共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rahardjo YS Korona D Haemers S Weber FJ Tramper J Rinzema A 《Letters in applied microbiology》2004,39(6):504-508
AIMS: To examine the reliability of membrane cultures as a model solid-state fermentation (SSF) system. METHODS AND RESULTS: In overcultures of Aspergillus oryzae on sterilized wheat flour discs overlaid with a polycarbonate membrane, we demonstrated that the presence of membrane filters reduced the maximum respiration rate (up to 50%), and biomass and alpha-amylase production. We also show that the advantage of membrane cultures, i.e. total recovery of biomass, is not very evident for the system used, while the changes in metabolism and kinetics are serious drawbacks. CONCLUSIONS: The use of membrane cultures is artificial and without substantial benefits and therefore has to be carefully considered. SIGNIFICANCE AND IMPACT OF THE STUDY: In future studies on kinetics and stoichiometry of SSF, one should not completely rely on experiments using membrane cultures as a model SSF system. 相似文献
3.
4.
Waheed Anwar Sajid Ali Kiran Nawaz Sehrish Iftikhar Muhammad Asim Javed Abeer Hashem 《Biocontrol Science and Technology》2018,28(8):750-760
Whitefly (Bemisia tabaci) is a notorious insect pest of many economic important crop plants including cotton, tomato, etc. The main objective of the study was to evaluate the efficacy of new biological control agent to replace toxic chemical pesticides from agro-ecosystem. Clonostachys rosea associated with whitefly and aphid (Aphis gossypii) on cotton plants was isolated and characterised on a morphological and molecular basis. Phylogenetic analysis was also performed based on the internal transcribed spacer (ITS) region. Pathogenicity of C. rosea was evaluated in two concentrations against fourth instar nymphal and adult stages of B. tabaci. The study revealed that C. rosea was highly parasitic against fourth instar nymphs than adults at different spore concentrations. Two isolates of C. rosea were identified in this study, and both were morphologically similar. However, differences were observed in the ITS region of the C. rosea isolates. Our results showed that C. rosea has the prospects to serve as a potential biocontrol agent against economically important insect pests. 相似文献
5.
A Semimechanistic mathematical model is developed which describes the growth of Rhizopus oligosporus in a model solid-state fermentation system. Equations are presented for the release of glucoamylase, the diffusion of glucoamylase, the hydrolysis of starch, the generation and diffusion of glucose, and the uptake of glucose and conversion into new biomass. Good agreement of the model with the experimental data was obtained only after the glucoamylase diffusivity and the maximum specific glucose uptake rate were altered from their originally determined values. The model recognizes the distributed nature of the solid-state fermentation and therefore is able to predict the concentration profiles of the system components within the substrate. The model provides an insight into the possible rate-limiting steps in solid-state fermentation-the generation of glucose within the substrate and the resulting availability of glucose at the surface. 相似文献
6.
We Propose a kinetic expression which accounts for the temperature dependence of ethanol yield losses in batch alcoholic fermentation. Moreover, the characteristic parameters of the microbial growth equation have been calculated for Saccharomyces cerevisiae under typical wine industry conditions. A substrate consumption equation is established which minimizes possible model deviations in the latter process stages. Experimental data were obtained in the laboratory and the proposed equations were then applied at an industrial level (2.5 x 10(4) L) where they described the data well. 相似文献
7.
Martins S Mussatto SI Martínez-Avila G Montañez-Saenz J Aguilar CN Teixeira JA 《Biotechnology advances》2011,29(3):365-373
Interest in the development of bioprocesses for the production or extraction of bioactive compounds from natural sources has increased in recent years due to the potential applications of these compounds in food, chemical, and pharmaceutical industries. In this context, solid-state fermentation (SSF) has received great attention because this bioprocess has potential to successfully convert inexpensive agro-industrial residues, as well as plants, in a great variety of valuable compounds, including bioactive phenolic compounds. The aim of this review, after presenting general aspects about bioactive compounds and SSF systems, is to focus on the production and extraction of bioactive phenolic compounds from natural sources by SSF. The characteristics of SSF systems and variables that affect the product formation by this process, as well as the variety of substrates and microorganisms that can be used in SSF for the production of bioactive phenolic compounds are reviewed and discussed. 相似文献
8.
目的将双歧杆菌、醋酸菌、酵母菌和粉碎的制醋原料及麸曲共同发酵,通过生料制醋的方法来制备功能性双歧醋。方法将粉碎的玉米与麸曲、酵母液、麸皮和水搅拌均匀,使其经过液态糖化和酒精发酵后,接入醋酸菌和双歧杆菌(二者比例为1∶1),同时加入辅料,进行醋酸发酵,当检测到醋酸酸度为5.0%~7.5%时,加入食盐终止发酵,经过过滤,除菌澄清得到功能性双歧醋。结果双歧醋的最终醋酸度为3.2%,外观红棕色,光泽度好,清澈透明,无沉淀和悬浮物。总菌数:醋酸菌为3.3×1011/m l,双歧杆菌为1.9×107/m l;活菌数:醋酸菌为1.7×1011/m l,双歧杆菌为6.8×106/m l;大肠菌群数3个/100 m l;致病菌:不得检出。结论双歧杆菌及其代谢物可以在双歧醋中存活,生料固态发酵制备双歧醋的方法可行。 相似文献
9.
Fungal enzyme preparations from Phanerochaete chrysosporium, Aspergillus oryzae, Aspergillus giganteus and Trichoderma virens, produced by solid-state fermentation (SSF) on cotton seed-coat fragment waste as substrate and enzyme inducer were investigated in biopreparation of cotton fabric. Cotton seed-coat fragment is rich in lignin, cellulose and hemicelluloses, therefore enzyme complexes produced by target fungi on such a substrate can be used effectively to degrade impurities in cotton fabrics during biopreparation. Activities of extracellular hydrolytic and ligninolytic enzymes were determined from the SSF extract materials. The potential of the hydrolytic and accompanying oxidative enzymes in the whole SSF cultures was exploited in degradation of seed-coat fragments and other coloring materials of greige cotton fabric. Enzyme assays indicated that many extracellular enzymes have been produced under these conditions including both hydrolytic and oxidative enzymes. A. oryzae NRRL 3485 produced significantly higher amounts of both hydrolytic and oxidative enzymes than other tested fungi. Best results in removal of seed-coat fragments from cotton fabric were obtained by P. chrysosporium NCAIM (=ATCC 34541), P. chrysosporium VKM F-1767 and A. oryzae NRRL 3485 SSF enzyme complexes. 相似文献
10.
C. Albornoz S. Blanco D. M. Ferrari G. Ellenrieder 《World journal of microbiology & biotechnology》1993,9(3):313-318
Coupled saccharification and fermentation of Eucalyptus globulus wood, pre-treated by acid hydrolysis and sodium hypochlorite, was carried out in two column reactors: one for enzymatic hydrolysis of the substrate at 50°C and the other for fermentation of sugars with calcium alginate-immobilized Saccharomyces cerevisiae at 30°C. A buffered solution containing cellulases at pH 4.8 was recycled through both reactors. The maximum yields were about 0.26 g ethanol per g of substrate. The results were reproduced reasonably well using a simple kinetic model consisting of two successive pseudo-first-order reactions.C. Albornoz and D. M. Ferrari are with the Centro de Investigaciones Tecnológicas (CIT), Administración Nacional de Combustibles, Alcohol y Portland (ANCAP), Pando, Canelones, C.P. 91000, Uruguay. S. Blanco and G. Ellenrieder are with Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa), Buenos Aires 177, 4400 Salta, Argentina. 相似文献
11.
A kinetic model of telomere shortening in infants and adults 总被引:2,自引:0,他引:2
We have previously demonstrated that telomeres shorten more rapidly in peripheral mononuclear cells (PBMC) of infants than in adults (Zeichner et al., Blood 93 (1999) 2824). Here we describe a mathematical model that allows quantification of telomere dynamics both in infants and in adults. In this model the dependence of the telomere dynamics on age is accounted by assuming proportionality between the body growth, as approximated by the Gompertz equation, and the increase in the number of PBMCs. The model also assumes the existence of two subpopulations of PBMC with significantly different rates of division. This assumption is based on the results from a previous analysis of in vitro data for telomere dynamics in presence of telomerase inhibitors and our recent data obtained by measurements of BrdU incorporation in T lymphocytes in humans (Kovacs et al., J. Exp. Med. 194 (2001) 1731). The average telomere length of PBMC was calculated as the average length of these two subpopulations. The model fitted our experimental data well and allowed to derive a characteristic time of conversion of the rapidly proliferating cells to slowly proliferating cells on the order of 20 days. The half-life of the slowly proliferating cells was estimated to be about 6 months, which is in good agreement with data obtained by independent methodologies. Comparison of the one-population and two-subpopulations models demonstrated that one population model cannot explain the observed parameters of the terminal restriction fragment (TRF) dynamics while two-subpopulations model does. These results suggest that the rapid telomere shortening in infants is largely determined by the faster PBMC turnover compared to adults. This may have major implications for elucidation of the HIV pathogenesis in infants. One can speculate that the more rapid course of the HIV disease in infants is due to the existence of rapidly dividing cells, which are susceptible to HIV infection. In addition, these results could have implications for understanding of mechanisms of aging. 相似文献
12.
Self-cycling fermentations (SCFs) were conducted in a stirred tank apparatus using Bacillus subtilis and Acinetobacter calcoaceticus. The systems were very stable and the experiments lasted through many cycles. The variation of parameters such as biomass and doubling time from cycle to cycle was small. The stirred tank reactor (STR) allowed a much better control of the working volume in the fermentor from cycle to cycle, compared to the cyclone column, and it was not necessary to make periodic corrections.The production of surfactin from B. subtilis was achieved without extending the cycle time. The harvested broth at the end of each cycle was allowed to remain in a secondary vessel, at ambient temperature, before being collected. It is exhaustion of the limiting nutrient which causes an increase in dissolved oxygen (DO). At this point, the computer, which constantly monitors the DO, triggered the harvesting sequence to end the cycle. Thus, the mature culture in the secondary vessel experienced appropriate conditions for the production of the secondary metabolite. Meanwhile, the next batch of cells was being grown in the primary reactor.The response of a gas analyzer on the effluent paralleled that of the DO measurements in the fermentor. These data for oxygen and carbon dioxide exhibited less noise than the DO readings. Either would be a more reliable parameter for feedback control of the SCF because the problem of fouling of the DO probe after extended runs of many cycles would be eliminated. (c) 1993 John Wiley & Sons, Inc. 相似文献
13.
Parameswaran Binod Tünde Pusztahelyi Viviana Nagy Chandran Sandhya George Szakcs Istvn Pcsi Ashok Pandey 《Enzyme and microbial technology》2005,36(7):880-887
Fourteen Penicillium strains have been screened on wheat bran–crude chitin mixture medium for extracellular chitinase production in solid-state fermentation. Under the experimental conditions tested, Penicillium aculeatum NRRL 2129 (=ATCC 10409) was selected as the best enzyme producer. The optimum incubation period for chitinase production by the potent organism was found to be 72 h. Chromatofocusing was performed as the first step in the purification scheme, but high amount of contaminating proteins interfered with the method. Hence, ion-exchange chromatography experiments were carried out followed by gel filtration to separate and isolate chitinase isoenzymes. Four major chitinase peaks of molecular weight 82.7, 44.6, 28.2 and 26.9 kDa were observed after gel filtration chromatography while, on SDS-PAGE, three protein bands of molecular weights 82.6, 33.9 and 29.1 kDa were identified. The purified enzyme showed optimal temperature and pH at 50 and 5.5 °C, respectively. 相似文献
14.
Leda R. Castilho David A. Mitchell Denise M.G. Freire 《Bioresource technology》2009,100(23):5996-6009
Polyhydroxyalkanoates are biodegradable polymers produced by prokaryotic organisms from renewable resources. The production of PHAs by submerged fermentation processes has been intensively studied over the last 30 years. In recent years, alternative strategies have been proposed, such as the use of solid-state fermentation or the production of PHAs in transgenic plants. This paper gives an overview of submerged and solid-state fermentation processes used to produce PHAs from waste materials and by-products. The use of these low-cost raw materials has the potential to reduce PHA production costs, because the raw material costs contribute a significant part of production costs in traditional PHA production processes. 相似文献
15.
Verticillium lecanii is an entomopathogen with high potential in biological control of pests. We developed a solid-state fermentation with sugarcane
bagasse as carrier absorbing liquid medium to propagate V. lecanii spores. Using statistical experimental design, we optimized the medium composition for spore production. We first used one-factor-at-a-time
design to identify corn flour and yeast extract as the best carbon and nitrogen sources for the spore production of V. lecanii. Then, we used two-level fractional factorial design to confirm corn flour, yeast extract, and KH2PO4 as important factors significantly affecting V. lecanii spore production. Finally, we optimized these selected variables using a central composite design and response surface method.
The optimal medium composition was (grams per liter): corn flour 35.79, yeast 8.69, KH2PO4 1.63, K2HPO4 0.325, and MgSO4 0.325. Under optimal conditions, spore production reached 1.1 × 1010 spores/g dried carrier, much higher than that on wheat bran (1.7 × 109 spores/g initial dry matter). 相似文献
16.
Yovita S.P. Rahardjo Frans J. Weber Sebastiaan Haemers Johannes Tramper Arjen Rinzema 《Enzyme and microbial technology》2005,36(7):900-902
Aspergillus oryzae is commonly used in solid-state fermentation (SSF) and forms abundant aerial mycelia. Previously, we have shown that aerial mycelia are extremely important for the respiration of this fungus during growth on a wheat-flour model substrate. In this paper, we show that aerial mycelia of this fungus give a strong increase in fungal biomass and α-amylase production. Cultures of A. oryzae on wheat-flour model substrate produced twice the amounts of fungal biomass and α-amylase, when aerial mycelia were formed. Utilization of these findings in commercial solid-state fermenters requires further research; results from packed beds of grain indicate that aerial mycelia are of limited importance there. Probably, substrate pre-treatment and an increase in bed voidage are required. 相似文献
17.
Reynaldo De la Cruz Quiroz Sevastianos Roussos Daniel Hernández Raúl Rodríguez Francisco Castillo 《Critical reviews in biotechnology》2015,35(3):326-333
In recent years, production and use of bio-pesticides have increasing and replacing some synthetic chemical pesticides applied to food commodities. In this review, biological control is focused as an alternative, to some synthetic chemical treatments that cause environmental, human health, and food quality risks. In addition, several phytopathogenic microorganisms have developed resistance to some of these synthetic chemicals and become more difficult to control. Worldwide, the bio-pesticides market is growing annually at a rate of 44% in North America, 20% in Europe and Oceania, 10% in Latin and South American countries and 6% in Asia. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers an alternative to bio-pesticide production with advantages versus conventional submerged fermentations, as reduced cost and energy consumption, low production of residual water and high stability products. In this review, recent data about state of art regarding bio-pesticides production under SSF on agroindustrial wastes will be discussed. SSF can be defined as a microbial process that generally occurs on solid material in the absence of free water. This material has the ability to absorb water with or without soluble nutrients, since the substrate must have water to support the microorganism’s growth and metabolism. Changes in water content are analyzed in order to select the conditions for a future process, where water stress can be combined with the best spore production conditions, obtaining in this way an inexpensive biotechnological option for modern agriculture in developing countries. 相似文献
18.
This article presents a mathematical model for biomass, limiting substrate, and dissolved oxygen concentrations during stable operation of self-cycling fermentation (SCF). Laboratory experiments using the bacterium Acinetobacter calcoaceticus RAG-1 and ethanol as the limiting substrate were performed to validate the model. A computer simulation developed from the model successfully matched experimental SCF intracycle trends and end-of-cycle results and, most importantly, settled into an unimposed periodicity characteristic of stable SCF operation. (c) 1995 John Wiley & Sons, Inc. 相似文献
19.
David A. Mitchell Nadia Krieger Deidre M. Stuart Ashok Pandey 《Process Biochemistry》2000,35(10):1211-1225
Over the last decade there has been a significant improvement in understanding how to design, operate and scale-up solid-state fermentation bioreactors. The key to these advances has been the application of mathematical modeling techniques to describe the biological and transport phenomena within the system. This review focuses on the advances in understanding that have come from this modeling work, and the insights it has given us into bioreactor design, operation and scale-up. It also highlights two promising bioreactor designs that have emerged over the last decade or so. For processes in which the substrate bed must remain static throughout the fermentation, the most promising design is the Zymotis design of ORSTOM at Montpellier, France, which involves closely spaced internal heat transfer plates within a packed-bed bioreactor. For those processes in which mixing can be tolerated, the stirred bioreactor developed at INRA, in Dijon, France, has been successfully demonstrated at scales of 1–25 t of substrate. Theoretical work suggests that mathematical models will be useful tools in the scale-up process, however, there are no reports that they have been used in the development of any current large-scale process. Rather, the models have been validated against data obtained from laboratory-scale bioreactors. There is an urgent need to test the accuracy and robustness of the models by applying them within real process development. 相似文献
20.
Rodríguez-Fernández DE Rodríguez-León JA de Carvalho JC Sturm W Soccol CR 《Bioresource technology》2011,102(22):10657-10662
Solid-state fermentation (SSF) is defined as the growth of microbes without a free-flowing aqueous phase. The feasibility of using a citrus peel for producing pectinase and xylanase via the SSF process by Aspergillus niger F3 was evaluated in a 2 kg bioreactor. Different aeration conditions were tested to optimize the pectinase and xylanase production. The best air flow intensity was 1 V kg M (volumetric air flow per kilogram of medium), which allowed a sufficient amount of O2 for the microorganism growth producing 265 U/g and 65 U/g pectinases and xylanases, respectively. A mathematical model was applied to determine the different kinetic parameters related to SSF. The specific growth rate and biomass oxygen yield decreased during fermentation, whereas an increase in the maintenance coefficient for the different employed carbon sources was concurrently observed. 相似文献