首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermostability is an important property of enzymes utilized for practical applications because it allows long-term storage and use as catalysts. In this study, we constructed an error-prone strain of the thermophile Geobacillus kaustophilus HTA426 and investigated thermoadaptation-directed enzyme evolution using the strain. A mutation frequency assay using the antibiotics rifampin and streptomycin revealed that G. kaustophilus had substantially higher mutability than Escherichia coli and Bacillus subtilis. The predominant mutations in G. kaustophilus were A · T→G · C and C · G→T · A transitions, implying that the high mutability of G. kaustophilus was attributable in part to high-temperature-associated DNA damage during growth. Among the genes that may be involved in DNA repair in G. kaustophilus, deletions of the mutSL, mutY, ung, and mfd genes markedly enhanced mutability. These genes were subsequently deleted to construct an error-prone thermophile that showed much higher (700- to 9,000-fold) mutability than the parent strain. The error-prone strain was auxotrophic for uracil owing to the fact that the strain was deficient in the intrinsic pyrF gene. Although the strain harboring Bacillus subtilis pyrF was also essentially auxotrophic, cells became prototrophic after 2 days of culture under uracil starvation, generating B. subtilis PyrF variants with an enhanced half-denaturation temperature of >10°C. These data suggest that this error-prone strain is a promising host for thermoadaptation-directed evolution to generate thermostable variants from thermolabile enzymes.  相似文献   

2.
Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.  相似文献   

3.
Thermophiles have important advantages over mesophiles as host organisms for high-temperature bioprocesses, functional production of thermostable enzymes, and efficient expression of enzymatic activities in vivo. To capitalize on these advantages of thermophiles, we describe here a new inducible gene expression system in the thermophile Geobacillus kaustophilus HTA426. Six promoter regions in the HTA426 genome were identified and analyzed for expression profiles using β-galactosidase reporter assay. This analysis identified a promoter region upstream of a putative amylose-metabolizing gene cluster that directed high-level expression of the reporter gene. The expression was >280-fold that without a promoter and was further enhanced 12-fold by maltose addition. In association with a multicopy plasmid, this promoter region was used to express heterologous genes. Several genes, including a gene whose product was insoluble when expressed in Escherichia coli, were successfully expressed as soluble proteins, with yields of 0.16 to 59 mg/liter, and conferred new functions to G. kaustophilus strains. Remarkably, cellulase and α-amylase genes conferred the ability to degrade cellulose paper and insoluble starch at high temperatures, respectively, generating thermophiles with the potential to degrade plant biomass. Our results demonstrate that this novel expression system expands the potential applications of G. kaustophilus.  相似文献   

4.
We established an efficient transformation method for thermophile Geobacillus kaustophilus HTA426 using conjugative transfer from Escherichia coli of host-mimicking plasmids that imitate DNA methylation of strain HTA426 to circumvent its DNA restriction barriers. Two conjugative plasmids, pSTE33T and pUCG18T, capable of shuttling between E. coli and Geobacillus spp., were constructed. The plasmids were first introduced into E. coli BR408, which expressed one inherent DNA methylase gene (dam) and two heterologous methylase genes from strain HTA426 (GK1380-GK1381 and GK0343-GK0344). The plasmids were then directly transferred from E. coli cells to strain HTA426 by conjugative transfer using pUB307 or pRK2013 as a helper plasmid. pUCG18T was introduced very efficiently (transfer efficiency, 10(-5)-10(-3) recipient(-1)). pSTE33T showed lower efficiency (10(-7)-10(-6) recipient(-1)) but had a high copy number and high segregational stability. Methylase genes in the donor substantially affected the transfer efficiency, demonstrating that the host-mimicking strategy contributes to efficient transformation. The transformation method, along with the two distinguishing plasmids, increases the potential of G. kaustophilus HTA426 as a thermophilic host to be used in various applications and as a model for biological studies of this genus. Our results also demonstrate that conjugative transfer is a promising approach for introducing exogenous DNA into thermophiles.  相似文献   

5.
Counterselection systems facilitate marker-free genetic modifications in microbes by enabling positive selections for both the introduction of a marker gene into the microbe and elimination of the marker from the microbe. Here we report a counterselection system for Geobacillus kaustophilus HTA426, established through simultaneous disruption of the pyrF and pyrR genes. The pyrF gene, essential for pyrimidine biosynthesis and metabolization of 5-fluoroorotic acid (5-FOA) to toxic metabolites, was disrupted by homologous recombination. The resultant MK54 strain (ΔpyrF) was auxotrophic for uracil and resistant to 5-FOA. MK54 complemented with pyrF was prototrophic for uracil but insensitive to 5-FOA in the presence of uracil. To confer 5-FOA sensitivity, the pyrR gene encoding an attenuator to repress pyrimidine biosynthesis by sensing uracil derivatives was disrupted. The resultant MK72 strain (ΔpyrF ΔpyrR) was auxotrophic for uracil and resistant to 5-FOA. MK72 complemented with pyrF was prototrophic for uracil and 5-FOA sensitive even in the presence of uracil. The results suggested that pyrF could serve as a counterselection marker in MK72, which was demonstrated by efficient marker-free integrations of heterologous β-galactosidase and α-amylase genes. The integrated genes were functionally expressed in G. kaustophilus and conferred new functions on the thermophile. This report describes the first establishment of a pyrF-based counterselection system in a Bacillus-related bacterium, along with the first demonstration of homologous recombination and heterologous gene expression in G. kaustophilus. Our results also suggest a new strategy for establishment of counterselection systems.  相似文献   

6.
The plasmid pGKE75-catA138T, which comprises pUC18 and the catA138T gene encoding thermostable chloramphenicol acetyltransferase with an A138T amino acid replacement (CATA138T), serves as an Escherichia coli-Geobacillus kaustophilus shuttle plasmid that confers moderate chloramphenicol resistance on G. kaustophilus HTA426. The present study examined the thermoadaptation-directed mutagenesis of pGKE75-catA138T in an error-prone thermophile, generating the mutant plasmid pGKE75αβ-catA138T responsible for substantial chloramphenicol resistance at 65°C. pGKE75αβ-catA138T contained no mutation in the catA138T gene but had two mutations in the pUC replicon, even though the replicon has no apparent role in G. kaustophilus. Biochemical characterization suggested that the efficient chloramphenicol resistance conferred by pGKE75αβ-catA138T is attributable to increases in intracellular CATA138T and acetyl-coenzyme A following a decrease in incomplete forms of pGKE75αβ-catA138T. The decrease in incomplete plasmids may be due to optimization of plasmid replication by RNA species transcribed from the mutant pUC replicon, which were actually produced in G. kaustophilus. It is noteworthy that G. kaustophilus was transformed with pGKE75αβ-catA138T using chloramphenicol selection at 60°C. In addition, a pUC18 derivative with the two mutations propagated in E. coli at a high copy number independently of the culture temperature and high plasmid stability. Since these properties have not been observed in known plasmids, the outcomes extend the genetic toolboxes for G. kaustophilus and E. coli.  相似文献   

7.
Effective utilization of microbes often requires complex genetic modification using multiple antibiotic resistance markers. Because a few markers have been used in Geobacillus spp., the present study was designed to identify a new marker for these thermophiles. We explored antibiotic resistance genes functional in Geobacillus kaustophilus HTA426 and identified a thiostrepton resistance gene (tsr) effective at 50 °C. The tsr gene was further used to generate the mutant tsrH258Y functional at 55 °C. Higher functional temperature of the mutant was attributable to the increase in thermostability of the gene product because recombinant protein produced from tsrH258Y was more thermostable than that from tsr. In fact, the tsrH258Y gene served as a selectable marker for plasmid transformation of G. kaustophilus. This new marker could facilitate complex genetic modification of G. kaustophilus and potentially other Geobacillus spp.  相似文献   

8.
9.
Most members of the type-2 phosphatidic acid phosphatase (PAP2) superfamily are integral membrane phophatases involved in lipid-related signal transduction and metabolism. Here we describe the cloning of a novel gene from Geobacillus toebii T-85, encoding a PAP2-like protein, Gtb PAP2L2, which contains 212 amino acids and shows a limited homology to other known PAP2s, especially at conserved phosphatase motifs, and a similar six-transmembrane topology structure. This enzyme was expressed, and purified in Escherichia coli. Recombinant Gtb PAP2L2s from the membrane fractions were solublized with 0.3% (v/v) Triton X-100 and purified by Ni2+ affinity chromatography. The purified enzyme showed broad substrate specificity to phosphatidic acid, diacylglycerol pyrophosphate, and lysophosphatidic, but preferred phosphatidic acid and diacylglycerol pyrophosphate in vitro. Gtb PAP2L2 is a thermal stable enzyme with a half-life of 30 min at 60 °C. The enzyme was strongly inhibited by 1% SDS, 10 mM veranda, and Zn2+, whereas it was independent of the Mg2+ ion, and insensitive to N-ethylmaleimide. The purified recombinant Gtb PAP2L2 was catalytically active and highly stable, making it ideal as a candidate on which to base further PAP2 structure/function studies.  相似文献   

10.
We present herein the first complete genome sequence of a thermophilic Bacillus-related species, Geobacillus kaustophilus HTA426, which is composed of a 3.54 Mb chromosome and a 47.9 kb plasmid, along with a comparative analysis with five other mesophilic bacillar genomes. Upon orthologous grouping of the six bacillar sequenced genomes, it was found that 1257 common orthologous groups composed of 1308 genes (37%) are shared by all the bacilli, whereas 839 genes (24%) in the G.kaustophilus genome were found to be unique to that species. We were able to find the first prokaryotic sperm protamine P1 homolog, polyamine synthase, polyamine ABC transporter and RNA methylase in the 839 unique genes; these may contribute to thermophily by stabilizing the nucleic acids. Contrasting results were obtained from the principal component analysis (PCA) of the amino acid composition and synonymous codon usage for highlighting the thermophilic signature of the G.kaustophilus genome. Only in the PCA of the amino acid composition were the Bacillus-related species located near, but were distinguishable from, the borderline distinguishing thermophiles from mesophiles on the second principal axis. Further analysis revealed some asymmetric amino acid substitutions between the thermophiles and the mesophiles, which are possibly associated with the thermoadaptation of the organism.  相似文献   

11.
A gene encoding a thermostable pullulan-hydrolyzing enzyme was isolated from environmental genomic DNA extracted from soil sediments of Bor Khleung hot spring in Thailand. Sequence comparison with related enzymes suggested that the isolated enzyme, designated Env Npu193A, was most likely a neopullulanase-like enzyme. Env Npu193A was expressed in Pichia pastoris as a monomeric recombinant protein. The purified Env Npu193A exhibited pH stability ranging from 3 to 9. More than 60% of enzyme activity was retained after incubation at 60 °C for 1 h. Env Npu193A was found to hydrolyze various substrates, including pullulan, starch, and γ-cyclodextrin. The optimal working condition for Env Npu193A was at pH 7 at 75 °C with K m and V max toward pullulan of 1.22±0.3% and 23.24±1.7 U/mg respectively. Env Npu193A exhibited distinct biochemical characteristics as compared with the previously isolated enzyme from the same source. Thus, a culture-independent approach with sequence-basing was found to be an effective way to discover novel enzymes displaying unique substrate specificity and high thermostability from natural bioresources.  相似文献   

12.
N-Succinylamino acid racemase (NSAAR) with N-acylamino acid racemase (NAAAR) activity together with a d- or l-aminoacylase allows the total transformation of N-acetylamino acid racemic mixtures into optically pure d- or l-amino acids, respectively. In this work we have cloned and expressed the N-succinylamino acid racemase gene from the thermophilic Bacillus-related species Geobacillus kaustophilus CECT4264 in Escherichia coli BL21 (DE3). G. kaustophilus NSAAR (GkNSAAR) was purified in a one-step procedure by immobilized cobalt affinity chromatography and showed an apparent molecular mass of 43 kDa in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of about 150 kDa, suggesting that the native enzyme is a homotetramer. Optimum reaction conditions for the purified enzyme were 55 °C and pH 8.0, using N-acetyl-d-methionine as substrate. GkNSAAR showed a gradual loss of activity at preincubation temperatures over 60 °C, suggesting that it is thermostable. As activity was greatly enhanced by Co2+, Mn2+ and Ni2+ but inhibited by metal-chelating agents, it is considered a metalloenzyme. The Co2+-dependent activity profile of the enzyme was studied with no detectable inhibition at higher metal ion concentrations. GkNSAAR showed activity towards both aliphatic and aromatic N-acetylamino acids such as N-acetyl-methionine and N-acetyl-phenylalanine, respectively, with kcat/Km values ranging from 1 × 103 to 9 × 103 s?1 M?1. Kinetic parameters were better for N-acetyl-d-amino acids than for N-acetyl-l-specific ones.  相似文献   

13.
14.
Russian Journal of Bioorganic Chemistry - In this study, a thermophilic bacterium isolated from a thermal source in Turkey and identified as Geobacillus pallidus P26 was used to produce the...  相似文献   

15.
A genomic library of Bacillus coagulans strain 81-11 was screened in Escherichia coli JM83 for lipolytic activity by using tributyrin agar plates. A 2.4 kb DNA fragment was subcloned from a lipolytic-positive clone and completely sequenced. Nucleotide sequence analysis predicted a 723 bp open reading frame (ORF), designated estC1, encoding a protein of 240 amino acids with an estimated molecular mass of 27 528 Da and a pI of 9.15. The deduced amino acid sequence of the estC1 gene exhibited significant amino acid sequence identity with carboxylesterases from thermophilic Geobacillus spp. and sequence analysis showed that the protein contains the signature G-X-S-X-G included in most esterases and lipases. Enzyme assays using p-nitrophenyl (p-NP) esters with different acyl chain lengths as the substrate confirmed the esterase activity. EstC1 exhibited a marked preference for esters of short-chain fatty acids, yielding the highest activity with p-NP butyrate. Maximum activity was found at pH 8 and 50°C, although the enzyme displayed stability at temperatures up to 60°C.  相似文献   

16.
Thermostable Amylolytic Enzymes from a New Clostridium Isolate   总被引:3,自引:9,他引:3       下载免费PDF全文
A new Clostridium strain was isolated on starch at 60°C. Starch, pullulan, maltotriose, and maltose induced the synthesis of α-amylase and pullulanase, while glucose, ribose, fructose, and lactose did not. The formation of the amylolytic enzymes was dependent on growth and occurred predominantly in the exponential phase. The enzymes were largely cell bound during growth of the organism with 0.5% starch, but an increase of the starch concentration in the growth medium was accompanied by the excretion of α-amylase and pullulanase into the culture broth; but also by a decrease of total activity. α-Amylase, pullulanase, and α-glucosidase were active in a broad temperature range (40 to 85°C) and displayed temperature optima for activity at 60 to 70°C. During incubation with starch under aerobic conditions at 75°C for 2 h, the activity of both enzymes decreased to only 90 or 80%. The apparent Km values of α-amylase, pullulanase, and α-glucosidase for their corresponding substrates, starch, pullulan, and maltose were 0.35 mg/ml, 0.63 mg/ml, and 25 mM, respectively.  相似文献   

17.
Carboxylesterases are hydrolases which catalyze the hydrolysis of various types of esters. Carboxylesterase from the seeds of Jatropha curcas has been purified to homogeneity using ammonium sulfate fractionation, CM-cellulose chromatography, Sephadex G-100 chromatography and preparative polyacrylamide gel electrophoresis (PAGE). The homogeneity of the purified enzyme was confirmed by PAGE, iso-electrofocusing and SDS-PAGE. The molecular weight of the purified enzyme was determined by both gel-permeation chromatography on Sephadex G-150 and SDS-PAGE. The molecular weight determined by Sephadex G-150 chromatography and SDS-PAGE both in the presence and absence of 2-mercaptoethanol was 31 kDa. The isoelectric point of the purified enzyme was found to be 8.9. JCSE-I (J. curcas seed esterase-I) was classified as carboxylesterase on the basis of substrate and inhibitor specificity. The Km of JCSE-I with 1-naphthyl acetate, 1-naphthyl propionate, 1-naphthyl butyrate and 2-naphthyl acetate as substrates were found to be 0.0,794, 0.0,658, 0.0,567 and 0.1 mM, respectively. The enzyme exhibited an optimum temperature of 45 °C and an optimum pH of 6.5. The enzyme was stable up to 15 min at 65 °C. The enzyme was resistant towards carbamates (carbaryl and eserine sulfate) and sulphydryl inhibitors (p-chloromercuricbenzoate, PCMB) and inhibited by organophosphates (dichlorvos, parathion and phosphamidon).  相似文献   

18.
An oxidative and SDS-stable alkaline protease secreted by a marine haloalkalophilic Bacillus clausii isolated from the tidal mud flats of the Korean Yellow Sea near Inchon City was investigated in batch fermentation in shake flasks and in a bioreactor under a range of conditions. The isolate produced maximum protease yields (15,000 U ml−1) under submerged fermentation conditions at 42 °C for 40 h with an aeration of 1.5 v/v/min and agitation of 400 rev/min in a formulated soybean—casein medium (pH 9.6) containing (w/v): soybean meal (2%), casein (1%), corn starch (0.5%), NH4Cl (0.05%), NaCl (0.05%), KH2PO4(0.04%), K2HPO4(0.03%), MgSO4(0.02%), yeast extract (0.01%) and Na2CO3(0.6%). The optimal pH and temperature of activity of the partially purified enzyme were 11.5 and 80 °C, respectively. The alkaline protease showed extreme stability towards SDS and oxidizing agents, retaining its activity above 96 and 75% on treatment for 72 h with 5% SDS and 5% H2O2, respectively. The inhibition profile exhibited by phenylmethanesulphonyl fluoride suggested that the protease from B. clausii belongs to the family of serine proteases.  相似文献   

19.
Lipases have found a number of commercial applications. However, thermostable lipase immobilized on nanoparticle is not extensively characterized. In this study, a recombinant thermostable lipase (designated as TtL) from Thermus thermophilus WL was expressed in Escherichia coli and immobilized onto 3-APTES-modified Fe3O4@SiO2 supermagnetic nanoparticles. Based on analyses with tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer observation, the diameter of immobilized lipase nanoparticle was 18.4 (±2.4)?nm, and its saturation magnetization value was 52.3 emu/g. The immobilized lipase could be separated from the reaction medium rapidly and easily in a magnetic field. The biochemical characterizations revealed that, comparing with the free one, the immobilized lipase exhibited better resistance to temperature, pH, metal ions, enzyme inhibitors, and detergents. The K m value for the immobilized TtL (2.56 mg/mL) was found to be lower than that of the free one (3.74 mg/mL), showing that the immobilization improved the affinity of lipase for its substrate. In addition, the immobilized TtL exhibited good reusability. It retained more than 79.5 % of its initial activity after reusing for 10 cycles. Therefore, our study presented that the possibility of the efficient reuse of the thermostable lipase immobilized on supermagnetic nanoparticles made it attractive from the viewpoint of practical application.  相似文献   

20.
Short-chain alcohol dehydrogenase, encoded by the gene Tsib_0319 from the hyperthermophilic archaeon Thermococcus sibiricus, was expressed in Escherichia coli, purified and characterized as an NADPH-dependent enantioselective oxidoreductase with broad substrate specificity. The enzyme exhibits extremely high thermophilicity, thermostability, and tolerance to organic solvents and salts.Alcohol dehydrogenases (ADHs; EC 1.1.1.1.) catalyze the interconversion of alcohols to their corresponding aldehydes or ketones by using different redox-mediating cofactors. NAD(P)-dependent ADHs, due to their broad substrate specificity and enantioselectivity, have attracted particular attention as catalysts in industrial processes (5). However, mesophilic ADHs are unstable at high temperatures, sensitive to organic solvents, and often lose activity during immobilization. In this relation, there is a considerable interest in ADHs from extremophilic microorganisms; among them, Archaea are of great interest. The representatives of all groups of NAD(P)-dependent ADHs have been detected in genomes of Archaea (11, 12); however, only a few enzymes have been characterized, and the great majority of them belong to medium-chain (3, 4, 14, 16, 19) or long-chain iron-activated ADHs (1, 8, 9). Up to now, a single short-chain archaeal ADH from Pyrococcus furiosus (10, 18) and only one archaeal aldo-keto reductase also from P. furiosus (11) have been characterized.Thermococcus sibiricus is a hyperthermophilic anaerobic archaeon isolated from a high-temperature oil reservoir capable of growth on complex organic substrates (15). The complete genome sequence of T. sibiricus has been recently determined and annotated (13). Several ADHs are encoded by the T. sibiricus genome, including three short-chain ADHs (Tsib_0319, Tsib_0703, and Tsib_1998) (13). In this report, we describe the cloning and expression of the Tsib_0319 gene from T. sibiricus and the purification and the biochemical characterization of its product, the thermostable short-chain ADH (TsAdh319).The Tsib_0319 gene encodes a protein with a size of 234 amino acids and the calculated molecular mass of 26.2 kDa. TsAdh319 has an 85% degree of sequence identity with short-chain ADH from P. furiosus (AdhA; PF_0074) (18). Besides AdhA, close homologs of TsAdh319 were found among different bacterial ADHs, but not archaeal ADHs. The gene flanked by the XhoI and BamHI sites was PCR amplified using two primers (sense primer, 5′-GTTCTCGAGATGAAGGTTGCTGTGATAACAGGG-3′, and antisense primer, 5′-GCTGGATCCTCAGTATTCTGGTCTCTGGTAGACGG-3′) and cloned into the pET-15b vector. TsAdh319 was overexpressed, with an N-terminal His6 tag in Escherichia coli Rosetta-gami (DE3) and purified to homogeneity by metallochelating chromatography (Hi-Trap chelating HP column; GE Healthcare) followed by gel filtration on Superdex 200 10/300 GL column (GE Healthcare) equilibrated in 50 mM Tris-HCl (pH 7.5) with 200 mM NaCl. The homogeneity and the correspondence to the calculated molecular mass of 28.7 kDa were verified by SDS-PAGE (7). The molecular mass of native TsAdh319 was 56 to 60 kDa, which confirmed the dimeric structure in solution.The standard ADH activity measurement was made spectrophotometrically at the optimal pH by following either the reduction of NADP (in 50 mM Gly-NaOH buffer; pH 10.5) or the oxidation of NADPH (in 0.1 M sodium phosphate buffer; pH 7.5) at 340 nm at 60°C. The enzyme exhibited a strong preference for NADP(H) and broad substrate specificity (Table (Table1).1). The highest oxidation rates were found with pentoses d-arabinose (2.0 U mg−1) and d-xylose (2.46 U mg−1), and the highest reduction rates were found with dimethylglyoxal (5.9 U mg−1) and pyruvaldehyde (2.2 U mg−1). The enzyme did not reduce sugars which were good substrates for the oxidation reaction. The kinetic parameters of TsAdh319 determined for the preferred substrates are shown in Table Table2.2. The enantioselectivity of the enzyme was estimated by measuring the conversion rates of 2-butanol enantiomers. TsAdh319 showed an evident preference, >2-fold, for (S)-2-butanol over (RS)-2-butanol. The enzyme stereoselectivity is confirmed by the preferred oxidation of d-arabinose over l-arabinose (Table (Table1).1). The fact that TsAdh319 is metal independent was supported by the absence of a significant effect of TsAdh319 preincubation with 10 mM Me2+ for 30 min before measuring the activity in the presence of 1 mM Me2+ or EDTA (Table (Table3).3). TsAdh319 also exhibited a halophilic property, so the enzyme activity increased in the presence of NaCl and KCl and the activation was maintained even at concentration of 4 M and 3 M, respectively (Table (Table33).

TABLE 1.

Substrate specificity of TsAdh319
SubstrateaRelative activity (%)
Oxidation reactionb
    Methanol0
    2-Methoxyethanol0
    Ethanol36
    1-Butanol80
    2-Propanol100
    (RS)-(±)-2-Butanol86
    (S)-(+)-2-Butanol196
    2-Pentanol67
    1-Phenylmethanol180
    1.3-Butanediol91
    Ethyleneglycol0
    Glycerol16
    d-Arabinose*200
    l-Arabinose*17
    d-Xylose*246
    d-Ribose*35
    d-Glucose*146
    d-Mannose*48
    d-Galactose*0
    Cellobiose*71
Reduction reactionc
    Pyruvaldehyde100
    Dimethylglyoxal270
    Glyoxylic acid36
    Acetone0
    Cyclopentanone0
    Cyclohexanone4
    3-Methyl-2-pentanone*13
    d-Arabinose*0
    d-Xylose*0
    d-Glucose*0
    Cellobiose*0
Open in a separate windowaSubstrates were present in 250 mM or 50 mM (*) concentrations.bRelative rates, measured under standard conditions, were calculated by defining the activity for 2-propanol as 100%, which corresponds to 1.0 U mg−1. Data are averages from triplicate experiments.cRelative rates, measured under standard conditions, were calculated by defining the activity for pyruvaldehyde as 100%, which corresponds to 2.2 U mg−1. Data are averages from triplicate experiments.

TABLE 2.

Apparent Km and Vmax values for TsAdh319
Coenzyme or substrateApparent Km (mM)Vmax (U mg−1)kcat (s−1)
NADPa0.022 ± 0.0020.94 ± 0.020.45 ± 0.01
NADPHb0.020 ± 0.0033.16 ± 0.111.51 ± 0.05
2-Propanol168 ± 291.10 ± 0.090.53 ± 0.04
d-Xylose54.4 ± 7.41.47 ± 0.090.70 ± 0.04
Pyruvaldehyde17.75 ± 3.384.26 ± 0.402.04 ± 0.19
Open in a separate windowaActivity was measured under standard conditions with 2-propanol. Data are averages from triplicate experiments.bActivity was measured under standard conditions with pyruvaldehyde. Data are averages from triplicate experiments.

TABLE 3.

Effect of various ions and EDTA on TsAdh319a
CompoundConcn (mM)Relative activity (%)
None0100
NaCl400206
600227
4,000230
KCl600147
2,000200
3,000194
MgCl21078
CoCl210105
NiSO410100
ZnSO41079
FeSO41074
EDTA1100
580
Open in a separate windowaThe activity was measured under standard conditions with 2-propanol; relative rates were calculated by defining the activity without salts as 100%, which corresponds to 0.9 U mg−1. Data are averages from duplicate experiments.The most essential distinctions of TsAdh319 are the thermophilicity and high thermostability of the enzyme. The optimum temperature for the 2-propanol oxidation catalyzed by TsAdh319 was not achieved. The initial reaction rate of oxidation increased up to 100°C (Fig. (Fig.1).1). The Arrhenius plot is a straight line, typical of a single rate-limited thermally activated process, but there is no obvious transition point due to the temperature-dependent conformational changes of the protein molecule. The activation energy for the oxidation of 2-propanol was estimated at 84.0 ± 5.8 kJ·mol−1. The thermostability of TsAdh319 was calculated from residual TsAdh319 activity after preincubation of 0.4 mg/ml enzyme solution in 50 mM Tris-HCl buffer (pH 7.5) containing 200 mM NaCl at 70, 80, 90, or 100°C. The preincubation at 70°C or 80°C for 1.5 h did not cause a decrease in the TsAdh319 activity, but provoked slight activation. The residual TsAdh319 activities began to decrease after 2 h of preincubation at 70°C or 80°C and were 10% and 15% down from the control, respectively. The determined half-life values of TsAdh319 were 2 h at 90°C and 1 h at 100°C.Open in a separate windowFIG. 1.Temperature dependence of the initial rate of the 2-propanol reduction by TsAdh319. The reaction was initiated by enzyme addition to a prewarmed 2-propanol-NADP mixture. The inset shows the Arrhenius plot of the same data.Protein thermostability often correlates with such important biotechnological properties as increased solvent tolerance (2). We tested the influence of organic solvents at a high concentration (50% [vol/vol]) on TsAdh319 by using either preincubation of the enzyme at a concentration of 0.2 mg/ml with solvents for 4 h at 55°C or solvent addition into the reaction mixture to distinguish the effect of solvent on the protein stability and on the enzyme activity. TsAdh319 showed significant solvent tolerance in both cases (Table (Table4),4), and the effects of solvents could be modulated by salts, acting apparently as molecular lyoprotectants (17). Furthermore, TsAdh319 maintained 57% of its activity in 25% (vol/vol) 2-propanol, which could be used as the cosubstrate in cofactor regeneration (6).

TABLE 4.

Influence of various solvents on TsAdh319 activitya
SolventRelative activity (%)bRelative activity (%)c
Buffer without NaClBuffer with 600 mM NaCl
None100100100
DMSOd98040
DMFAe1011341
Methanol98259
Acetonitrile9500
Ethyl acetate470*33*
Chloroform10579*81*
n-Hexane10560*118*
n-Decane3691*107*
Open in a separate windowaThe activity measured at the standard condition with 2-propanol as a substrate. Data are averages from triplicate experiments.bPreincubation for 4 h at 55°C in the presence of 50% (vol/vol) of solvent prior the activity assay.cWithout preincubation, solvent addition to the reaction mixture up to 50% (vol/vol) or using the buffer saturated by a solvent (*).dDMSO, dimethyl sulfoxide.eDMFA, dimethylformamide.From all the aforesaid we may suppose TsAdh319 or its improved variant to be interesting both for the investigation of structural features of protein tolerance and for biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号