首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一.绪言已经肯定证明,NO_3~-—N与NH_4~ —N同是植物的有效氮源。可是由于土壤内的有机氮化物通过自溶及硝化作用常产生大量的NO_3~-,所以除了少数嗜NH_4~ 植物外,无疑的,NO_3~-在高等植物的氮素营养中具有特别重大意义。大家知道,氮在氨基酸与蛋白质内是处于还原状态,因此,植物所吸收的NO_3~-在参与代谢之前,首要阶段必须进行还原,所以NO_3~-还原是决定植物氮素代谢的重要关键。  相似文献   

2.
为了阐明小麦硝态氮转运蛋白(nitrate transporters,NRT)TaNRT2.1及辅助蛋白TaNAR2.1的硝态氮转运功能,本研究构建了TaNRT2.1单基因(单超)与TaNRT2.1+TaNAR2.1双基因超表达载体(双超),通过农杆菌介导法转化野生型拟南芥,利用潮霉素筛选与PCR鉴定分别获得了3个单超与2个双超的转基因拟南芥纯合株系。通过研究转基因拟南芥的硝态氮吸收动力学及氮含量发现:在硝态氮浓度1 mmol·L~(-1)时,仅双超能够显著提高拟南芥的硝态氮吸收速率;硝态氮浓度1 mmol·L~(-1)时,不论单超还是双超均不能提高拟南芥的硝态氮吸收速率。低氮(0.1 mmol·L~(-1) NO_3~-)条件下,2种转基因拟南芥的生长状况和氮吸收与野生型相比均无显著差异;而在高氮(10 mmol·L~(-1) NO_3~-)条件下,单超提高了拟南芥的角果重和植株生物量,双超则显著提高了拟南芥的生物量、根系生长和总吸氮量。这些结果表明,TaNRT2.1转运蛋白需与辅助蛋白TaNAR2.1联合才能调控拟南芥对硝态氮的转运。  相似文献   

3.
植物液泡膜阳离子/H+反向转运蛋白结构和功能研究进展   总被引:1,自引:0,他引:1  
阳离子转运蛋白在调节细胞质阳离子浓度过程中发挥关键作用。液泡是一个储存多种离子的重要细胞器,阳离子 (Ca2+)/H+反向转运蛋白CAXs定位在液泡膜上,主要参与Ca2+向液泡的转运,也参与其他阳离子的转运。近年来,植物中分离鉴定了多个CAX基因,植物CAXs主要有4个功能域:NRR通过自抑制机制调节Ca2+转运活性,CaD和C功能域分别赋予CAXs的Ca2+和Mn2+专一性转运活性,D功能域可调节细胞质pH。拟南芥AtCAXs参与植物的生长发育和胁迫适应过程,AtCAX3主要在盐胁迫下转运Ca2+,At  相似文献   

4.
拟南芥无机氮素转运蛋白及其磷酸化调控研究进展   总被引:1,自引:0,他引:1  
张曦  林金星  单晓昳 《植物学报》2016,51(1):120-129
氮元素是植物必需的营养元素之一, 氮素供需失衡会严重影响植物的生长发育。无机氮(硝酸根NO3-和铵根NH4+)是植物体内氮素的主要来源, 对其有效吸收和利用依赖于多种类型转运蛋白的协同作用。其中, 部分无机氮素转运蛋白的活性受到可逆磷酸化作用的精准调控。该文将对模式植物拟南芥(Arabidopsis thaliana)中硝酸根和铵根转运蛋白的分类、结构、定位和功能特点等进行总结, 并重点对可逆磷酸化调控转运蛋白的分子机制加以阐述。  相似文献   

5.
植物组织中硝酸还原酶的提取、测定和纯化   总被引:76,自引:0,他引:76  
硝酸还原酶是植物氮代谢中十分重要的一个酶,它催化的反应是: NO_3~-+NADfl~++H~+→NO_2~-+NAD+H_2O 植物体内硝酸还原酶活力的高低直接影响到土壤中无机氮的利用率,从而对农作物(特别是谷类作物)的产量和品质发生影响。在作物栽培中,有人把硝酸还原酶活力作为作物的营养指标之一,或者列为农田的一项施肥指标。在作物育种方面。往往籽粒品质好(蛋白含  相似文献   

6.
植物水孔蛋白研究进展   总被引:1,自引:0,他引:1  
水孔蛋白是植物重要的膜功能蛋白,不仅介导植物各组织间水分的高效转运,还参与植物体内其他物质的跨膜转运,同时在植物光合作用、生长发育、免疫应答以及信号转导等生理过程中也发挥重要作用。本文主要综述了植物水孔蛋白结构特征和分类,多种生理功能,以及其转录水平和转录后水平活性调节等方面的最新研究进展,并就如何系统全面地开展水孔蛋白参与植物生长发育过程的分子调控机制研究提出展望。植物水孔蛋白的深入研究有助于阐明植物体内物质转运的分子机理及其生理作用机制,对指导农业生产中作物的生长发育调控有重要理论意义。  相似文献   

7.
植物高亲和钾离子转运蛋白HAK功能研究进展   总被引:1,自引:0,他引:1  
钾(Potassium,K)是植物生长发育重要的营养元素,素有"抗逆元素"和"品质元素"之称。在低钾环境下植物主要利用高亲和的转运蛋白进行钾离子的吸收和转运,KUP/HAK/KT作为植物体内钾离子高亲和转运蛋白家族中最大,成员最多的家族,在植物高亲和转运钾离子过程中发挥关键作用。系统阐述了植物KUP/HAK/KT家族的基本情况及其分类、高亲和钾离子转运蛋白HAK的系统发育分析、HAK转运蛋白在提高植物钾吸收,影响植物生长发育,增强植物抵抗生物胁迫和非生物胁迫能力等方面的功能研究,最后展望了钾离子转运蛋白HAK后续有待解决的问题。深入了解HAK钾转运蛋白在植物体内的作用机制对于有效提高钾肥的利用效率,提升作物产量与品质,促进农业发展等方面具有重要的现实意义。  相似文献   

8.
随营养液中No_3~-浓度升高,叶片内No_3~-总量、代谢库大小(NIPS)及硝酸还原酶(NR)活性均升高,其中MPS与NK活性呈同步变化;No_3~-浓度达2.0mmol/L时,两者趋于稳值;若再增加NO_3~-浓度,则被吸收的NO_3~-积累于液泡中,而代谢库中NO_3~-含量(MPS)与NO_3~-总量之比有一定程度降低。低氮(NO_3~-浓度为1.0 mmol/L)情况下,反应液中无NO_3~-时,叶片内NR活性品种间有差异,但在50 mmol/L NO_3~-反应液中则品种间无差异;NK活性高的品种鲁麦8号及品种321叶内有大的NO_3~-代谢库,反应液中NO_3~-对NR活性刺激程度低,代谢库NO_3~-含量与叶NO_3~-总量之比高,而叶组织长时间反应过程中其NR活性衰减速率低。  相似文献   

9.
植物氮素吸收与转运的研究进展   总被引:1,自引:0,他引:1  
钟开新  王亚琴 《广西植物》2011,31(3):414-417
氮素是植物生长发育所必须的基本营养元素,在植物生长发育和形态建成中起着重要作用.土壤中植物所利用的主要氮素形式是铵态氮和硝态氮,在进化过程中植物形成不同的吸收和转运铵态氮和硝态氮的分子机制.该文对植物吸收与转运氮素的生理学特征、分子机制及涉及的相关基因等研究进行概括性综述,为研究水稻中氮素吸收、转运相关基因提供理论基础...  相似文献   

10.
钙通道蛋白与植物抗盐性和抗冷性关系研究进展   总被引:1,自引:0,他引:1  
植物钙通道蛋白几乎在植物生长发育的所有阶段都是必需的,它们参与细胞内钙离子浓度的调控,在植物细胞内钙离子的跨膜转运过程中起着极其重要的作用;它们同时调控植物细胞和组织的极性生长,参与植物应对一系列不同逆境胁迫因素的适应性反应,在植物抗逆方面同样起着极其重要的作用.本文对近年来国内外有关不同钙通道蛋白的性质及其在植物抗冷性和抗盐性中的作用研究进展进行综述,为在生理水平和分子水平上深入阐明植物钙通道蛋白参与植物抗逆性的机理提供信息资料.  相似文献   

11.
植物的谷氨酸合成酶   总被引:7,自引:0,他引:7  
植物可以利用的氮源主要是NO_3~-和NH_4~+,与固氮生物共生的植物还可直接利用分子态氮。无机氮素主要以氨的形态参入有机化合物,非氨态的氮源被植物吸收后大都是先由植物将其转化成氨.植物在光呼吸及各种含氮化合物的分解及相互转化等代谢  相似文献   

12.
植物铜转运蛋白的结构和功能   总被引:1,自引:0,他引:1  
铜(Cu)是植物必需的微量营养元素, 参与植物生长发育过程中的许多生理生化反应。Cu缺乏或过量都会影响植物的正常新陈代谢过程。因此, 植物需要一系列Cu转运蛋白协同作用以保持体内Cu离子的稳态平衡。通常, Cu转运蛋白可分为两类, 即吸收型Cu转运蛋白(如COPT、ZIP和YSL蛋白家族)和排出型Cu转运蛋白(如HMA蛋白家族), 主要负责Cu离子的跨膜转运及调节Cu离子的吸收和排出。然而, 最近有研究表明, 有些Cu伴侣蛋白家族可能是从Cu转运蛋白家族进化而来, 且它们在维持植物细胞Cu离子稳态平衡中也具重要功能。该文对Cu转运蛋白和Cu伴侣蛋白的表达、结构、定位及功能等研究进展进行综述。  相似文献   

13.
高等植物尿素代谢及转运的分子机理   总被引:4,自引:0,他引:4  
尿素广泛存在于自然界中, 是易于被许多生物(如植物)利用的生长氮源。该文通过概述尿素在不同生命系统中存在的基础生理意义及各类型尿素转运蛋白, 讨论了植物细胞中尿素合成与分解的各种途径及尿素在植物氮营养、代谢和运输中的生理作用。迄今为止, 在植物中已发现了2类转运尿素的膜蛋白, 即MIPs和DUR3, 它们分别在低亲和力、高亲和力尿素运输中发挥潜在作用。异源表达结果表明, MIPs介导了尿素的被动迁移; 而AtDUR3则参与拟南芥根系对尿素的吸收。对MIPs和DUR3转运尿素的酶学特征、亚细胞作用位点和表达调控状况等的研究表明: 它们的分子生物学功能与植物的氮营养及氮素再分配和利用相关。  相似文献   

14.
尿素广泛存在于自然界中,是易于被许多生物(如植物)利用的生长氮源。该文通过概述尿素在不同生命系统中存在的基础生理意义及各类型尿素转运蛋白,讨论了植物细胞中尿素合成与分解的各种途径及尿素在植物氮营养、代谢和运输中的生理作用。迄今为止,在植物中已发现了2类转运尿素的膜蛋白,即MIPs和DUR3,它们分别在低亲和力、高亲和力尿素运输中发挥潜在作用。异源表达结果表明MIPs介导了尿素的被动迁移:而AtDUR3则参与拟南芥根系对尿素的吸收。对MIPs和DUR3转运尿素的酶学特征、亚细胞作用位点和表达调控状况等的研究表明:它们的分子生物学功能与植物的氮营养及氮素再分配和利用相关。  相似文献   

15.
植物光合作用产生的蔗糖是植物生长发育的主要碳源物质,还是诱导植物生长发育过程中诸多相关基因表达的特异信号分子[1].蔗糖分子在植物器官及组织间的生理分配维持着整个植物体的正常生长发育[2].植物蔗糖转运载体(sucrosetransporter,SUT)是一类担负着蔗糖分子在细胞间的转运及信号转导的功能性蛋白家族,它在蔗糖的韧皮部装载、沿韧皮部的再吸收、韧皮部卸载和向库器官的转运等跨膜运输以及蔗糖特异信号感应过程中发挥着重要的生理功能[3~5].植物蔗糖转运载体蛋白分布于植物细胞质膜上,该转运载体蛋白含有12个疏水性跨膜结构域,在其氨…  相似文献   

16.
所有的植物在生长发育过程中,都离不开各种矿物盐作为营养。这些矿物盐的最终来源都是来自岩石圈的岩石。岩石中复杂的结晶体,由于物理的、化学的作用,渐渐地崩解和分解,变成了可溶性的化合物。这些可溶性化合物或多或少的在水中形成带正电荷的离子如钾(K~+)、钙(Ca~(++))、铁(Fe~(++)、Fe~(+++))以及带负电荷的离子如氯(Cl~-)、硫酸根(SO_4~=)和磷酸根(H_2PO_4~-、HPO_4~=、PO_4~≡),它们随雨水进入土壤成为植物所需要的矿质营养。在这里,有一种植物所必需的重要的元素——氮,在土壤或天然水中以亚硝酸根(NO_2~-)、硝酸根(NO_3~-)  相似文献   

17.
植物体内NO3^—可给性对硝酸还原酶活性的调节   总被引:12,自引:1,他引:11  
评述植物叶片中NO_3~-可给性对活体硝酸还原酶(NR)活性的调节,指出根部NO_3~-的不断供给及液泡内NO_3~-的外流可以使细胞质内的NO_3~-维持一定水平,这对NR的诱导及整个NO_3~-还原系统高活力的稳定是必需的。NO_3~-对NR的诱导反映在NR的mRNA转录水平上。  相似文献   

18.
氮素形态对小麦叶片谷氨酸合成酶的影响   总被引:6,自引:0,他引:6  
植物可以利用的两种主要结合态氮NO_3~-和NH_4~+对植物的生长和代谢有不同的效应。一个多世纪以来,人们对这个问题进行了不少研究,但主要侧重于植物的吸收和各种中间代谢物含量的分析,对各代谢途径的酶研究很少。  相似文献   

19.
NADH-硝酸还原酶组分酶的活性测定   总被引:1,自引:0,他引:1  
NADH—硝酸还原酶(NADH—nitrate reduc—tase,EC 1.6.6.1,NADH—NR)是硝态氮同化的关键酶,它能以NADH为电子供体,还原NO_3~-为NO_2~-。由于它在植物氮代谢中的重要作用,国内外已对它的诱导和活性调节进行了广泛的研究。 NADH—NR是组分酶复合物,改变电子供体或受体,可测到 NADH—NR的二个组分酶活性,  相似文献   

20.
植物MicroRNA(miRNA)是一类内源性非编码小分子RNA,它们参与调节植物的生长、发育和代谢过程中多种基因的表达。近期的研究发现miRNA参与调节磷的吸收和利用,对植物适应低磷胁迫具有重要作用。本文概述了植物磷吸收和转运的机制,介绍了低磷胁迫下miRNA的表达水平变化,重点对miRNA在植物响应低磷胁迫中的作用,如改变根系结构、提高磷的转运和再利用效率、参与花青素和抗氧化物生物合成等进行了综述,以期为揭示植物低磷胁迫响应分子机制,提高植物对磷的吸收效率提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号