首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with precise molecular structure, highly geometric symmetry, and a large number of terminal groups, and is suitable to carry biomolecules due to its affinity and biocompatibility. In this study, PAMAM was grafted onto the surface of silica by microwave irradiation. A novel media was developed through immobilizing cellulase onto the prepared PAMAM-grafted silica by adsorption and crosslinking methods and applied in hydrolysis of carboxymethyl cellulose. The results demonstrate that the enzyme binding capacity and enzymolysis efficiency increased with generations of PAMAM. The properties of the immobilized cellulase-PAMAM-grafted silica were investigated, which possessed high enzymatic activity and exhibited better stability with respect to pH, temperature compared with free enzyme. The optimal immobilization conditions for adsorption and crosslinking method were respectively obtained at 5 and 4 mg ml−1 cellulase for 2 h of immobilization. A high enzymolysis efficiency was achieved by employing pH 4.8 and 5.8 substrate solution at 60 °C for adsorbed and crosslinked cellulase, respectively. After repeated three run cycles, the retained activities were found to be 75% and 82%. The results indicate that the PAMAM has a good performance as a carrier, and can be potentially adapted to support other biomacromolecules.  相似文献   

2.
Polyamide matrices, such as membranes, gels and non-wovens, have been applied as supports for enzyme immobilization, although in literature the enzyme immobilization on woven nylon matrices is rarely reported. In this work, a protocol for a Trametes hirsuta laccase immobilization using woven polyamide 6,6 (nylon) was developed. A 24 full factorial design was used to study the influence of pH, spacer (1,6-hexanediamine), enzyme and crosslinker concentration on the efficiency of immobilization. The factors enzyme dosage and spacer seem to have played a critical role in the immobilization of laccase onto nylon support. Under optimized working conditions (29 U mL−1 of laccase, 10% of glutaraldehyde, pH = 5.5, with the presence of the spacer), the half-life time attained was about 78 h (18% higher than that of free enzyme), the protein retention was 30% and the immobilization yield was 2%. The immobilized laccase has potential for application in the continuous decolourization of textile effluents, where it can be applied into a membrane reactor.  相似文献   

3.
The synthesis of chitosan (Chs) and chitin (Chi) copolymer and grafting of acrylamide (AAm) onto the synthesized copolymer have been carried out by chemical methods. The grafted copolymer was characterized by FTIR, SEM and XRD. The extracellular cutinase of Aspergillus sp. RL2Ct (E.C. 3.1.1.3) was purified to 4.46 fold with 16.1% yield using acetone precipitation and DEAE sepharose ion exchange chromatography. It was immobilized by adsorption on the grafted copolymer. The immobilized enzyme was found to be more stable then the free enzyme and has a good binding efficiency (78.8%) with the grafted copolymer. The kinetic parameters KM and Vmax for free and immobilized cutinase were found to be 0.55 mM and 1410 μmol min−1 mg−1 protein, 2.99 mM and 996 μmol min−1 mg−1 protein, respectively. The immobilized cutinase was recycled 64 times without considerable loss of activity. The matrix (Chs-co-Chi-g-poly(AAm)) prepared and cutinase immobilized on the matrix have potential applications in enzyme immobilization and organic synthesis respectively.  相似文献   

4.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

5.
A new bioprocess for the synthesis of lactosucrose was studied using a covalently immobilized β-galactosidase on macrospheres of chitosan. The effects of temperature and pH on the production of lactosucrose and other oligosaccharides were evaluated. At 30 °C and pH 7.0, the maximum concentration of lactosucrose reached to 79 g L−1. The change of the reaction conditions allowed to modify the qualitative profile of the final products without quantitative change in the total of oligosaccharides produced. At pH 7 and 30 °C, products profile was 79 g L−1 of lactosucrose, 37 g L−1 of galactooligosaccharides and 250 g L−1 of total oligosaccharides, while at pH 5 and 64 °C the concentrations for the same compounds were 40, 62 and 250 g L−1, respectively. The immobilization increased the thermal stability up to 260-fold. Using 300 g L−1 of sucrose and 300 g L−1 of lactose, and 8.5 mg of chitosan mL−1, 30 cycles of reuse were performed and the biocatalyst kept the maximal lactosucrose synthesis. These results fulfill some important aspects for the enzyme immobilization and oligosaccharides synthesis: the simplicity of the protocols, the high operational stability of the enzyme and the possibility of driving the final products.  相似文献   

6.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

7.
《Process Biochemistry》2010,45(1):39-46
We report the immobilization of Rhizomucor miehei lipase (RmL) onto mesoporous silica materials, in particular the investigations concerning the effects of the level of silica condensation and of the pore size on the enzyme activity. The efficiency of the immobilization was revealed by FTIR spectroscopy. Infrared was also used to determine the quantity of adsorbed enzyme. Immobilization efficiency increased when the RmL concentration in the buffer solution was changed from 2 to 10 mg/mL. Nevertheless, while upon enzyme immobilization the mesopore ordering was sustained for the support recovered after hydrothermal treatment at 100 °C, a structure collapse occurred for the one prepared at 80 °C. The difference in behavior is attributed to the lower hydrothermal stability of this material, which reflects the lower level of silica condensation. The enzyme-containing mesostructured silica was effectively used to catalyze the model esterification reaction of lauric acid with 1-propanol, as the immobilized lipase retained its catalytic activity. A linear relationship was observed between the reaction rate and the amount of catalyst. RmL immobilized on mesoporous materials presented a satisfactory reusability, while the remaining activity of RmL after 4 months of storage was 47% of the initial one.  相似文献   

8.
In this study, two different approaches were assessed in order to direct the immobilization of a cyclodextrin glycosyltransferase on functionalized silica support, one by amino groups using glutaraldehyde activation (Si-NH-G-CGTase) and other by disulfide bond through the Cys on the enzyme surface (Si-SH-CGTase). The efficiency of the immobilization of the enzyme by the Cys in Si-SH was four times higher than with the amino group linkage in Si-NH-G (2.86% and 11.91%, respectively). After immobilization, the optimum pH remained at 5.5 for the two derivatives and the optimum temperature was 70 °C for the free enzyme, 80 °C for Si-SH-CGTase and 90 °C for Si-NH-G-CGTase. Both preparations were used for continuous production of cyclodextrins, and Si-NH-G-CGTase presented higher total productivity, retaining 100% of its initial activity for at least 200 h, while the Si-SH-CGTase presented only 40% at the same time. The Si-SH-CGTase could be reloaded with new enzymes linked by disulfide bonds and was able to be used for more than 200 h.  相似文献   

9.
《Process Biochemistry》2014,49(2):244-249
The novel enzyme carrier, polyamidoamine (PAMAM) dendrimers modified macroporous polystyrene, has been synthesized by Michael addition and firstly used in the immobilization of porcine pancreas lipase (PPL) effectively by covalent attachment. The resulting carrier was characterized with the Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), elemental analysis and thermogravimetric (TG) analysis. Meanwhile, the amount of immobilized lipase was up to 100 mg g−1 support and the factors related with the enzyme activity were investigated. The immobilization of the PPL improved their performance in wider ranges of pH and temperature. Thermal stability of the immobilized lipase also increased dramatically in comparison with the free ones and the immobilized lipase exhibited a favorable denaturant tolerance. As a biocatalyst, the immobilized lipase for batch hydrolysis of olive oil emulsion retained 85% activity after 10 times of recycling. This well-reusability of immobilized lipase was very valuable and meaningful in enzyme technology.  相似文献   

10.
The three new dual-layer matrices (polyacrylonitrile (PAN) membranes coated with physically bound chitosan (CHI)—PANCHI-A and chemically bound chitosan—PANCHI-B and PANCHI-C) for immobilization of acetylcholinesterase (AChE) were obtained. The chemical-modified PAN membrane (PAN-NaOH + ethylenediamine (EDA)) was used as a base for the prepared dual-layer membranes. For chemical chitosan bound membrane, chitosan was tethered onto the membrane surface to form a dual-layer biomimetic membrane in the presence of glutaraldehyde (GA). The basic characteristics (amount of amino groups, hydrophilicity and transport characteristics) of the chitosan-modified membranes were investigated. The SEM analyses were shown essential morphology change in the different chitosan membranes.The relative activities and Vmax of the covalently immobilized enzyme on PANCHI-B and PANCHI-C membranes were higher than that on PANCHI-A membrane and chemical-modified membrane with NaOH + EDA. Km values for the different modified membranes are lower for the chitosan-treated membranes. The pH and temperature optimum of immobilized enzyme were determined. The bound enzymes on PANCHI-B and PANCHI-C have higher thermal and storage stability in comparison with AChE on PANCHI-A membrane and free enzyme.  相似文献   

11.
Objective of this study is to realize appropriate enzyme immobilization onto a suitable support material and to develop a model which enables reactions catalyzed with different enzymes arranged in order. Thence, this model was potential for developing a multi-enzyme system. The reactions need more than one enzyme can be realized using immobilized form of them and the enzymes will be in one support at wanted activities. In this study, sodium alginate was used as immobilization material and glycidyl methacrylate was grafted onto sodium alginate. Thus reactive epoxy groups were added to sodium alginate which also has carboxyl groups. Average molecular weight of sodium alginate was determined using Ubbelohde viscosimetri. The molecular mass of sodium alginate was calculated as 15,900 Da. Graft polymerization was made in two steps. Firstly, sodium alginate was activated with benzophenone using UV-light at 254 nm. Secondly, glycidyl methacrylate was grafted under UV-light at 365 nm onto activated sodium alginate. Grafted glycidyl methacrylate was determined gravimetric and titrimetric. Additional groups after grafting were showed with FT-IR spectrum. 1-Ethyl-3-(3-dimetylaminopropyl)-carbodiimide was used for immobilization urease from carboxyl groups at pH 5.0. Suitable 1-ethyl-3-(3-dimetylaminopropyl)-carbodiimide/–COOH ratio was found 1/10 and immobilized product activity was 197 U/g support. Reaction medium pH was 8.0 for immobilization from epoxy group. Optimum immobilization reaction time was found as 2 h and immobilized product activity was 285 U/g support. Sequential immobilization of urease to glycidyl methacrylate grafted sodium alginate was made from –COOH and epoxy groups, respectively.  相似文献   

12.
Poly(itaconic acid) grafted and/or Fe(III) ions incorporated chitosan membranes were used for reversible immobilization of catalase (from bovine liver) via adsorption. The influences of pH and initial catalase concentration on the immobilization capacities of the CH-g-poly(IA) and CH-g-poly(IA)-Fe(III) membranes have been investigated in a batch system. Maximum catalase adsorption onto CH-g-poly(IA) and CH-g-poly(IA)-Fe(III) membrane were found to be 6.3 and 37.8 mg/g polymer at pH 5.0 and 6.5, respectively. The CH-g-poly(IA)-Fe(III) membrane with high catalase adsorption capacity was used in the rest of the study. The Km value for immobilized catalase on CH-g-poly(IA)-Fe(III) (25.8 mM) was higher about 1.6-fold than that of free enzyme (13.5 mM). Optimum operational temperature was observed at 40 °C, a 5 °C higher than that of the free enzyme and was significantly broader. The optimum operational pH was same for both free and immobilized catalase (pH 7.0). Thermal stability was found to increase with immobilization. Free catalase lost all its activity within 20 days whereas immobilized catalase lost 23% of its activity during the same incubation period. It was observed that the same support enzyme can be repeatedly used for immobilization of catalase after regeneration without significant loss in adsorption capacity or enzyme activity. In addition, the CH-g-poly(IA)-Fe(III) membrane prepared in this work showed promising potential for various biotechnological applications.  相似文献   

13.
《Process Biochemistry》2007,42(3):439-443
The graft copolymerization of glycidyl methacrylate (GMA) onto nylon-6-membrane using benzophenone (BP) as an initiator was carried out in an alcoholic aqueous solution. The acrylic double bond of GMA participated in the grafting onto the nylon-6-membrane backbone with the epoxy groups remaining unaffected. At the end of the grafting reaction, urease was immobilized onto the modified membrane. BP concentration, GMA concentration and organic solvent seperation were studied by determining the grafting percentage. The influence of urease concentration on the immobilization efficiency was also studied. With keeping other conditions constant, the optimum conditions were shown as following [BP]: 5 × 10−2 mM; [GMA]: 10 M; [urease]: 10 mg/ml, organic solvent: methanol.  相似文献   

14.
《Process Biochemistry》2014,49(10):1682-1690
Double enzymes (alcalase and trypsin) were effectively immobilized in a composite carrier (calcium alginate–chitosan) to produce immobilized enzyme beads referred to as ATCC. The immobilization conditions for ATCC were optimized, and the immobilized enzyme beads were characterized. The optimal immobilization conditions were 2.5% of sodium alginate, 10:4 sodium alginate to the double enzymes, 3:7 chitosan solution to CaCl2 and 2.5 h immobilization time. The ATCC beads had greatly enhanced stability and good usability compared with the free form. The ATCC residual activity was retained at 88.9% of DH (degree of hydrolysis) after 35 days of storage, and 36.0% of residual activity was retained after three cycles of use. The beads showed a higher zein DH (65.8%) compared with a single enzyme immobilized in the calcium alginate beads (45.5%) or free enzyme (49.3%). The ATCC kinetic parameters Vmax and apparent Km were 32.3 mL/min and 456.62 g−1, respectively. Active corn peptides (CPs) with good antioxidant activity were obtained from zein in the ethanol phase. The ATCC might be valuable for preparing CPs and industrial applications.  相似文献   

15.
In this study raw starch digesting amylase (RSDA) from Aspergillus carbonarius (Bainier) Thom IMI 366159 was stabilized by covalent binding on polyglutaraldehyde (PG), glutaraldehyde (G) activated chitosan beads or post immobilization cross linking of enzyme adsorbed on chitosan. Presence of Ca2+ ions (0.5–1.5 mM) activated the PG and G derivatives but repressed the crosslinked enzyme. Optimum pH for cross linked derivative increased by 2 units but was unaltered for PG and G derivatives. Immobilized amylase exhibited improved thermal and storage stability. Immobilized derivatives had no loss of activity after 1 month storage and retained above 90% activity after 10 batch reactions of 60 min each. Immobilization successfully stabilized RSDA and immobilized enzyme from A. carbonarius can be applied in numerous industries for cheap, cost effective and environmentally friendly starch hydrolytic processes to simple sugars.  相似文献   

16.
Proton conducting biopolymer networks have potential use for bio-sensors. The cost-effective, non-hazardous and environmentally safe biopolymer, such as chitosan, is an attractive feature for bio-sensors. Cholesterol oxidase was immobilized in conducting network via complexation of chitosan with alginic acid. A method for the preparation of the complex along with characterization by elemental analysis, FTIR spectroscopy, TGA and DSC were reported. The proton conductivity chitosan–alginic acid network was studied via impedance spectroscopy under humidified condition. The complex polymer electrolyte with x = 1 exhibited maximum proton conductivity of 1.4 × 10?3 S/cm at RT, RH  50%. The potential use of this network in enzyme immobilization was studied by manufacturing cholesterol oxidase entrapped polymer networks. Additionally, the maximum reaction rate (Vmax) and Michaelis–Menten constant (Km) were investigated for the immobilized cholesterol oxidase. Also, temperature and pH optimization studies were performed, and operational stability and shelf life of the polymer network were examined.  相似文献   

17.
A novel method was developed for the immobilization of glucoamylase from Aspergillus niger. The enzyme was immobilized onto polyglutaraldehyde-activated gelatin particles in the presence of polyethylene glycol and soluble gelatin, resulting in 85% immobilization yield. The immobilized enzyme has been fully active for 30 days. In addition, the immobilized enzyme retained 90 and 75% of its activity in 60 and 90 days, respectively. The enzyme optimum conditions were not affected by immobilization and the optimum pH and temperature for free and immobilized enzyme were 4 and 65 °C, respectively. The kinetic parameters for the hydrolysis of maltodextrin by free and immobilized glucoamylase were also determined. The Km values for free and immobilized enzyme were 7.5 and 10.1 g maltodextrin/l, respectively. The Vmax values for free and immobilized enzyme were estimated as 20 and 16 μmol glucose/(min μl enzyme), respectively. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes.  相似文献   

18.
Lipase of Rhizopus arrhizus was immobilized on O-propargyl dextran (PgD) and O-pentynyl dextran (PyD). Compared with Lewatit VP OC 1600 cation ion exchange resin, wood shaves, fuller earth, silica and alumina, PgD with degree of substitution (DS) of 0.68 and a surface of 10 m2/g was found to be the most effective immobilization support and an excellent biocatalyst for esterification reactions in organic solvents as the synthesis of click beetle pheromone geranyl octanoate. PyD (DS 0.44) with a surface of 3.3 m2/g was of similar high efficiency. For the enzymatic esterification the optimum concentration of geraniol and octanoic acid was 0.4 mol L?1 each. The biocatalyst worked the best in hexane at a moisture level of 0.02%. The enzyme could be repeatedly used and conversion dropped from 80% to 70% after four cycles, while reaction rate even increased when repeatedly employed.  相似文献   

19.
Five kinds of spacer arm attached chitosan hybrid hydrogels were tested for the possibility of being used as carriers for the immobilization of hydroperoxide lyase from amaranthus tricolor leaves. The 1,6-hexamethylenediamine attached chitosan-κ-carrageenan with biomimetic hydrophobic surface was proved to be the most suitable carrier. A maximum activity of 7.49 ± 0.19 U/g and a yield of 95% were obtained under optimized coupling condition. Meanwhile, the affinity between enzyme and substrates was not reduced after immobilization, as evidenced by the fact that the Km value of hydroperoxide lyase decreased from 108.6 to 79.97 μM for 13-hydroperoxy-linoleic-acid and almost unchanged for 13-hydroperoxy-linolenic-acid. Furthermore, the thermal, operational and storage stabilities of HPL were significantly improved after immobilization. Using the immobilized enzyme as the catalyst, the yield of 2(E)-hexenal and hexanal reached 1374.8 ± 51.8 mg/L and 1987.9 ± 67.9 mg/L, respectively, and the amount of immobilized enzyme needed in the reaction mixture was much lower than its free counterpart.  相似文献   

20.
Acetylcholinesterase (AChE) was immobilized on chemically modified poly-(acrylonitrile-methyl-methacrylate-sodium vinylsulfonate) membranes in accordance with three different methods, the first of which involved random enzyme immobilization via glutaraldehyde, the second one—site-specific enzyme immobilization via glutaraldehyde and Concanavalin A (Con A) and the third method—modified site-specific enzyme immobilization via glutaraldehyde in the presence of a mixture of multiwall carbon nanotubes and albumin (MWCNs + BSA), glutaraldehyde and Con A. Preliminary tests for the activity of immobilized AChE were carried out using these three methods. The third method was selected as the most efficient one for the immobilization of AChE and the prepared enzyme carriers were used for the construction of amperometric biosensors for the detection of acetylthiocholine (ATCh).A five level three factorial central composite design was chosen to determine the optimal conditions for the enzyme immobilization with three critical variables: concentration of enzyme, Concanavalin A and MWCNs. The design illustrated that the optimum values of the factors influencing the amperometric current were CE: 70 U mL−1; CCon A: 1.5 mg mL−1 and CMWCN: 11 mg mL−1, with an amperometric current 0.418 μA. The basic amperometric characteristics of the constructed biosensor were investigated. A calibration plot was obtained for a series of ATCh concentrations ranging from 5 to 400 μM. A linear interval was detected along the calibration curve from 5 to 200 μM. The correlation coefficient for this concentration range was 0.995. The biosensor sensitivity was calculated to be 0.065 μA μM−1 cm−2. The detection limit with regard to ATCh was calculated to be 0.34 μM. The potential application of the biosensor for detection and quantification of organophosphate pesticides was investigated as well. It was tested against sample solutions of Paraoxon. The biosensor detection limit was determined to be 1.39 × 10−12 g L−1 of Paraoxon, as well as the interval (10−11 to 10−8 g L−1) within which the biosensor response was linearly dependant on the Paraoxon concentration. Finally the storage stability of the enzyme carrier was traced for a period of 120 days. After 30-day storage the sensor retained 76% of its initial current response, after 60 days—68% and after 120 days—61%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号