首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
Alkyl hydroperoxide reductase (AhpC) is known to detoxify peroxides and reactive sulfur species (RSS). However, the relationship between its expression and combating of abiotic stresses is still not clear. To investigate this relationship, the genes encoding the alkyl hydroperoxide reductase (ahpC) from Anabaena sp. PCC 7120 were introduced into E. coli using pGEX-5X-2 vector and their possible functions against heat, salt, carbofuron, cadmium, copper and UV-B were analyzed. The transformed E. coli cells registered significantly increase in growth than the control cells under temperature (47 °C), NaCl (6% w/v), carbofuron (0.025 mg ml?1), CdCl2 (4 mM), CuCl2 (1 mM), and UV-B (10 min) exposure. Enhanced expression of ahpC gene as measured by semi-quantitative RT-PCR under aforementioned stresses at different time points demonstrated its role in offering tolerance against multiple abiotic stresses.  相似文献   

2.
Haematococcus pluvialis was cultivated under photoautotrophic conditions in a bubble column with fed-batch addition of nutrients, especially nitrate, and a cell number above 5 × 106 cells mL−1 was attained after 300 h.The reduction of nutrient concentrations accompanied by dilution of the fermentation broth and an increase in the light intensity enhanced accumulation of astaxanthin. The final astaxanthin concentration of 390 mg L−1 was several times higher than ever reported. This combination of fed-batch addition of nutrients and dilution of broth for nutrient deficiency is a promising method for attainment of high cell and astaxanthin concentrations in a bubble column photobioreactor.  相似文献   

3.
In this study, the soap stock as a sole carbon source was used for growing a carotenoid producing yeast (Rhodotorula rubra). The application of soap stock resulted in increase of carotenoids yield up to 5.36 folds when compared with the grown cultures on glucose. On the best Monod equation fitted on the specific growth rate (μ) data, the maximum specific growth rate (μm) and half-saturation concentration (KS) were respectively determined at 0.064 h−1 and 3.26 g L−1 for total fatty acids presented in soap stock. Further tests on the carotenogenesis process were carried out in a cell-immobilized airlift photobioreactor where the natural loofa sponge was used for immobilization of the cells. The performance of the bioreactor was statistically studied by the response surface methodology (RSM) where aeration rate of 0.11 vvm and light irradiation intensity of 2517 Lx provided an optimum condition for producing β-carotene with a specific production rate of 22.65 mg gcell−1 day−1.  相似文献   

4.
Synechocystis PCC 6803 is a model unicellular cyanobacterium used in e.g. photosynthesis and CO2 assimilation research. In the present study we examined the effects of overexpressing Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), sedoheptulose 1,7-biphosphatase (SBPase), fructose-bisphosphate aldolase (FBA) and transketolase (TK), confirmed carbon flux control enzymes of the Calvin-Bassham-Benson (CBB) cycle in higher plants, in Synechocystis PCC 6803. Overexpressing RuBisCO, SBPase and FBA resulted in increased in vivo oxygen evolution (maximal 115%), growth rate and biomass accumulation (maximal 52%) under 100 μmol photons m−2 s−1 light condition. Cells overexpressing TK showed a chlorotic phenotype but increased biomass by approximately 42% under 100 μmol photons m−2 s−1 light condition. Under 15 μmol photons m−2 s−1 light condition, cells overexpressing TK showed enhanced in vivo oxygen evolution. This study demonstrates increased growth and biomass accumulation when overexpressing selected enzymes of the CBB cycle. RuBisCO, SBPase, FBA and TK are identified as four potential targets to improve growth and subsequently also yield of valuable products from Synechocystis PCC 6803.  相似文献   

5.
Haberlea rhodopensis is a homoiochlorophyllous resurrection plant that shows a low rate of leaf net CO2 uptake (4–6 μmol m?2 s?1) under saturating photosynthetic photon flux densities in air (21% O2 and about 390 ppm CO2). However, leaf net CO2 uptake reaches values of 17–18 μmol m?2 s?1 under saturating CO2 and light. H. rhodopensis leaves have a very low mesophyll CO2 conductance that can partly explain the low rate of leaf net CO2 uptake in normal air. Experimental evidences suggest that mesophyll conductance is not sensitive to temperature in the 20–35 °C range. In addition, it is shown that the (1) transpiration rate of H. rhodopensis is nearly linearly related to the vapour pressure difference between the leaf and the ambient air within the interval from 0.5 kPa to 2.5 kPa at a leaf temperature of 25 °C and (2) leaf net CO2 uptake in normal air under saturating light does not change much with leaf temperature (between 20 °C and 30 °C). At a leaf relative water content of between 90% and 30%, the decrease of leaf net CO2 assimilation during drought can be explained by a decrease of leaf CO2 diffusional conductance. Accordingly the non-photochemical chlorophyll fluorescence quenching decreases only at relative water contents lower than 20%, indicating that photosynthetic activity maintains a trans-thylakoidal proton gradient over a wide range of leaf water contents. Moreover, PSII photochemistry (as estimated by the Fv/Fm ratio and the thermoluminescence B band intensity) is only affected at leaf relative water contents lower than about 20%, thus confirming that primary photosynthetic reactions are resistant to drought. Interestingly, the effect of leaf desiccation on photosynthetic capacity, measured at very high ambient CO2 molar ratios under saturating PPFD, is identical to that observed for three non-resurrection C3 mesophytes. This demonstrates that the photosynthetic apparatus of H. rhodopensis is not more resistant to desiccation when compared to other C3 plants. Since the leaf area decreases by more than 50% when the leaf relative water content is reduced to about 40% during drought it is supposed, following Farrant et al. [Farrant, J.M., Vander, W.C., Lofell, D.A., Bartsch, S., Whittaker, A., 2003. An investigation into the role of light during desiccation of three angiosperms resurrection plants. Plant Cell Environ. 26, 1275–1286], that H. rhodopensis leaf cells avoid mechanical stress.  相似文献   

6.
Cr(VI) removal by Scenedesmus incrassatulus was characterized in a continuous culture system using a split-cylinder internal-loop airlift photobioreactor fed continuously with a synthetic effluent containing 1.0 mg Cr(VI) l?1 at dilution rate (D) of 0.3 d?1. At steady state, there was a small increase (6%) on the dry biomass (DB) concentration of Cr(VI)-treated cultures compared with the control culture. 1.0 mg Cr(VI) l?1 reduced the photosynthetic pigments content and altered the cellular morphology, the gain in dry weight was not affected. At steady state, Cr(VI) removal efficiency was 43.5 ± 1.0% and Cr(VI) uptake was 1.7 ± 0.1 mg Cr(VI) g?1 DB. The system reached a specific metal removal rate of 458 μg Cr(VI) g?1 DB d?1, and a volumetric removal rate of 132 μg Cr(VI) l?1 d?1.  相似文献   

7.
Meriem Alami  Dusan Lazar  Beverley R. Green 《BBA》2012,1817(9):1557-1564
Aureococcus anophagefferens is a picoplanktonic microalga that is very well adapted to growth at low nutrient and low light levels, causing devastating blooms (“brown tides”) in estuarine waters. To study the factors involved in long-term acclimation to different light intensities, cells were acclimated for a number of generations to growth under low light (20 μmol photons m? 2 s? 1), medium light (60 or 90 μmol photons m? 2 s? 1) and high light (200 μmol photons m? 2 s? 1), and were analyzed for their contents of xanthophyll cycle carotenoids (the D pool), fucoxanthin and its derivatives (the F pool), Chls c2 and c3, and fucoxanthin Chl a/c polypeptides (FCPs). Higher growth light intensities resulted in increased steady state levels of both diadinoxanthin and diatoxanthin. However, it also resulted in the conversion of a significant fraction of fucoxanthin to 19′-butanoyloxyfucoxanthin without a change in the total F pool. The increase in 19′-butanoyloxyfucoxanthin was paralleled by a decrease in the effective antenna size, determined from the slope of the change in F0 as a function of increasing light intensity. Transfer of acclimated cultures to a higher light intensity showed that the conversion of fucoxanthin to its derivative was a relatively slow process (time-frame of hours). We suggest the replacement of fucoxanthin with the bulkier 19′-butanoyloxyfucoxanthin results in a decrease in the light-harvesting efficiency of the FCP antenna and is part of the long-term acclimative response to growth at higher light intensities.  相似文献   

8.
Three 5-L airlift bioreactors including airlift reactor with solid draft tube (ALs), airlift reactor with net draft tube (ALn) and bubble column reactor (BC) were investigated for their suitability for cultivating Antrodia cinnamomea, and a stirred tank reactor (ST) was used for comparison. Results indicated that after 7 days fermentation, ALs yielded the highest mycelium content (313 mg/100 mL) and had the lowest dissolved oxygen in the broth. Among different aeration rates (0.025, 0.05, 0.1, 0.5, 1 vvm) used during cultivation of A. cinnamomea in ALs, the aeration rate 0.1 vvm resulted in a volumetric oxygen transfer coefficient of 10.8 h−1 and produced the highest mycelium content. When the optimal conditions were used for the fermentation of A. cinnamomea in an industrial 500-L ALs, the mycelium content in the broth reached 542 mg/100 mL in 28 days. The IC50 values of the ethanol extracts of A. cinnamomea mycelium cultivated in 5-L and 500-L ALs for 28 days were 23 and 17 μg/mL, respectively, for hepatocellular carcinoma cells HepG2. And after 42 days cultivation in 500-L ALs, the IC50 value of the mycelium ethanol extract was reduced to 10 μg/mL.  相似文献   

9.
We assessed the effect of growth at either 400 μmol mol?1 (ambient) or 1000 μmol mol?1 (elevated) CO2 and 0 g L?1 (deprivation) or 30 g L?1 (supplementation) sugar on morphological traits, photosynthetic attributes and intrinsic elements of the CAM pathway using the CAM orchid Phalaenopsis ‘Amaglade’. The growth of shoot (retarded) and root (induced) was differently affected by CO2 enrichment and mixotrophic regime (+sugar). The Fv/Fm ratio was 14% more in CO2-enriched treatment than at ambient level during in vitro growth. At elevated level of CO2 and sugar treatment, the content of Chl(a + b), Chl a/b and Chl/Car was enhanced while carotenoid content remained unaltered. During in vitro growth, gas-exchange analysis indicated that increased uptake of CO2 accorded with the increased rate of transpiration and unchanged stomatal conductance at elevated level of CO2 under both photo- and mixotrophic growth condition. At elevated level of CO2 and sugar deprivation, activities of Rubisco (26.4%) and PEPC (74.5%) was up-regulated. Among metabolites, the content of sucrose and starch was always higher under CO2 enrichment during both in vitro and ex vitro growth. Our results indicate that plantlets grown under CO2 enrichment developed completely viable photosynthetic apparatus ready to be efficiently transferred to ex vitro condition that has far-reaching implications in micropropagation of Phalaenopsis.  相似文献   

10.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   

11.
Benthic dinoflagellates of the genus Ostreopsis are found all over the world in temperate, subtropical, and tropical coastal regions. Our recent studies revealed that a putative “cryptic” species of Ostreopsis ovata is present widely along Japanese coasts. This organism, Ostreopsis sp. 1, possesses palytoxin analogs and thus its toxic blooms may be responsible for potential toxification of marine organisms. To evaluate the bloom dynamics of Ostreopsis sp. 1, the present study examined the growth responses of Ostreopsis sp. 1 strain s0716 to various light intensities (photon flux densities: μmol photons m−2 s−1) using a newly devised photoirradiation-culture system. This novel system has white light-emitting diodes (LEDs) capable of more closely simulating the wavelength spectrum of light entering the oceanic water column than do fluorescent tubes and halogen lamps. In this system, the light intensity of the white LEDs was reduced through two polarizing filters by varying the rotation angles of the filters. Thereby, the new system was capable of culturing microalgae under well-controlled light intensity conditions. Ostreopsis sp. 1 grew proportionally when light intensity was increased from 49.5 to 199 μmol photons m−2 s−1, but its growth appeared to be inhibited slightly at ≥263 μmol photons m−2 s−1. The relationship between observed growth rates and light intensity was calculated at R > 0.99 (P < 0.01) using a regression analysis with a modified equation of the photosynthesis-light intensity (P-L) model. The equation determined the critical light intensities for growth of Ostreopsis sp. 1 and the organism's growth potential as follows: (1) the threshold light intensity for growth: 29.8 μmol photons m−2 s−1; (2) the optimum light intensity (Lm) giving the maximum growth rate (μmax = 0.659 divisions day−1): 196 μmol photons m−2 s−1; (3) the optimum light intensity range (Lopt) giving ≥95% μmax: 130–330 μmol photons m−2 s−1; (4) the semi-optimum range (Lsopt) giving ≥80% μmax: 90 to over 460 μmol photons m−2 s−1. The Lsopt represents 4.5–23% ambient light intensity present in surface waters off of a temperate region of the Japanese coast, Tosa Bay; putatively, this semi-optimum range of light intensity appears at depth of 12.9–27.8 m. Considering these issues, our data indicate that Ostreopsis sp. 1 in coastal environments may form blooms at ca. ∼28 m depth in regions along Japanese coasts.  相似文献   

12.
Before switching totally to alternative fuel stage, CO2 mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO2 mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO2 tolerance even at 15% CO2 level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO2 bubble retention time could enhance CO2 removal efficiencies by 79% and 67%, respectively. A maximum CO2 fixation rate of 1.01 g CO2 L−1 day−1 was measured experimentally.  相似文献   

13.
Tetrastigma hemsleyanum Diels et Gilg was grown under full sunlight and moderate and high levels of shade for one month to evaluate its photosynthetic and chlorophyll fluorescence response to different light conditions. The results showed that T. hemsleyanum attained greatest leaf size and Pn when cultivated with 67% shade. Leaves of seedlings grown with 90% shade were the smallest. Leaf color of plants grown under full sunlight and 50% shade was yellowish-green. The Pn value increased rapidly as PPFD increased to 200 μmol m?2 s?1 and then increased slowly to a maximum, followed by a slow decrease as PPFD was increased to 1000 μmol m?2 s?1. Pn was highest for the 67% shade treatment and the LSP for this shade treatment was 600 μmol m?2 s?1. Full sunlight and 50% shade treatments resulted in significant reduction of ETR and qP and increased NPQ. Chl a, Chl b and total chlorophyll content increased and Chl a/b values decreased with increased shading. Results showed that light intensity greater than that of 50% shade depressed photosynthetic activity and T. hemsleyanum growth. Irradiance less than that of 75% shade limited carbon assimilation and led to decreased plant growth. Approximately 67% shade is suggested to be the optimum light irradiance condition for T. hemsleyanum cultivation.  相似文献   

14.
We measured the biomass production and ecosystem carbon CO2 exchange in a high yield grassland dominated by Miscanthus sinensis. The experimental grassland is managed by mowing once a year in winter every year and the harvested biomass on the ground is left to become the humus. The maximum aboveground and belowground biomasses were 1117 and 2803 g d.w. m?2 in our grassland. Although the high potential of our grassland for biomass production led to higher carbon uptake than with other types of grassland, the large biomass contributed to a higher respired carbon loss. Biomass increase led to a linear increase in ecosystem respiration. Over the 3 years, RE10 increased with increasing aboveground biomass. The potential gross primary production at a photosynthetic photon flux density of 2000 μmol m2 s?1 logarithmic increased with LAI. These responses of CO2 exchange to biomass production suggest this grassland behaved as weak CO2 sink or near carbon neutral (?78 and 17 g C m?2 year?1) in current management.  相似文献   

15.
3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. So far large-scale production of 3-HP has been mainly through petroleum-based chemical processes, whose sustainability and environmental issues have attracted widespread attention. With the ability to fix CO2 directly, cyanobacteria have been engineered as an autotrophic microbial cell factory to produce fuels and chemicals. In this study, we constructed the biosynthetic pathway of 3-HP in cyanobacterium Synechocystis sp. PCC 6803, and then optimized the system through the following approaches: i) increasing expression of malonyl-CoA reductase (MCR) gene using different promoters and cultivation conditions; ii) enhancing supply of the precursor malonyl-CoA by overexpressing acetyl-CoA carboxylase and biotinilase; iii) improving NADPH supply by overexpressing the NAD(P) transhydrogenase gene; iv) directing more carbon flux into 3-HP by inactivating the competing pathways of PHA and acetate biosynthesis. Together, the efforts led to a production of 837.18 mg L−1 (348.8 mg/g dry cell weight) 3-HP directly from CO2 in Synechocystis after 6 days cultivation, demonstrating the feasibility photosynthetic production of 3-HP directly from sunlight and CO2 in cyanobacteria. In addition, the results showed that overexpression of the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) gene from Anabaena sp. PCC 7120 and Synechococcus sp. PCC 7942 led to no increase of 3-HP production, suggesting CO2 fixation may not be a rate-limiting step for 3-HP biosynthesis in Synechocystis.  相似文献   

16.
The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a3 moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba3-oxidase from Thermus thermophilus, determined at ~ 2.8–3.2 Å resolution, reveal a Fe–C distance of ~ 2.0 Å, a Cu–O distance of 2.4 Å and a Fe–C–O angle of ~ 126°. Upon photodissociation at 100 K, X-ray structures indicate loss of Fea3–CO and appearance of CuB–CO having a Cu–C distance of ~ 1.9 Å and an O–Fe distance of ~ 2.3 Å. Absolute FTIR spectra recorded from single crystals of reduced ba3–CO that had not been exposed to X-ray radiation, showed several peaks around 1975 cm? 1; after photolysis at 100 K, the absolute FTIR spectra also showed a significant peak at 2050 cm? 1. Analysis of the ‘light’ minus ‘dark’ difference spectra showed four very sharp CO stretching bands at 1970 cm? 1, 1977 cm? 1, 1981 cm? 1, and 1985 cm? 1, previously assigned to the Fea3–CO complex, and a significantly broader CO stretching band centered at ~ 2050 cm? 1, previously assigned to the CO stretching frequency of CuB bound CO. As expected for light propagating along the tetragonal axis of the P43212 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba3 crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO2 at 2337 cm? 1 and one from traces of CO at 2133 cm? 1; while bands associated with CO bound to either Fea3 or to CuB in “light” minus “dark” FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2 Å and FTIR spectra support the long-held position that photolysis of Fea3–CO in cytochrome c oxidases leads to significant trapping of the CO on the CuB atom; Fea3 and CuB ligation, at the resolutions reported here, are otherwise unaltered. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

17.
An increase in atmospheric CO2 concentration ([CO2]) together with other climate change factors could greatly affect agricultural productivity. Understanding the impact of the change in atmospheric [CO2] in conjunction with the ongoing global change is crucial to prepare for mitigation and any adaptation for future agricultural production. The main goal of this project was to study the time-course pattern of cotton plant growth in response to [CO2] and temperature to investigate the hypothesis that whether response to elevated [CO2] would change at different temperatures. An experiment was conducted in the controlled-environment chambers of the Georgia Envirotron with two different day/night temperatures levels, e.g., 25/15 °C and 35/25 °C, and three CO2 concentrations, e.g., 400, 600 and 800 μmol l?1. The experimental design was completely randomized with four replicates (plastic containers) per treatment. Growth analysis was conducted at bi-weekly intervals during the growing season. In addition, leaf area, leaf dry mass, root dry mass, square dry mass, boll dry mass and total above dry mass per plant were also measured at each sampling. Plant traits, including plant height, number of leaves, number of squares and number of bolls were recorded weekly. The number of days to emergence, squaring, flowering and maturity were also observed. The results showed that by increasing [CO2] to 600 μmol l?1 total biomass increased at both temperature levels, but a further increase of [CO2] up to 800 μmol l?1 increased total biomass only at the temperature of 35/25 °C. Throughout the growing season, there was no significant effect of [CO2] levels on LAI. Increasing temperature from 25/15 °C to 35/25 °C had a positive impact on LAI across all CO2 levels (P < 0.05). Increasing CO2 from 400 to 600 μmol l?1 significantly increased the number of squares by 31.4%, but a further increase to 800 μmol l?1 caused a 6.6% decrease (non-significant) in the number of squares. The interactive effects of [CO2] and temperature indicated that at a higher temperature, CO2 would be more beneficial as we proceed towards the end of the growing season. However, further studies are needed to really understand the interaction between higher [CO2] and temperature levels and cultivar characteristics.  相似文献   

18.
We investigated the effects of pH on movement behaviors of the harmful algal bloom causing raphidophyte Heterosigma akashiwo. Motility parameters from >8000 swimming tracks of individual cells were quantified using 3D digital video analysis over a 6-h period in 3 pH treatments reflecting marine carbonate chemistry during the pre-industrial era, currently, and the year 2100. Movement behaviors were investigated in two different acclimation-to-target-pH conditions: instantaneous exposure and acclimation of cells for at least 11 generations. There was no negative impairment of cell motility when exposed to elevated PCO2 (i.e., low pH) conditions but there were significant behavioral responses. Irrespective of acclimation condition, lower pH significantly increased downward velocity and frequency of downward swimming cells (p < 0.001). Rapid exposure to lower pH resulted in 9% faster downward vertical velocity and up to 19% more cells swimming downwards (p < 0.001). Compared to pH-shock experiments, pre-acclimation of cells to target pH resulted in ~30% faster swimming speed and up to 46% faster downward velocities (all p < 0.001). The effect of year 2100 PCO2 levels on population diffusivity in pre-acclimated cultures was >2-fold greater than in pH-shock treatments (2.2 × 105 μm2 s−1 vs. 8.4 × 104 μm2 s−1). Predictions from an advection-diffusion model, suggest that as PCO2 increased the fraction of the population aggregated at the surface declined, and moved deeper in the water column. Enhanced downward swimming of H. akashiwo at low pH suggests that these behavioral responses to elevated PCO2 could reduce the likelihood of dense surface slick formation of H. akashiwo through reductions in light exposure or growth independent surface aggregations. We hypothesize that the HAB alga's response to higher PCO2 may exploit the signaling function of high PCO2 as indicative of net heterotrophy in the system, thus indicative of high predation rates or depletion of nutrients.  相似文献   

19.
Light is one of the most important environmental signals regulating physiological processes of many microorganisms. However, very few studies have been reported on the qualitative or quantitative effects of light on control of postharvest spoilage using antagonistic bacteria. In this study, we investigated the effects of white, red, green, and blue light at photon flux densities of 40, 240, and 360 μmol m?2 s?1 on Bacillus amyloliquefaciens JBC36 (JBC36), which has been reported as a promising candidate for biocontrol of green and blue mold on mandarin fruit. With the exception of blue light at 240 and 360 μmol m?2 s?1, light generally stimulated growth of JBC36 compared to the controls grown in the dark. Red light increased swarming motility irrespective of intensity and significantly enhanced biofilm formation at 240 μmol m?2 s?1. Production of antifungal metabolites and antifungal activity on Penicillium digitatum was also affected by light quality. Interestingly, antifungal activity was significantly increased when JBC36 and P. digitatum was co-incubated under red and green light at an intensity of 240 μmol m?2 s?1. We also demonstrated that the quality of light resulted in changes in colonization of JBC36 on mandarin fruit and control of green mold. In particular, red light increased the population level on mandarin fruit and biocontrol efficacy against green mold. These results represent the first report on the effect of light quality on an antagonistic bacterium for the control of postharvest spoilage. We believe that an improved understanding of the JBC36 response to light quality may help in the development of strategies to increase biocontrol efficacy of postharvest spoilage.  相似文献   

20.
Chlorella vulgaris was cultivated in two different 2.0 L-helicoidal and horizontal photobioreactors at 5 klux using the bicarbonate contained in the medium and ambient air as the main CO2 sources. The influence of bicarbonate concentration on biomass growth as well as lipid content and profile was first investigated in shake flasks, where the stationary phase was achieved in about one half the time required by the control. The best NaHCO3 concentration (0.2 g L−1) was then used in both photobioreactors. While the fed-batch run performed in the helicoidal photobioreactor provided the best result in terms of biomass productivity, which was (84.8 mg L−1 d−1) about 2.5-fold that of the batch run, the horizontal configuration ensured the highest lipid productivity (10.3 mg L−1 d−1) because of a higher lipid content of biomass (22.8%). These preliminary results suggest that the photobioreactor configuration is a key factor either for the growth or the composition of this microalga. The lipid quality of C. vulgaris biomass grown in both photobioreactors is expected to meet the standards for biodiesel, especially in the case of the helicoidal configuration, provided that further efforts will be made to optimize the conditions for its production as a biodiesel source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号