watershed model was applied. In addition, the hydrology and ecology of the marine ecosystem were studied using a water budget model along with available field data. Based on local climatological data, dryness may lead to a decrease of one to two orders of magnitude in the amount of runoff during a dry annual cycle, resulting to a fivefold increase in the residence time of the marine system. High residence time associated with terrestrial nutrient inputs and strong stratification result to phytoplankton blooms during winter, including harmful algal blooms. Integrated approaches, modeling both the hydrology and ecology of watersheds and adjacent water bodies, are essential toward forecasting, understanding and management of potential alterations in functioning of coastal ecosystems due to recent climate changes. 相似文献
14.
FAYEZ RAIESI GAHROOEE 《Global Change Biology》1998,4(6):667-677
Elevated CO2 may affect litter quality of plants, and subsequently C and N cycling in terrestrial ecosystems, but changes in litter quality associated with elevated CO2 are poorly known. Abscised leaf litter of two oak species (Quercus cerris L. and Q. pubescens Willd.) exposed to long-term elevated CO2 around a natural CO2 spring in Tuscany (Italy) was used to study the impact of increasing concentration of atmospheric CO2 on litter quality and C and N turnover rates in a Mediterranean-type ecosystem. Litter samples were collected in an area with elevated CO2 (>500 ppm) and in an area with ambient CO2 concentration (360 ppm). Leaf samples were analysed for concentrations of total C, N, lignin, cellulose, acid detergent residue (ADR) and polyphenol. The decomposition rate of litter was studied using a litter bag experiment (12 months) and laboratory incubations (3 months). In the laboratory incubations, N mineralization in litter samples was measured as well (125 days). Litter quality was expressed in terms of chemical composition and element ratios. None of the litter quality parameters was affected by elevated CO2 for the two Quercus species. Remaining mass in Q. cerris and Q. pubescens litter from elevated CO2 was similar to that from ambient conditions. C mineralization in Q. pubescens litter from elevated CO2 was lower than that from ambient CO2, but the difference was insignificant. This effect was not observed for Q. cerris. N mineralization was higher from litter grown at elevated CO2, but this difference disappeared at the end of the incubation. Litter of Q. pubescens had a higher quality than Q. cerris, and indeed mineralized more rapidly in the laboratory, but not under field conditions. 相似文献
15.
16.
Ecosystems provide multiple services upon which humans depend. Understanding the drivers of the ecosystem functions that support these services is therefore important. Much research has investigated how species richness influences functioning, but we lack knowledge of how other community attributes affect ecosystem functioning. Species evenness, species spatial arrangement, and the identity of dominant species are three attributes that could affect ecosystem functioning, by altering the relative abundance of functional traits and the probability of synergistic species interactions such as facilitation and complementary resource use. We tested the effect of these three community attributes and their interactions on ecosystem functions over a growing season, using model grassland communities consisting of three plant species from three functional groups: a grass (Anthoxanthum odoratum), a forb (Plantago lanceolata), and a N-fixing forb (Lotus corniculatus). We measured multiple ecosystem functions that support ecosystem services, including ecosystem gas exchange, water retention, C and N loss in leachates, and plant biomass production. Species evenness and dominant species identity strongly influenced the ecosystem functions measured, but spatial arrangement had few effects. By the end of the growing season, evenness consistently enhanced ecosystem functioning and this effect occurred regardless of dominant species identity. The identity of the dominant species under which the highest level of functioning was attained varied across the growing season. Spatial arrangement had the weakest effect on functioning, but interacted with dominant species identity to affect some functions. Our results highlight the importance of understanding the role of multiple community attributes in driving ecosystem functioning. 相似文献
17.
18.
19.
Xue Wang Zhuwen Xu Xiaotao Lü Ruzhen Wang Jiangping Cai Shan Yang Mai-He Li Yong Jiang 《Plant and Soil》2017,418(1-2):241-253
Background and aims
Precipitation and nitrogen (N) deposition are predicted to increase in northern China. The present paper aimed to better understand how different dominant species in semi-arid grasslands in this region vary in their litter decomposition and nutrient release responses to increases in precipitation and N deposition.Methods
Above-ground litter of three dominant species (two grasses, Agropyron cristatum and Stipa krylovii, and one forb, Artemisia frigida) was collected from areas without experimental treatments in a semi-arid grassland in Inner Mongolia. Litter decomposition was studied over three years to determine the effects of water and N addition on litter decomposition rate and nutrient dynamics.Results
Litter mass loss and nutrient release were faster for the forb species than for the two grasses during decomposition. Both water and N addition increased litter mass loss of the grass A. cristatum, while the treatments showed no impacts on that of the forb A. frigida. Supplemental N had time-dependent, positive effects on litter mass loss of the grass S. krylovii. During the three-year decomposition study, the release of N from litter was inhibited by N addition for the three species, and it was promoted by water addition for the two grasses. Across all treatments, N and potassium (K) were released from the litter of all three species, whereas calcium (Ca) was accumulated. Phosphorus (P) and magnesium (Mg) were released from the forb litter but accumulated in the grass litter after three years of decomposition.Conclusions
Our findings revealed that the litter decomposition response to water and N supplementation differed among dominant plant species in a semi-arid grassland, indicating that changes in dominant plant species induced by projected increases in precipitation and N deposition are likely to affect litter decomposition, nutrient cycling, and further biogeochemical cycles in this grassland. The asynchronous nutrient release of different species’ litter found in the present study highlights the complexity of nutrient replenishment from litter decomposition in the temperate steppe under scenarios of enhancing precipitation and N deposition.20.
Effects of annual additions of mineral N and P (100 kg ha–1) on plant species composition and annual aboveground net primary production (ANPP) were investigated during the first three years following disturbance in a semi-arid ecosystem. Additions of N reduced richness of perennial plant species during years 2 and 3, while P reduced the number of perennial species only in year 3. From year 1 to year 2, annual and biennial species richness declined in all treatments while ANPP of annual species increased greatly. Added N increased ANPP of annual species while it decreased ANPP of most perennial species relative to the unfertilized control treatment. Community similarities were higher for the control and native vegetation than for other pairs of treatments using both species presence and plant production data. Nitrogen additions have retarded but not completely arrested secondary succession in this system. 相似文献