首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of widespread and common environmental factors, such as chemical contaminants, on infectious disease risk in amphibians is particularly important because both chemical contaminants and infectious disease have been implicated in worldwide amphibian declines. Here we report on the lone and combined effects of exposure to parasitic cercariae (larval stage) of the digenetic trematode, Acanthostomum burminis, and four commonly used pesticides (insecticides: chlorpyrifos, dimethoate; herbicides: glyphosate, propanil) at ecologically relevant concentrations on the survival, growth, and development of the common hourglass tree frog, Polypedates cruciger Blyth 1852. There was no evidence of any pesticide-induced mortality on cercariae because all the cercariae successfully penetrated each tadpole host regardless of pesticide treatment. In isolation, both cercarial and pesticide exposure significantly decreased frog survival, development, and growth, and increased developmental malformations, such as scoliosis, kyphosis, and also edema and skin ulcers. The combination of cercariae and pesticides generally posed greater risk to frogs than either factor alone by decreasing survival or growth or increasing time to metamorphosis or malformations. The exception was that lone exposure to chlorpyrifos had higher mortality without than with cercariae. Consistent with mathematical models that suggest that stress should increase the impact of generalist parasites, the weight of the evidence from the field and laboratory suggests that ecologically relevant concentrations of agrochemicals generally increase the threat that trematodes pose to amphibians, highlighting the importance of elucidating interactions between anthropogenic activities and infectious disease in taxa of conservation concern.  相似文献   

2.
Multiple pathogens coexist in nature, and hence, host species often encounter several pathogens simultaneously. The sequence in which the host encounters the parasites influences interactions between parasites and host pathology. Here, the effects of infection by two cercaria (larvae of trematodes) types, pleurolophocercous cercaria of Acanthostomum burminis and a furcocercous cercaria, on the tadpoles of common hourglass tree frog (Polypedates cruciger) were examined. Ten days posthatch, tadpoles (Gosner stage 27/28) were used for infection exposures. First, in a single infection each cercaria type was introduced to the tadpoles separately. Second, coinfection of the two cercaria was carried out by alternating the sequences of exposure. For all the experiments, appropriate controls were instituted. Tadpoles of all groups exposed to parasites had lower survival levels compared to controls. Among the four groups exposed, the highest survival was observed in the coinfection when furcocercous was introduced first (82.5%). The lowest survival was observed in the coinfection when the A. burminis cercaria was introduced first (65.0%). In the coinfections, when A. burminis was introduced prior to furcocercous, survival of the tadpoles was reduced by 17.0% compared to the exposures of furcocercous prior to A. burminis. Prior infection with A. burminis induced negative effect on the host with an increased infection severity, while prior infection with furcocercous had reduced infection severity than lone exposures. These results suggest that furcocercous infections can be beneficial for hosts challenged with A. burminis provided that A. burminis exposure occurs second. None of the treatments had an effect on the growth of the tadpoles, but lengthening of developmental period was observed in some exposures. All exposed tadpoles developed malformations which were exclusively axial—kyphosis and scoliosis. However, there was no difference in the number of malformed individuals in the single infection (19.0%–25.0%) compared to coinfection (20.0%–22.5%) or between coinfections. The results suggest that the sequence of parasite exposure affects host–parasite interactions and hence the disease outcomes. Understanding the effects of coinfection on disease outcomes for hosts provides insight into disease dynamics.  相似文献   

3.
Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host’s skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species.  相似文献   

4.
Cercariae of many digenean trematodes target particular developmental stages of their hosts. For some digeneans that are parasites of amphibians, infection appears timed to host metamorphosis. The success and timing of metamorphosis is itself affected by a number of factors, including host density. We investigated the degree to which rearing density of Rana pipiens larvae influenced time to metamorphosis and snout-to-vent length and mass at metamorphosis, as well as establishment of cercariae of the trematode Manodistomum syntomentera Stafford, 1905. As expected, individuals metamorphosed later, were smaller, and weighed less at metamorphosis if they were reared under intermediate to high densities compared with low densities, in experimental outdoor mesocosms. Cercariae establishment was higher in smaller metamorphs that took longer to metamorphose within the low-density treatment. Additionally, cercariae establishment was lower in larvae from the low-density tanks compared with larvae from the intermediate- to high-density tanks. However, more tadpoles had failed to metamorphose in the intermediate to high rearing densities by the time cercariae were no longer available from natural collections of first intermediate hosts, Physa spp. Larval amphibians under crowded conditions should experience increased susceptibility to trematode establishment in nature, but only if they metamorphose within the time period when cercariae are still available.  相似文献   

5.
Invasive species can be a threat to native species in several ways, including transmitting lethal infections caused by the parasites they carry. However, invasive species may also be plagued by novel and lethal infections they acquire when invading, making inferences regarding the ability of an invasive host to vector disease difficult from field observations of infection and disease. This is the case for the pathogenic fungus Batrachochytrium dendrobatidis (Bd) in Europe and one invasive host species, the North American bullfrog Lithobates catesbeianus, hypothesized to be responsible for vectoring lethal infection to European native amphibians. We tested this hypothesis experimentally using the alpine newt Ichthyosaura alpestris as our model native host. Our results show that infected bullfrog tadpoles are effective vectors of Bd. Native adult newts co-housed with experimentally infected bullfrog tadpoles became Bd infected (molecular and histological tests). Moreover, the exposed adult newts suffered mortality while the majority of infected bullfrog tadpoles survived until metamorphosis. These results cannot resolve the historical role of alien species in establishing the distribution of Bd across Europe or other regions in the world where this species was introduced, but they show its potential role as a Bd reservoir capable of transmitting lethal infections to native amphibians. Finally, our results also suggest that the removal of infected bullfrogs from aquatic environments may serve to reduce the availability of Bd in European amphibian communities, offering another justification for bullfrog eradication programmes that are currently underway or may be considered.  相似文献   

6.
Ongoing debate over the relationship between biodiversity and disease risk underscores the need to develop a more mechanistic understanding of how changes in host community composition influence parasite transmission, particularly in complex communities with multiple hosts. A key challenge involves determining how motile parasites select among potential hosts and the degree to which this process shifts with community composition. Focusing on interactions between larval amphibians and the pathogenic trematode Ribeiroia ondatrae, we designed a novel, large-volume set of choice chambers to assess how the selectivity of free-swimming infectious parasites varied among five host species and in response to changes in assemblage composition (four different permutations). In a second set of trials, cercariae were allowed to contact and infect hosts, allowing comparison of host-parasite encounter rates (parasite choice) with infection outcomes (successful infections). Cercariae exhibited consistent preferences for specific host species that were independent of the community context; large-bodied amphibians, such as larval bullfrogs (Rana catesbeiana), exhibited the highest level of parasite attraction. However, because host attractiveness was decoupled from susceptibility to infection, assemblage composition sharply affected both per-host infection as well as total infection (summed among co-occurring hosts). Species such as the non-native R. catesbeiana functioned as epidemiological ‘sinks’ or dilution hosts, attracting a disproportionate fraction of parasites relative to the number that established successfully, whereas Taricha granulosa and especially Pseudacris regilla supported comparatively more metacercariae relative to cercariae selection. These findings provide a framework for integrating information on parasite preference in combination with more traditional factors such as host competence and density to forecast how changes within complex communities will affect parasite transmission.  相似文献   

7.
Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperature are known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadal development and sex ratio in amphibians but the mechanism of action is not known. In the present study, effect of different temperatures on gonadal development, sex ratio and metamorphosis was studied in the Indian skipper frog, Euphlyctis cyanophlyctis. The embryos of Gosner stage 7 were exposed to 20, 22, 24, 26, 28, 30 and 32°C up to tadpole stage 42. The embryos (stage 7) were also exposed to 20 and 32°C up to tadpole stage 25 (non-feeding stages). Tadpoles of stage 25 were reared at 20 and 32°C up to stage 42 (feeding stages). The results show that exposure to higher temperatures (28, 30 and 32°C) during stages 7–42 produced male-biased sex ratio. Rearing of tadpoles at 32°C during stages 25–42 produced male-biased sex ratio, while exposure during stages 7–25 did not affect sex ratio. Embryos and tadpoles exposed to lower temperatures (20 and 22°C) died during the early stages. High temperatures stimulated testis development, and disturbed ovary development. Exposure to high temperatures resulted in the early metamorphosis of tadpoles with reduced body size. These results demonstrated that high temperatures influence gonadal development differently in male and female tadpoles, leading to male-biased sex ratio. These results suggest that high temperature probably acts through stress hormones and favours the small-sized sex.  相似文献   

8.
Parasites can potentially affect host energetics through a variety of mechanisms including diverting energy from host functions or eliciting energetically costly responses. In many systems energetic costs of parasite infection remain poorly defined. The widespread trematode Echinostoma trivolvis can cause mortality of and pathology in larval amphibians. However, physiological impacts of E. trivolvis infection have received limited attention. To evaluate the effects of E. trivolvis on larval amphibian survival, growth and development, we studied a wide range of infection intensity in wood frog, Rana (= Lithobates) sylvatica, tadpoles in laboratory experiments and outdoor mesocosms. To assess potential underlying physiological costs of infection, we measured tadpole energetics and phenotypic plasticity of the intestines as a compensatory mechanism to offset increased energy costs. Survival was high in all tadpoles, but the highest infections decreased the growth and slowed the development of tadpoles raised in mesocosms and the laboratory. However, infections failed to elicit detectable energetic costs or phenotypic changes in intestinal size. The lack of energetic costs observed in our study emphasizes the complex and often context-dependent nature of energetic costs of parasitism and suggests that other mechanisms, such as changes in host behavior, may contribute to sub-lethal effects on growth and development.  相似文献   

9.
1. Within a community, different host species often exhibit broad variation in sensitivity to infection and disease. Because such differences can influence the strength and outcome of community interactions, it is essential to understand differential disease patterns and identify the mechanisms responsible. 2. In North American wetlands, amphibian species often exhibit extraordinary differences in the frequency of limb malformations induced by the digenetic trematode, Ribeiroia ondatrae. By coupling field studies with parasite exposure experiments, we evaluated whether such patterns were due to differences in (i) parasite encounter rate, (ii) infection establishment, or (iii) parasite persistence within hosts. 3. Field results underscored the broad variation in malformations and infection between host species; while nearly 60% (n = 618) of emerging American toads exhibited severe limb deformities such as bony triangles, skin webbings and missing limbs, fewer than 4% (n = 251) of Eastern gray treefrogs from the same pond were abnormal. Despite similarities in the phenology and larval development period of these species, they differed sharply in Ribeiroia infection. On average, toads supported 75x more metacercariae than did metamorphic treefrogs. 4. Experimental exposures of larval toads and treefrogs to a realistic range of Ribeiroia cercariae revealed strong differences in the sensitivity of these species to infection; exposed toads suffered elevated mortality (up to 95%), delayed metamorphosis, and severe limb malformations consistent with field observations. Treefrogs, in contrast, exhibited limited mortality and no malformations, regardless of exposure level. Ribeiroia cercariae were substantially less successful in locating and infecting Hyla versicolor larvae. 5. Our results indicate that the observed differences in infection and malformations owe to a lower ability of Ribeiroia cercariae to both find and establish within larval treefrogs, possibly stemming from a heightened immune response to infection. Because Ribeiroia is a highly pathogenic parasite with negative effects on larval and metamorphic amphibian survival, variation in infection resistance among species could have important implications for understanding patterns of species co-occurrence, competition, and community diversity.  相似文献   

10.
The amphibian species play an important role in much ecosystem functioning. However, it is severely impacted by civil engineering, which causes a high level of amphibian mortality. This is partly because roads isolate the amphibians’ habitats, causing the amphibians to cross them, during which time they can be killed by vehicles. However, secondly, roadside ditches can also have a fatal impact on the amphibians when they fall into them. This study focuses on this second issue and comprises two parts: field experiments and control experiments in the laboratory. In the field experiments, research into the roadside ditch impact on juvenile/sub-adult Bufo melanostictus migration was carried out by looking at different combinations of the ditch's angle, construction material and depth, and amount of plant growth. In the control experiments in the laboratory, the main focus of the study was the relationship between the body length of the juvenile/sub-adult Bufo melanostictus and its maximum jumping distance and jumping height, and the maximum gradient that Bufo melanostictus could climb.This research indicates that amphibian migration should be taken into account when roadside ditches are being planned. Civil engineering should consider the needs of the amphibians’ living space and thereby reduce its impact on the amphibians’ original habitat, so that human beings live in harmony with nature.  相似文献   

11.
Global warming may induce significant changes in species life history traits particularly in amphibians, which are characterized by complex and plastic life cycles. Because both warming and predators are often suggested to reduce size at metamorphosis in amphibians, we hypothesized that the size at metamorphosis was further reduced by experimental warming in the presence of predators. We conducted a factorial-designed experiment involving two factors and two levels (warmed vs. ambient, lethal predator absence vs. presence, resulting in four treatments) using Rana kukunoris tadpoles in the eastern Tibetan Plateau, and we examined its behavioral, growth, and developmental responses to warming in the presence and absence of predatory beetles (Agabus sp.) for 13 weeks. During the course of the experiment, a similar level of tadpole mortality due to the diving beetles was found between ambient and warmed treatments, but the warming effect on size at metamorphosis depended on whether the predators were present or absent. In the absence of predators, warming did not significantly increase tadpole growth but advanced the timing of metamorphosis, such that size at metamorphosis of forelimb emergence and tail resorption was much reduced in terms of body fresh weight. In the presence of predators, warming increased tadpole growth rate much more than the development rate (as reflected by duration of the tadpole stage), and therefore the size at metamorphosis was significantly increased. The significant effect of the interaction between predator and warming on the size at metamorphosis could be attributed to the tadpole response in the frequencies of feeding, resting, and swimming to the predator activity level, which was in turn increased by warming. We suggest that warming-induced changes in life history traits should be studied in relation to species interaction so as to accurately predict ecological response of amphibians to the future warmed world.  相似文献   

12.
Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other’s densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts) for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans), in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1) replace the focal host species so that the total number of individuals remains constant (substitution) or (2) add to total host density (addition). For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly) when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns.  相似文献   

13.
The prevalence of the cercarial stage of an intestinal trematode, Haplorchis taichui, in thiarid snails (Gastropoda: Thiaridae) was investigated using light microscope and species-specific PCR procedures. A total of 988 snails were collected from Mae Taeng district, Chiang Mai province, northern Thailand, which comprised of 3 species; Melanoides tuberculata, Tarebia granifera, and Thiara scabra. The overall prevalence of pleurolophocercous cercariae was 21.7% as determined by the morphology. For genetic detection of H. taichui infection in snails, 2 primers Hapt_F (5'-GGCCAACGCAATCGTCATCC-3') and Hapt_R (5'-GCGTCGGGTTTCAGACATGG-3'), were used. The genomic DNA of H. taichui, which was used as a positive control, gave an amplification of the 256 bp fragment. The overall prevalence of H. taichui from specific PCR was 9.7%. The proportion of H. taichui among the pleurolophocercous cercariae in this study was 44.9%.  相似文献   

14.
Belden LK  Wojdak JM 《Oecologia》2011,166(4):1077-1086
Predators can have important impacts on host–parasite dynamics. For many directly transmitted parasites, predators can reduce transmission by removing the most heavily infected individuals from the population. Less is known about how predators might influence parasite dynamics in systems where the parasite relies on vectors or multiple host species to complete their life cycles. Digenetic trematodes are parasitic flatworms with complex life cycles typically involving three host species. They are common parasites in freshwater systems containing aquatic snails, which serve as obligate first intermediate hosts, and multiple trematode species use amphibians as second intermediate hosts. We experimentally examined the impact of predatory salamanders (Ambystoma jeffersonianum) and trematode parasites (Echinostoma trivolvis and Ribeiroia ondatrae) on short-term survival of wood frog tadpoles (Rana sylvatica) in 150-L outdoor pools. Two trematode species were used in experiments because field surveys indicated the presence of both species at our primary study site. Parasites and predators both significantly reduced tadpole survival in outdoor pools; after 6 days, tadpole survival was reduced from 100% in control pools to a mean of 46% in pools containing just parasites and a mean of 49% in pools containing just predators. In pools containing both infected snails and predators, tadpole survival was further reduced to a mean of 5%, a clear risk-enhancement or synergism. These dramatic results suggest that predators may alter transmission dynamics of trematodes in natural systems, and that a complete understanding of host–parasite interactions requires studying these interactions within the ecological framework of community interactions.  相似文献   

15.
We examined the interactive effects of predators and trematodes on Rana sybatica and Rana clamitans larvae. We hypothesized that exposure to predators would increase tadpole susceptibility to trematode infection, by reducing tadpole activity and thereby increasing time spent on the bottom. We further hypothesized that the tadpoles would experience reduced rates of growth and development in the presence of either predators or parasites, and that predator presence would stimulate both species to develop larger tails and smaller bodies. Rana clamilans and R. sybatica reduced their activity in the presence of both predators and trematode cercariae. In the longer running R. clamitans experiment, predator-exposed tadpoles developed significantly shallower tails and wider bodies, while trematode infection had no effect on growth, development, or shape. Most significantly, we found that extended exposure to caged fish predators made R. clamitans tadpoles more susceptible to trematode infection. A possible mechanism for this increased vulnerability is that reduced activity in the presence of predators increases tadpoles' proximity to cercariae. Our study suggests that various factors that decrease tadpole activity–predator presence, trematode cercariae and certain pesticides–may act synergistically to negatively impact tadpole populations.  相似文献   

16.
Vitamin A has manifold effects on the development, growth and pattern formation of several amphibians. At the same time it causes severe embryonic malformations. The histological changes brought about by vitamin A in the tail tissues of anurans are quite amazing. A common morphological change brought about by vitamin A in tail-amputated tadpoles ofBufo melanostictus include the formation of a large bulbular mass at the distal end of the tail following tail regeneration. Histology revealed that the bulbular mass consisted of notochordal cells only. Other histological changes are: a thickening of the epidermis and the basement membrane, enlargement of the notochord and the nerve cord, thickening of the sheath covering the notochord and the myelin sheath covering the nerve cord and the disorganization of muscle bundles. The significance of such changes is discussed.  相似文献   

17.
Rohr JR  Swan A  Raffel TR  Hudson PJ 《Oecologia》2009,159(2):447-454
There is growing interest in the ecological consequences of fear, as evidenced by the numerous studies on the nonconsumptive, trait-mediated effects of predators. Parasitism, however, has yet to be fully integrated into research on the ecology of fear, despite it having direct negative and often lethal effects on hosts and being the most common life history strategy on the planet. This might at least be partly due to the traditional, but untested, assumption that anti-parasite responses are weak relative to anti-predator responses. To test this hypothesis, we quantified the activity and location responses of Bufo americanus tadpoles to one of six chemical cues: water; cercariae of Echinostoma trivolvis, a trematode which infects and can kill amphibians; a snail releasing E. trivolvis cercariae; an uninfected snail; food; or conspecific alarm chemicals signaling predation. There is also literature encouraging research on the context dependency and pollution-induced disruption of fear responses. Consequently, before quantifying responses to the chemical cues, half of the B. americanus were exposed to the herbicide atrazine (201 μg/l for 4 days), a reported inhibitor of fear responses in fish. Tadpoles were attracted to food, were indifferent to an uninfected snail, avoided alarm chemicals, and exhibited avoidance and elevated activity in response to a snail shedding cercariae and cercariae alone. Atrazine had no detectable effects on B. americanus’ responses to the tested cues despite the use of a higher concentration and longer exposure duration than has been repeatedly shown to inhibit chemical cue detection in fish. The magnitude of anti-parasite and anti-predator responses were qualitatively similar, suggesting that the fear of disease and its ecological consequences could be comparable to that of predation. Consequently, we call for a greater integration of parasites into research on the ecology of fear and trait-mediated indirect effects.  相似文献   

18.
Batrachochytrium dendrobatidis (B. dendrobatidis), a chytrid fungus, is one of the major contributors to the global amphibian decline. The fungus infects both tadpoles and adult amphibians. Tadpoles are infected in their keratinized mouthparts, and infected adults exhibit hyperkeratosis and loss of righting reflex. Infections of adults may result in death from cardiac arrest in susceptible species. Thyroid hormone plays a key role in amphibian metamorphosis. The occurrence of B. dendrobatidis in tadpoles during metamorphosis may result in exposure of the fungus to host morphogens including TH. This exposure may induce gene expression in the fungus contributing to invasion and colonization of the host. Here, we demonstrate movement of fungal zoospores toward TH. Additionally, expression of a subtilisin-like serine protease is up-regulated in B. dendrobatidis cells exposed to TH. A gene encoding this protease was cloned from B. dendrobatidis and expressed in Escherichia coli. The protein was partially purified and characterized. The similarity between subtilases of human dermatophytes and the B. dendrobatidis subtilisin-like serine protease suggests the importance of this enzyme in B. dendrobatidis pathogenicity. Cleavage of frog skin antimicrobial peptides (AMPs) by this B. dendrobatidis subtilisin-like serine protease suggests a role for this enzyme in fungal survival and colonization.  相似文献   

19.
20.
Ultraviolet radiation has been suggested as a possible contributing cause of amphibian declines around the world. Both laboratory and field studies have demonstrated that exposure to ultraviolet radiation can lead to increased mortality of developing amphibians. Virtually no studies have examined the sub‐lethal effects of ultraviolet on amphibian behavior. In this study, we examine the anti‐predator behavior of three species of amphibians after short‐term exposure to ultraviolet‐B radiation. Toad (Bufo boreas) juveniles that had been exposed to ultraviolet radiation did not respond to chemical extracts from conspecifics and heterospecifics as much as juveniles that had not been exposed. Both newt larvae (Taricha granulosa) that had been exposed to ultraviolet radiation and those that had not been exposed responded to chemical cues from conspecific predators by increasing the amount of time spent in shelter. Frog tadpoles (Rana cascadae) that had been exposed to ultraviolet radiation did not reduce their movement in response to chemical cues from predators as much as tadpoles that had not been exposed. These results indicate that ultraviolet exposure may have important sub‐lethal effects in amphibians that could adversely effect their fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号