首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.The transporters and enzymes in many sugar metabolic pathways are conditionally expressed in response to their cognate sugar or a downstream pathway intermediate. While the induction of these pathways in response to a single sugar has been studied extensively (28), far less is known about how these pathways are induced in response to multiple sugars. One notable exception is the phenomenon observed when bacteria are grown in the presence of glucose and another sugar (10, 15). In such mixtures, the bacteria will often consume glucose first before consuming the other sugar, a process known as carbon catabolite repression (27). The classic example of carbon catabolite repression is the diauxic shift seen in the growth of Escherichia coli on mixtures of glucose and lactose, where the cells first consume glucose before consuming lactose. When the cells are consuming glucose, the genes in the lactose metabolic pathway are not induced, thus preventing the sugar from being consumed. A number of molecules participate in this regulation, including the cyclic AMP receptor protein (CRP), adenylate cyclase, cyclic AMP (cAMP), and EIIA from the phosphoenolpyruvate:glucose phosphotransferase system (PTS) (33). In addition to lactose, the metabolic genes for many other sugars are subject to catabolite repression by glucose in E. coli (27). While the preferential utilization of glucose is well known, it is an open question whether additional hierarchies exist among other sugars.Recently, substantial effort has been directed toward developing microorganisms capable of producing chemicals and biofuels from plant biomass (1, 34, 42). After glucose, l-arabinose and d-xylose are the next most abundant sugars found in plant biomass. Therefore, a key step in producing various chemicals and fuels from plant biomass will be the engineering of strains capable of efficiently fermenting these three sugars. However, one challenge concerns catabolite repression, which prevents microorganisms from fermenting these three sugars simultaneously and, as a consequence, may decrease the efficiency of the fermentation process. E. coli cells will first consume glucose before consuming either arabinose or xylose. As in the case of lactose, the genes in the arabinose and xylose metabolic pathways are not expressed when glucose is being consumed. In addition to glucose catabolite repression, a second hierarchy, between arabinose and xylose, appears to exist. Kang and coworkers have observed that the genes in the xylose metabolic pathway were repressed when cells were grown in a mixture of arabinose and xylose (21). Hernandez-Montalvo and coworkers also observed that E. coli utilizes arabinose before xylose (19). While a number of strategies exist for breaking the glucose-mediated repression of arabinose and xylose metabolism (8, 16, 19, 31), none exist for breaking the arabinose-mediated repression of xylose metabolism. Moreover, little is known about this repression beyond the observations made by these researchers.In this work, we investigate how the arabinose and xylose metabolic pathways are jointly regulated. We demonstrate that E. coli will consume arabinose before consuming xylose when it is grown in a mixture of the two sugars. Consistent with a mechanism involving catabolite repression, the genes in the xylose metabolic pathway are repressed in the presence of arabinose. We found that this repression is AraC dependent and is most likely due to binding by arabinose-bound AraC to the xylose promoters, with consequent inhibition of gene expression.  相似文献   

3.
Glucose is a universal energy source and a potent inducer of surface colonization for many microbial species. Highly efficient sugar assimilation pathways ensure successful competition for this preferred carbon source. One such pathway is the phosphoenolpyruvate phosphotransferase system (PTS), a multicomponent sugar transport system that phosphorylates the sugar as it enters the cell. Components required for transport of glucose through the PTS include enzyme I, histidine protein, enzyme IIAGlc, and enzyme IIBCGlc. In Escherichia coli, components of the PTS fulfill many regulatory roles, including regulation of nutrient scavenging and catabolism, chemotaxis, glycogen utilization, catabolite repression, and inducer exclusion. We previously observed that genes encoding the components of the Vibrio cholerae PTS were coregulated with the vps genes, which are required for synthesis of the biofilm matrix exopolysaccharide. In this work, we identify the PTS components required for transport of glucose and investigate the role of each of these components in regulation of biofilm formation. Our results establish a novel role for the phosphorylated form of enzyme I in specific regulation of biofilm-associated growth. As the PTS is highly conserved among bacteria, the enzyme I regulatory pathway may be relevant to a number of biofilm-based infections.  相似文献   

4.

Industrial glucose feedstock prepared by enzymatic digestion of starch typically contains significant amounts of disaccharides such as maltose and isomaltose and trisaccharides such as maltotriose and panose. Maltose and maltosaccharides can be utilized in Escherichia coli fermentation using industrial glucose feedstock because there is an intrinsic assimilation pathway for these sugars. However, saccharides that contain α-1,6 bonds, such as isomaltose and panose, are still present after fermentation because there is no metabolic pathway for these sugars. To facilitate more efficient utilization of glucose feedstock, we introduced glvA, which encodes phospho-α-glucosidase, and glvC, which encodes a subunit of the phosphoenolpyruvate-dependent maltose phosphotransferase system (PTS) of Bacillus subtilis, into E. coli. The heterologous expression of glvA and glvC conferred upon the recombinant the ability to assimilate isomaltose and panose. The recombinant E. coli assimilated not only other disaccharides but also trisaccharides, including alcohol forms of these saccharides, such as isomaltitol. To the best of our knowledge, this is the first report to show the involvement of the microbial PTS in the assimilation of trisaccharides. Furthermore, we demonstrated that an l-lysine-producing E. coli harboring glvA and glvC converted isomaltose and panose to l-lysine efficiently. These findings are expected to be beneficial for industrial fermentation.

  相似文献   

5.
The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS) transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.  相似文献   

6.
The solventogenic clostridia have a considerable capacity to ferment carbohydrate substrates with the production of acetone and butanol, making them attractive organisms for the conversion of waste materials to valuable products. In common with other anaerobes, the clostridia show a marked dependence on the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) to accumulate sugars and sugar derivatives. In this study, we demonstrate that extracts of Clostridium beijerinckii grown on N-acetylglucosamine (GlcNAc) exhibit PTS activity for the amino sugar. The PTS encoded by the divergent genes cbe4532 (encoding the IIC and IIB domains) and cbe4533 (encoding a IIA domain) was shown to transport and phosphorylate GlcNAc and also glucose. When the genes were recombined in series under the control of the lac promoter in pUC18 and transformed into a phosphotransferase mutant (nagE) of Escherichia coli lacking GlcNAc PTS activity, the ability to take up and ferment GlcNAc was restored, and extracts of the transformant showed PEP-dependent phosphorylation of GlcNAc. The gene products also complemented an E. coli mutant lacking glucose PTS activity but were unable to complement the same strain for PTS-dependent mannose utilization. Both GlcNAc and glucose induced the expression of cbe4532 and cbe4533 in C. beijerinckii, and consistent with this observation, extracts of cells grown on glucose exhibited PTS activity for GlcNAc, and glucose did not strongly repress utilization of GlcNAc by growing cells. On the basis of the phylogeny and function of the encoded PTS, we propose that the genes cbe4532 and cbe4533 should be designated nagE and nagF, respectively.  相似文献   

7.
4-Ethylphenol (4-EP) is an industrially versatile commodity chemical widely applied in the pharmaceutical and food industries. In this study, an artificial biosynthetic pathway was constructed in Escherichia coli for production of 4-ethylphenol from simple sources of carbon. The pathway consists of the tal, pad and vpr genes, which encode tyrosine ammonia lyase (TAL), phenolic acid decarboxylase (PAD) and vinylphenol reductase (VPR), respectively. Our results confirmed that the TAL from Saccharothrix espanaensis possessed higher catalytic activity than the TAL from Rhodobacter sphaeroides for biosynthesis of p-hydroxycinnamic acid. The low solubility of Lactobacillus plantarum VPR (LpVPR) in E. coli was a critical factor limiting its availability in the biosynthetic pathway. The solubility of LpVPR was improved by E. coli strain and induction condition optimization. Under the optimized conditions, the engineered E. coli TransB-TPV produced as high as 110 mg/L 4-EP at 37 ℃ in Terrific Broth (TB) medium with glycerol as carbon source after cultivation of 48 h. This study provided a new and feasible strategy for biosynthesis of 4-EP from simple sugars, which may provide a basis for future large-scale industrial application.  相似文献   

8.
9.
10.
Fructose transport in lactococci is mediated by two phosphotransferase systems (PTS). The constitutive mannose PTS has a broad specificity and may be used for uptake of fructose with a fructose saturation constant (KFru) of 0.89 mM, giving intracellular fructose 6-phosphate. The inducible fructose PTS has a very small saturation constant (KFru, <17 μM), and the fructose 1-phosphate produced enters the Embden-Meyerhof-Parnas (EMP) pathway as fructose 1,6-diphosphate. Growth in batch cultures of Lactococcus lactis subsp. cremoris FD1 in a yeast extract medium with fructose as the only sugar is poor both with respect to specific growth rate and biomass yield, whereas the specific lactic acid production rate is higher than those in similar fermentations on other sugars metabolized via the EMP pathway, e.g., glucose. In fructose-limited chemostat cultures, the biomass concentration exhibits a strong correlation with the dilution rate, and starting a continuous culture at the end of a batch fermentation leads to large and persistent oscillations in the biomass concentration and specific lactic acid production rate. Two proposed mechanisms underlying this strange growth pattern follow. (i) Fructose transported via the fructose PTS cannot be converted into essential biomass precursors (glucose 6-phosphate or fructose 6-phosphate), because L. lactis subsp. cremoris FD1 is devoid of fructose 1,6-diphosphatase activity. (ii) The fructose PTS apparently produces a metabolite (presumably fructose 1-phosphate) which exerts catabolite repression of both mannose PTS and lactose PTS. Since the repressed mannose PTS and lactose PTS are shown to have identical maximum molar transport rates, the results indicate that it is the general PTS proteins which are repressed.  相似文献   

11.
Shikimic acid (SA) is an industrially important chiral compound used in diverse commercial applications, and the insufficient supply by isolation from plants and expensive chemical synthesis of SA has increased the importance of developing strategies for SA synthesis. In our previous studies, glycerol was observed to be an effective carbon source for SA accumulation in E. coli DHPYAAS-T7, where the PTS operon (ptsHIcrr) and aroL and aroK genes were inactivated, and the tktA, glk, aroE, aroF fbr , and aroB genes were overexpressed. For further investigation of the effects of glycerol aerobic fermentation on SA accumulation in E. coli BL21(DE3), the glpD, glpK genes and tktA, glk, aroE, aroF fbr , aroB genes were overexpressed simultaneously. The results indicated that SA production was increased 5.6-fold, while the yield was increased 5.3-fold over that of parental strain in shake flasks. It is demonstrated that the aerobic fermentation of glycerol associated with glpD and glpK gene overexpression increased glycerol flux, resulting in higher SA accumulation in E. coli BL21(DE3)-P-DK.  相似文献   

12.
Escherichia coli only maintains a small amount of cellular malonyl-CoA, impeding its utility for overproducing natural products such as polyketides and flavonoids. Here, we report the use of various metabolic engineering strategies to redirect the carbon flux inside E. coli to pathways responsible for the generation of malonyl-CoA. Overexpression of acetyl-CoA carboxylase (Acc) resulted in 3-fold increase in cellular malonyl-CoA concentration. More importantly, overexpression of Acc showed a synergistic effect with increased acetyl-CoA availability, which was achieved by deletion of competing pathways leading to the byproducts acetate and ethanol as well as overexpression of an acetate assimilation enzyme. These engineering efforts led to the creation of an E. coli strain with 15-fold elevated cellular malonyl-CoA level. To demonstrate its utility, this engineered E. coli strain was used to produce an important polyketide, phloroglucinol, and showed near 4-fold higher titer compared with wild-type E. coli, despite the toxicity of phloroglucinol to cell growth. This engineered E. coli strain with elevated cellular malonyl-CoA level should be highly useful for improved production of important natural products where the cellular malonyl-CoA level is rate-limiting.  相似文献   

13.
The utilization of several sugars in Escherichia coli is regulated by the Phosphotransferase System (PTS), in which diverse sugar utilization modules compete for phosphoryl flux from the general PTS proteins. Existing theoretical work predicts a winner‐take‐all outcome when this flux limits carbon uptake. To date, no experimental work has interrogated competing PTS uptake modules with single‐cell resolution. Using time‐lapse microscopy in perfused microchannels, we analyzed the competition between N‐acetyl‐glucosamine and sorbitol, as representative PTS sugars, by measuring both the expression of their utilization systems and the concomitant impact of sugar utilization on growth rates. We find two distinct regimes: hierarchical usage of the carbohydrates, and co‐expression of the genes for both systems. Simulations of a mathematical model incorporating asymmetric sugar quality reproduce our metabolic phase diagram, indicating that under conditions of nonlimiting phosphate flux, co‐expression is due to uncoupling of both sugar utilization systems. Our model reproduces hierarchical winner‐take‐all behaviour and stochastic co‐expression, and predicts the switching between both strategies as a function of available phosphate flux. Hence, experiments and theory both suggest that PTS sugar utilization involves not only switching between the sugars utilized but also switching of utilization strategies to accommodate prevailing environmental conditions.  相似文献   

14.
Interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate is an important step in the pentose phosphate pathway. Two unrelated enzymes with R5P isomerase activity were first identified in Escherichia coli, RpiA and RpiB. In this organism, the essential 5-carbon sugars were thought to be processed by RpiA, while the primary role of RpiB was suggested to instead be interconversion of the rare 6-carbon sugars d-allose-6-phosphate (All6P) and d-allulose-6-phosphate. In Mycobacterium tuberculosis, where only an RpiB is found, the 5-carbon sugars are believed to be the enzyme's primary substrates. Here, we present kinetic studies examining the All6P isomerase activity of the RpiBs from these two organisms and show that only the E. coli enzyme can catalyze the reaction efficiently. All6P instead acts as an inhibitor of the M. tuberculosis enzyme in its action on R5P. X-ray studies of the M. tuberculosis enzyme co-crystallized with All6P and 5-deoxy-5-phospho-d-ribonohydroxamate (an inhibitor designed to mimic the 6-carbon sugar) and comparison with the E. coli enzyme's structure allowed us to identify differences in the active sites that explain the kinetic results. Two other structures, that of a mutant E. coli RpiB in which histidine 99 was changed to asparagine and that of wild-type M. tuberculosis enzyme, both co-crystallized with the substrate ribose-5-phosphate, shed additional light on the reaction mechanism of RpiBs generally.  相似文献   

15.
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) plays a major role in the ability of Escherichia coli to migrate toward PTS carbohydrates. The present study establishes that chemotaxis toward PTS substrates in Bacillus subtilis is mediated by the PTS as well as by a methyl-accepting chemotaxis protein (MCP). As for E. coli, a B. subtilis ptsH null mutant is severely deficient in chemotaxis toward most PTS carbohydrates. Tethering analysis revealed that this mutant does respond normally to the stepwise addition of a PTS substrate (positive stimulus) but fails to respond normally to the stepwise removal of such a substrate (negative stimulus). An mcpC null mutant showed no response to the stepwise addition or removal of d-glucose or d-mannitol, both of which are PTS substrates. Therefore, in contrast to E. coli PTS carbohydrate chemotaxis, B. subtilis PTS carbohydrate chemotaxis is mediated by both MCPs and the PTS; the response to positive stimulus is primarily McpC mediated, while the duration or magnitude of the response to negative PTS carbohydrate stimulus is greatly influenced by components of the PTS and McpC. In the case of the PTS substrate d-glucose, the response to negative stimulus is also partially mediated by McpA. Finally, we show that B. subtilis EnzymeI-P has the ability to inhibit B. subtilis CheA autophosphorylation in vitro. We hypothesize that chemotaxis in the spatial gradient of the capillary assay may result from a combination of a transient increase in the intracellular concentration of EnzymeI-P and a decrease in the concentration of carbohydrate-associated McpC as the cell moves down the carbohydrate concentration gradient. Both events appear to contribute to inhibition of CheA activity that increases the tendency of the bacteria to tumble. In the case of d-glucose, a decrease in d-glucose-associated McpA may also contribute to the inhibition of CheA. This bias on the otherwise random walk allows net migration, or chemotaxis, to occur.  In enteric bacteria, chemotaxis toward many carbohydrate attractants is dependent upon components of the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) (1, 9, 15). This carbohydrate transport system consists of an autophosphorylating histidine kinase, EnzymeI, a common phosphocarrier protein, HPr, and a number of substrate-specific transporters, the EnzymeII complexes. At the expense of PEP, EnzymeI autophosphorylates on a histidine residue and transfers this phosphoryl group to a histidine residue on HPr. HPr-P then donates this phosphoryl group to a carbohydrate-specific EnzymeII complex. The carbohydrate substrate is the final phosphoryl group acceptor, as it is transported into the cell and is concomitantly phosphorylated by EnzymeII (13).Chemotaxis is also controlled by a phosphoryl transfer cascade. CheA, in response to an attractant- or repellent-bound receptor (methyl-accepting chemotaxis protein [MCP]), alters its rate of autophosphorylation appropriately to transiently increase or decrease the intracellular CheY-P pool and thereby modulate swimming behavior (4, 16). In enteric bacteria, increased CheY-P leads to tumbling (19). In Bacillus subtilis, increased CheY-P leads to smooth swimming (3). In enteric bacteria, chemotaxis toward PTS substrates requires CheA, CheY, EnzymeI, and HPr but does not depend on the presence of an MCP (12, 18). These observations have led investigators to suggest that the changes in the phosphorylation state of PTS components that accompany carbohydrate transport regulate CheA activity (10).Recent work has provided the following model for the role of the PTS in chemotaxis toward its substrates in Escherichia coli. As the bacteria encounter a PTS carbohydrate, HPr dephosphorylates EnzymeI faster than the latter protein can be rephosphorylated. The resulting increase in unphosphorylated EnzymeI and the resulting decrease in PEP both function to decrease the rate of CheA autophosphorylation. This is believed to lead to a transient decrease in the CheY-P pool that suppresses tumbling, allowing the bacteria to move up the carbohydrate gradient (10).This article describes studies on the process of carbohydrate chemotaxis in B. subtilis. In particular, we provide evidence that McpC is absolutely required for any response to all of the PTS carbohydrates tested. This is surprising considering the fact that McpC has previously been shown to also mediate chemotaxis toward eight different amino acids (11). McpA has previously been shown to partially mediate chemotaxis toward glucose (7). This result is confirmed in the present study with the use of direct behavioral assays. Our results suggest the existence of a multidimensional signaling mechanism involving both the PTS and specific MCPs, an unprecedented finding in the study of the molecular control of bacterial carbohydrate chemotaxis.  相似文献   

16.
Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications.  相似文献   

17.
The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-β-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.  相似文献   

18.
19.
Carbon isotope discrimination (Δ) was analyzed in leaf starch and soluble sugars, which represent most of the recently fixed carbon. Plants of three C3 species (Populus nigra L. × P. deltoides Marsh., Gossypium hirsutum L. and Phaseolus vulgaris L.) were kept in the dark for 24 hours to decrease contents of starch and sugar in leaves. Then gas exchange measurements were made with constant conditions for 8 hours, and subsequently starch and soluble sugars were extracted for analysis of carbon isotope composition. The ratio of intercellular, pi, and atmospheric, pa, partial pressures of CO2, was calculated from gas exchange measurements, integrated over time and weighted by assimilation rate, for comparison with the carbon isotope ratios in soluble sugars and starch. Carbon isotope discrimination in soluble sugars correlated strongly (r = 0.93) with pi/pa in all species, as did Δ in leaf starch (r = 0.84). Starch was found to contain significantly more 13C than soluble sugar, and possible explanations are discussed. The strong correlation found between Δ and pi/pa suggests that carbon isotope analysis in leaf starch and soluble sugars may be used for monitoring, indirectly, the average of pi/pa weighted by CO2 assimilation rate, over a day. Because pi/pa has a negative correlation with transpiration efficiency (mol CO2/mol H2O) of isolated plants, Δ in starch and sugars may be used to predict differences in this efficiency. This new method may be useful in ecophysiological studies and in selection for improved transpiration efficiency in breeding programs for C3 species.  相似文献   

20.
In Eubacteria, the utilization of a number of extracellular carbohydrates is mediated by sugar specific phosphoenolepyruvate (PEP) dependent sugar phosphotransferase systems (PTSs), which simultaneously import und phosphorylate their target sugars. Here, we report the crystal structure of the EIIAgnt component of the so far little investigated Enterococcus faecalis gluconate specific PTS. The crystal structure shows a tightly interacting dimer of EIIAgnt which is structurally similar to the related EIIAman from Escherichia coli. Homology modeling of E. faecalis HPr, EIIBman and their complexes with EIIAman suggests that despite moderate sequence identity between EIIAman and EIIAgnt, the active sites closely match the situation observed in the E. coli system with His-9 of EIIAgnt being the likely phosphoryl group carrier. We therefore propose that the phosphoryl transfer reactions involving EIIAgnt proceed according to a mechanism analog to the one described for E. coli EIIAman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号