首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Folates have a key role in metabolism, and the folate-dependent generation of DNA precursors in the form of deoxythymidine 5'-phosphate is particularly important for the replication of malaria parasites. Although Plasmodium falciparum can synthesize folate derivatives de novo, a long-standing mystery has been the apparent absence of a key enzyme, dihydroneopterin aldolase, in the classical folate biosynthetic pathway of this organism. The discovery that a different enzyme, pyruvoyltetrahydropterin synthase, can produce the necessary substrate for the subsequent step in folate synthesis raises the question of whether this solution is unique to P. falciparum. Bioinformatic analyses suggest otherwise and indicate that an alternative route to folate could be widespread among diverse microorganisms and could be a target for novel drugs.  相似文献   

6.
7.
Bacteriophages of the Podoviridae family use short noncontractile tails to inject their genetic material into Gram-negative bacteria. In phage P22, the tail contains a thin needle, encoded by the phage gene 26, which is essential both for stabilization and for ejection of the packaged viral genome. Bioinformatic analysis of the N-terminal domain of gp26 (residues 1-60) led us to identify a family of genes encoding putative homologues of the tail needle gp26. To validate this idea experimentally and to explore their diversity, we cloned the gp26-like gene from phages HK620, Sf6 and HS1, and characterized these gene products in solution. All gp26-like factors contain an elongated α-helical coiled-coil core consisting of repeating, adjacent trimerization heptads and form trimeric fibers with length ranging between about 240 to 300 Å. gp26 tail needles display a high level of structural stability in solution, with Tm (temperature of melting) between 85 and 95 °C. To determine how the structural stability of these phage fibers correlates with the length of the α-helical core, we investigated the effect of insertions and deletions in the helical core. In the P22 tail needle, we identified an 85-residue-long helical domain, termed MiCRU (minimal coiled-coil repeat unit), that can be inserted in-frame inside the gp26 helical core, preserving the straight morphology of the fiber. Likewise, we were able to remove three quarters of the helical core of the HS1 tail needle, minimally decreasing the stability of the fiber. We conclude that in the gp26 family of tail needles, structural stability increases nonlinearly with the length of the α-helical core. Thus, the overall stability of these bacteriophage fibers is not solely dependent on the number of trimerization repeats in the α-helical core.  相似文献   

8.
Interaction of α4 integrins with vascular cell adhesion molecule-1 (VCAM-1) is classically important for immune function. However, we found recently that these receptors have a second role, in embryogenesis, where they mediate cell-cell interactions that are important for skeletal muscle differentiation. Here, we present evidence of an expanding role for these receptors in murine development. α4 and VCAM-1 were found at embryonic sites of hematopoiesis, suggesting a role for these receptors during embryogenesis that parallels their hematopoietic function in adult bone marrow. During angiogenesis in the lung, α4 and VCAM-1 were found on mesenchyme that gives rise to vascular endothelium and smooth muscle. α4 persisted on the smooth muscle and the endothelium of newly forming vessels where it colocalized with its extracellular matrix ligand, fibronectin (FN). These patterns suggest several roles for α4 integrins and their ligands in angiogenesis. α4 was also found on neural crest derivatives where it colocalized with FN. α4 was expressed selectively on cells in the dorsal root ganglia: it was apparent along ventral projections, but absent from dorsal projections, suggesting that α4 integrins could be involved in defining neuronal fates. Although VCAM-1 was not expressed on most neural crest derivatives, it was found in the neural crest-derived outflow tract of the embryonic heart, where it colocalized with α4. These results imply that α4 integrins and their ligands could be important for migration or differentiation of neural crest. α4 was also expressed on embryonic retina and FN was found on inductive mesenchyme surrounding the eye, suggesting a role for these proteins in eye development. Finally, based on their patterns of expression, we conclude that VCAM-1 only participates in a subset of interactions involving α4 integrins, whereas FN appears to be the more general ligand.  相似文献   

9.

Background

Laminin α2 chain mutations cause congenital muscular dystrophy with dysmyelination neuropathy (MDC1A). Previously, we demonstrated that laminin α1 chain ameliorates the disease in mice. Dystroglycan and integrins are major laminin receptors. Unlike laminin α2 chain, α1 chain binds the receptors by separate domains; laminin globular (LG) domains 4 and LG1-3, respectively. Thus, the laminin α1 chain is an excellent tool to distinguish between the roles of dystroglycan and integrins in the neuromuscular system.

Methodology/Principal Findings

Here, we provide insights into the functions of laminin α1LG domains and the division of their roles in MDC1A pathogenesis and rescue. Overexpression of laminin α1 chain that lacks the dystroglycan binding LG4-5 domains in α2 chain deficient mice resulted in prolonged lifespan and improved health. Importantly, diaphragm and heart muscles were corrected, whereas limb muscles were dystrophic, indicating that different muscles have different requirements for LG4-5 domains. Furthermore, the regenerative capacity of the skeletal muscle did not depend on laminin α1LG4-5. However, this domain was crucial for preventing apoptosis in limb muscles, essential for myelination in peripheral nerve and important for basement membrane assembly.

Conclusions/Significance

These results show that laminin α1LG domains and consequently their receptors have disparate functions in the neuromuscular system. Understanding these interactions could contribute to design and optimization of future medical treatment for MDC1A patients.  相似文献   

10.
11.
The virulent form of malaria is caused by Plasmodium falciparum that infects red blood cells. In order to survive inside the host, the parasite remodels the infected erythrocytes by exporting more than 300 effector proteins outside the parasitophorous vacuole membrane into the cytosol. The main feature of all the export proteins is the presence of a pentapeptide sequence motif; RxLxE/Q/D. This sequence motif is hydrolysed between L-x and the proteins with the acetylated new N-terminus xE/Q/D are exported. The enzyme responsible for this hydrolysis is plasmepsin V which is one of the ten aspartic proteases in P. falciparum. In order to understand the structural rationale for the specificity of this protease towards cleavage of the above motif, we generated three-dimensional models of seven plasmepsins (I, V to X) for which experimental structures are not available and compared these along with the crystal structures of three P. falciparum plasmepsins (II to IV). The structure comparisons revealed the importance of Tyr13, Glu77 and Ala117 specific to plasmepsin V that facilitates the accommodation of arginine at P? in the RxLxE/Q/D motif. Our analysis correlates the structure-function relationship of plasmepsin V.  相似文献   

12.

Background

Merozoite surface protein 142 (MSP142) is a leading blood stage malaria vaccine candidate. In order to induce immune responses that cover the major antigenic polymorphisms, FVO and 3D7 recombinant proteins of MSP142 were mixed (MSP142-C1). To improve the level of antibody response, MSP142-C1 was formulated with Alhydrogel plus the novel adjuvant CPG 7909.

Methods

A Phase 1 clinical trial was conducted in healthy malaria-naïve adults at the Center for Immunization Research in Washington, D.C., to evaluate the safety and immunogenicity of MSP142-C1/Alhydrogel +/− CPG 7909. Sixty volunteers were enrolled in dose escalating cohorts and randomized to receive three vaccinations of either 40 or 160 µg protein adsorbed to Alhydrogel +/− 560 µg CPG 7909 at 0, 1 and 2 months.

Results

Vaccinations were well tolerated, with only one related adverse event graded as severe (Grade 3 injection site erythema) and all other vaccine related adverse events graded as either mild or moderate. Local adverse events were more frequent and severe in the groups receiving CPG. The addition of CPG enhanced anti-MSP142 antibody responses following vaccination by up to 49-fold two weeks after second immunization and 8-fold two weeks after the third immunization when compared to MSP142-C1/Alhydrogel alone (p<0.0001). After the third immunization, functionality of the antibody was tested by an in vitro growth inhibition assay. Inhibition was a function of antibody titer, with an average of 3% (range −2 to 10%) in the non CPG groups versus 14% (3 to 32%) in the CPG groups.

Conclusion/Significance

The favorable safety profile and high antibody responses induced with MSP142-C1/Alhydrogel + CPG 7909 are encouraging. MSP142-C1/Alhydrogel is being combined with other blood stage antigens and will be taken forward in a formulation adjuvanted with CPG 7909.

Trial Registration

ClinicalTrials.gov Identifier: NCT00320658  相似文献   

13.
14.
A new series of peptidomimetic pseudo-prolyl-homophenylalanylketones were designed, synthesized and evaluated for inhibition of the Plasmodium falciparum cysteine proteases falcipain-2 (FP-2) and falcipain-3 (FP-3). In addition, the parasite killing activity of these compounds in human blood-cultured P. falciparum was examined. Of twenty-two (22) compounds synthesized, one peptidomimetic comprising a homophenylalanine-based α-hydroxyketone linked Cbz-protected hydroxyproline (39) showed the most potency (IC50 80 nM against FP-2 and 60 nM against FP-3). In silico analysis of these peptidomimetic analogs offered important protein–ligand structural insights including the role, by WaterMap, of water molecules in the active sites of these protease isoforms. The pseudo-dipeptide 39 and related compounds may serve as a promising direction forward in the design of competitive inhibitors of falcipains for the effective treatment of malaria.  相似文献   

15.
Clinical immunity to Plasmodium falciparum malaria develops after repeated exposure to the parasite. At least 2 P. falciparum variant antigens encoded by multicopy gene families (var and rif) are targets of this adaptive antibody-mediated immunity. A third multigene family of variant antigens comprises the stevor genes. Here, 4 different stevor sequences were selected for cloning and expression in Escherichia coli and His6-tagged fusion proteins were used for assessing the development of immunity. In a cross-sectional analysis of clinically immune adults living in a malaria endemic area in Ghana, high levels of anti-STEVOR IgG antibody titres were determined in ELISA. A cross-sectional study of 90 nine-month-old Ghanaian infants using 1 recombinant STEVOR showed that the antibody responses correlated positively with the number of parasitaemia episodes. In a longitudinal investigation of 17 immunologically na?ve 9-month-old infants, 3 different patterns of anti-STEVOR antibody responses could be distinguished (high, transient and low). Children with high anti-STEVOR-antibody levels exhibited an elevated risk for developing parasitaemia episodes. Overall, a protective effect could not be attributed to antibodies against the STEVOR proteins chosen for the study presented here.  相似文献   

16.
α-Synuclein (α-syn), a protein implicated in Parkinson's disease, is structurally diverse. In addition to its random-coil state, α-syn can adopt an α-helical structure upon lipid membrane binding or a β-sheet structure upon aggregation. We used yeast biology and in vitro biochemistry to detect how sequence changes alter the structural propensity of α-syn. The N-terminus of the protein, which adopts an α-helical conformation upon lipid binding, is essential for membrane binding in yeast, and variants that are more prone to forming an α-helical structure in vitro are generally more toxic to yeast. β-Sheet structure and inclusion formation, on the other hand, appear to be protective, possibly by sequestering the protein from the membrane. Surprisingly, sequential deletion of residues 2 through 11 caused a dramatic drop in α-helical propensity, vesicle binding in vitro, and membrane binding and toxicity in yeast, part of which could be mimicked by mutating aspartic acid at position 2 to alanine. Variants with distinct structural preferences, identified here by a reductionist approach, provide valuable tools for elucidating the nature of toxic forms of α-syn in neurons.  相似文献   

17.
In eukaryotes, class I α-mannosidases are involved in early N-glycan processing reactions and in N-glycan–dependent quality control in the endoplasmic reticulum (ER). To investigate the role of these enzymes in plants, we identified the ER-type α-mannosidase I (MNS3) and the two Golgi-α-mannosidase I proteins (MNS1 and MNS2) from Arabidopsis thaliana. All three MNS proteins were found to localize in punctate mobile structures reminiscent of Golgi bodies. Recombinant forms of the MNS proteins were able to process oligomannosidic N-glycans. While MNS3 efficiently cleaved off one selected α1,2-mannose residue from Man9GlcNAc2, MNS1/2 readily removed three α1,2-mannose residues from Man8GlcNAc2. Mutation in the MNS genes resulted in the formation of aberrant N-glycans in the mns3 single mutant and Man8GlcNAc2 accumulation in the mns1 mns2 double mutant. N-glycan analysis in the mns triple mutant revealed the almost exclusive presence of Man9GlcNAc2, demonstrating that these three MNS proteins play a key role in N-glycan processing. The mns triple mutants displayed short, radially swollen roots and altered cell walls. Pharmacological inhibition of class I α-mannosidases in wild-type seedlings resulted in a similar root phenotype. These findings show that class I α-mannosidases are essential for early N-glycan processing and play a role in root development and cell wall biosynthesis in Arabidopsis.N-glycosylation is a major co- and posttranslational modification of proteins in eukaryotic cells. The biosynthesis of protein N-linked glycans starts in the endoplasmic reticulum (ER) when the oligosaccharyltransferase complex catalyzes the transfer of the Glc3Man9GlcNAc2 oligosaccharide from the lipid-linked precursor to Asn residues (N-X-S/T) of nascent polypeptide chains. Subsequent N-glycan processing involves a series of highly coordinated step-by-step enzymatic conversions occurring in the ER and Golgi apparatus (Kornfeld and Kornfeld, 1985). In the first trimming reactions, α-glucosidases I (GCSI) and GCSII cleave off three glucose residues from Glc3Man9GlcNAc2 to generate Man9GlcNAc2 (Figure 1A). The next steps of the pathway are the removal of four α1,2-linked mannose residues to provide the Man5GlcNAc2 substrate for the formation of complex N-glycans in the Golgi apparatus. In mammals, these mannose trimming reactions are catalyzed by class I α-mannosidases (glycosyl hydrolase family 47 of the Carbohydrate Active Enzymes database; http://www.cazy.org/). These enzymes are inverting glycosyl hydrolases that are highly specific for α1,2-mannose residues, require Ca2+ for catalytic activity, and are sensitive to inhibition by pyranose analogs such as 1-deoxymannojirimycin and kifunensine (Lipari et al., 1995; Gonzalez et al., 1999). Class I α-mannosidases are conserved through eukaryotic evolution and do not share sequence homology with class II α-mannosidases, such as Golgi α-mannosidase II and the catabolic lysosomal and cytoplasmic α-mannosidases (Gonzalez et al., 1999; Herscovics, 2001).Open in a separate windowFigure 1.Cartoon of Important Oligosaccharide Structures.(A) Man9GlcNAc2 oligosaccharide (Man9): the substrate for ER-MNSI.(B) Man8GlcNAc2 isomer Man8.1 according to Tomiya et al. (1991): the product of ER-MNSI and substrate for Golgi-MNSI.(C) Man5GlcNAc2 (Man5.1): the product of the mannose trimming reactions.The linkage of the sugar residues is indicated.[See online article for color version of this figure.]The mammalian class I α-mannosidase family consists of three protein subgroups, which have been distinguished based on their sequence similarity and proposed function: ER-α1,2-mannosidases I (ER-MNSIs), Golgi-α-mannosidases I (Golgi-MNSIs), and ER degradation-enhancing α-mannosidase (EDEM)-like proteins (Mast and Moremen, 2006). In humans, there is a single ER-MNSI, which cleaves the terminal mannose residue from the b-branch of the Man9GlcNAc2 oligosaccharide to create the Man8GlcNAc2 isomer Man8.1 (Figure 1B). Subsequently, Golgi-MNSI (three isoforms, Golgi-MNSIA, Golgi-MNSIB, and Golgi-MNSIC, are present in humans) catalyze the removal of the remaining three α1,2-linked mannose residues to generate Man5GlcNAc2 (Figure 1C). The three human EDEM proteins are not directly involved in N-glycan processing but play a role in ER-associated degradation of glycoproteins (Mast et al., 2005; Hirao et al., 2006; Olivari et al., 2006).The formation of the Man8GlcNAc2 isomer (Man8.1), which is catalyzed by ER-MNSI, is the last N-glycan processing step that is conserved in yeast and mammals. Apart from its N-glycan processing function, ER-MNSI plays a key role in ER-mediated quality control of glycoproteins in yeasts and mammals (Mast and Moremen, 2006; Lederkremer, 2009). It has been proposed that ER-MNSI cooperates with mammalian EDEM1 to 3 or the yeast α1,2-mannosidase HTM1 to generate the signal that marks misfolded glycoproteins for degradation through the ER-associated protein degradation (ERAD) pathway. This quality control process, which finally leads to retrotranslocation to the cytoplasm and hydrolysis by the 26S proteasome, serves to prevent the secretion of aberrantly folded cargo proteins and is required to maintain protein homeostasis in the ER. Initially it was proposed that the Man8GlcNAc2 isomer Man8.1 (Figure 1B) flags aberrantly folded glycoproteins for degradation; however, recent evidence suggests that further mannose trimming to Man7GlcNAc2 in yeast and Man5-6GlcNAc2 in mammals is required to trigger ERAD (Avezov et al., 2008; Clerc et al., 2009). In addition, these mannose cleavage reactions serve also to release glycoproteins from the calnexin/calreticulin quality control cycle (Caramelo and Parodi, 2008).Unlike for animals and yeast, much less is known about the biological function of plant class I α-mannosidases. Processing mannosidases have been purified and characterized from mung bean (Vigna radiata) seedlings and castor bean (Ricinus communis) cotyledons (Forsee, 1985; Szumilo et al., 1986; Kimura et al., 1991). These preparations were a mixture of different α-mannosidases, and no evidence for ER-MNSI-like activity was provided. A putative Golgi-α-mannosidase I has been cloned from soybean (Glycine max) (Nebenführ et al., 1999). A green fluorescent protein (GFP)-tagged fusion protein of the soybean enzyme has been shown to reside in the cis-stacks of the Golgi apparatus (Nebenführ et al., 1999; Saint-Jore-Dupas et al., 2006), but its role in N-glycan processing and its enzymatic properties have not been reported so far. Thus, the involvement of class I α-mannosidases in N-glycan processing as well as in glycoprotein quality control in plants is still unclear, and the existence of a plant ER-MNSI has so far been inferred only from the presence of Man8GlcNAc2 oligosaccharides on ER-resident glycoproteins (Pagny et al., 2000).Here, we report the molecular cloning and biochemical characterization of the enzymes accounting for ER-MNSI and Golgi-MNSI activities in Arabidopsis thaliana. We also demonstrate that disruption of these genes leads to severe cell expansion defects in roots as well as to distinct cell wall alterations. Hence, the identification of the Arabidopsis ER-type and Golgi class I α-mannosidases not only establishes the molecular basis for the missing steps in the plant N-glycan processing pathway but also provides unprecedented insights into the role of N-glycans in plant development.  相似文献   

18.
The α-hemolysin, encoded by the hla gene, is a major virulence factor in S. aureus infections. Changes in key amino acid residues of α-hemolysin can result in reduction, or even loss, of toxicity. The aim of this study was to investigate the diversity of the hla gene sequence and the relationship of hla variants to the clonal background of S. aureus isolates. A total of 47 clinical isolates from China were used in this study, supplemented with in silico analysis of 318 well-characterized whole genome sequences from globally distributed isolates. A total of 28 hla genotypes were found, including three unique to isolates from China, 20 found only in the global genomes and five found in both. The hla genotype generally correlated with the clonal background, particularly the multilocus sequence type, but was not related to geographic origin, host source or methicillin-resistance phenotype. In addition, the hla gene showed greater diversity than the seven loci utilized in the MLST scheme for S. aureus. Our investigation has provided genetic data which may be useful for future studies of toxicity, immunogenicity and vaccine development.  相似文献   

19.
20.
Division of labor in social insect colonies relies on a strong reproductive bias that favors queens. Although the ecological and evolutionary success attained through caste systems is well sketched out in terms of ultimate causes, the molecular and cellular underpinnings driving the development of caste phenotypes are still far from understood. Recent genomics approaches on honey bee developmental biology revealed a set of genes that are differentially expressed genes in larval ovaries and associated with transgressive ovary size in queens and massive cell death in workers. Amongst these, two contigs called special attention, both being over 200 bp in size and lacking apparent coding potential. Herein, we obtained their full cDNA sequences. These and their secondary structure characteristics placed in evidence that they are bona fide long noncoding RNAs (lncRNA) differentially expressed in larval ovaries, thus named lncov1 and lncov2. Genomically, both map within a previously identified QTL on chromosome 11, associated with transgressive ovary size in honey bee workers. As lncov1 was over-expressed in worker ovaries we focused on this gene. Real-time qPCR analysis on larval worker ovaries evidenced an expression peak coinciding with the onset of autophagic cell death. Cellular localization analysis through fluorescence in situ hybridization revealed perinuclear spots resembling omega speckles known to regulate trafficking of RNA-binding proteins. With only four lncRNAs known so far in honey bees, two expressed in the ovaries, these findings open a novel perspective on regulatory factors acting in the fine tuning of developmental processes underlying phenotypic plasticity related to social life histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号