首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biological wastes contain several reusable substances of high value such as soluble sugars and fibre. Direct disposal of such wastes to soil or landfill causes serious environmental problems. Thus, the development of potential value-added processes for these wastes is highly attractive. These biological wastes can be used as support-substrates in solid-state fermentation (SSF) to produce industrially relevant metabolites with great economical advantage. In addition, it is an environmentally friendly method of waste management. This paper reviews the reutilization of biological wastes for the production of value-added products using the SSF technique.  相似文献   

2.
3.
AIMS: To examine the reliability of membrane cultures as a model solid-state fermentation (SSF) system. METHODS AND RESULTS: In overcultures of Aspergillus oryzae on sterilized wheat flour discs overlaid with a polycarbonate membrane, we demonstrated that the presence of membrane filters reduced the maximum respiration rate (up to 50%), and biomass and alpha-amylase production. We also show that the advantage of membrane cultures, i.e. total recovery of biomass, is not very evident for the system used, while the changes in metabolism and kinetics are serious drawbacks. CONCLUSIONS: The use of membrane cultures is artificial and without substantial benefits and therefore has to be carefully considered. SIGNIFICANCE AND IMPACT OF THE STUDY: In future studies on kinetics and stoichiometry of SSF, one should not completely rely on experiments using membrane cultures as a model SSF system.  相似文献   

4.
《Process Biochemistry》2007,42(2):275-278
Gray mold caused by Botrytis cinerea is an important disease of strawberry. Clonostachys rosea is a mycoparasite of B. cinerea that reduces fruit losses when used as a biocontrol agent. Since spore production by C. rosea has not been optimized, we investigated factors affecting sporulation under aseptic conditions on white rice grains. The greatest spore production in glass flasks, 3.4 × 109 spores/g-dry-matter (gDM), occurred with an initial moisture content of 46% (w/w wet basis), inoculated with 1 × 106 spores/gDM and hand shaken every 15 days. However, a lower inoculum density (9 × 103 spores/gDM) and no shaking also gave acceptable sporulation. In plastic bags 1.1 × 108 spores/gDM were produced in 15 days, suggesting that larger scale production may be feasible: with this spore content, 24 m2 of incubator space would produce sufficient spores for the continued treatment of 1 ha of strawberry plants.  相似文献   

5.
Whitefly (Bemisia tabaci) is a notorious insect pest of many economic important crop plants including cotton, tomato, etc. The main objective of the study was to evaluate the efficacy of new biological control agent to replace toxic chemical pesticides from agro-ecosystem. Clonostachys rosea associated with whitefly and aphid (Aphis gossypii) on cotton plants was isolated and characterised on a morphological and molecular basis. Phylogenetic analysis was also performed based on the internal transcribed spacer (ITS) region. Pathogenicity of C. rosea was evaluated in two concentrations against fourth instar nymphal and adult stages of B. tabaci. The study revealed that C. rosea was highly parasitic against fourth instar nymphs than adults at different spore concentrations. Two isolates of C. rosea were identified in this study, and both were morphologically similar. However, differences were observed in the ITS region of the C. rosea isolates. Our results showed that C. rosea has the prospects to serve as a potential biocontrol agent against economically important insect pests.  相似文献   

6.
7.
A two-phase dynamic model is developed that describes heat and mass transfer in intermittently-mixed solid-state fermentation bioreactors. The model predicts that in the regions of the bed near the air inlet there can be significant differences in the air and solid temperatures, while in the remainder of the bed the gas and solid phases are much closer to equilibrium, although there can be differences in water activity of around 0.05. The increase in the temperature of the gas as it flows through the bed means that it is impossible to prevent the bed from drying out, even if saturated air is used at the air inlet. The substrate can dry to water activities that severely limit growth, unless the bed is intermittently mixed, with the addition of water to bring the water activity back to the desired value. Under the conditions assumed for the simulation, which was designed to mimic the growth of Aspergillus niger on corn, two mixing events were necessary, one at 17.4 and the other at 27.9 h. Even though such a strategy can minimize the restriction of growth by water-limitation, temperature-limitation remains a problem due to the rapid heating dynamics. The model is obviously a useful tool that can be used to guide scale-up and to test control strategies. Such a model, describing the non-equilibrium situation between the gas and solid phases, has not previously been proposed for solid-state fermentation bioreactors. Models in the literature that assume gas-solid temperature and moisture equilibrium cannot describe the large temperature differences between the gas and solid phase which occur within the bed near the air inlet.  相似文献   

8.
固态发酵工程研究进展   总被引:2,自引:0,他引:2  
最近十年中 ,由于能源危机与环境问题的日益严重 ,曾被人们冷落的固态发酵再次引起人们的兴趣 ,固态发酵工程在基质特性、染菌控制、水活度的控制、pH的调控、传质与传热等领域的研究取得了较大的进展。论文着重综述最近固态发酵工程在上述领域取得的一些重大的发展 ,探讨了固态发酵过程控制参数特征及其控制策略。  相似文献   

9.
A Semimechanistic mathematical model is developed which describes the growth of Rhizopus oligosporus in a model solid-state fermentation system. Equations are presented for the release of glucoamylase, the diffusion of glucoamylase, the hydrolysis of starch, the generation and diffusion of glucose, and the uptake of glucose and conversion into new biomass. Good agreement of the model with the experimental data was obtained only after the glucoamylase diffusivity and the maximum specific glucose uptake rate were altered from their originally determined values. The model recognizes the distributed nature of the solid-state fermentation and therefore is able to predict the concentration profiles of the system components within the substrate. The model provides an insight into the possible rate-limiting steps in solid-state fermentation-the generation of glucose within the substrate and the resulting availability of glucose at the surface.  相似文献   

10.
Development of a kinetic model for the alcoholic fermentation of must   总被引:2,自引:0,他引:2  
We Propose a kinetic expression which accounts for the temperature dependence of ethanol yield losses in batch alcoholic fermentation. Moreover, the characteristic parameters of the microbial growth equation have been calculated for Saccharomyces cerevisiae under typical wine industry conditions. A substrate consumption equation is established which minimizes possible model deviations in the latter process stages. Experimental data were obtained in the laboratory and the proposed equations were then applied at an industrial level (2.5 x 10(4) L) where they described the data well.  相似文献   

11.
The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors.  相似文献   

12.
固态发酵苦荞制备多肽菌种的筛选   总被引:1,自引:0,他引:1  
【目的】筛选固态发酵苦荞高产多肽及发酵产物液具有抗菌、抗氧化活性的菌株。【方法】采用米曲霉、酱油曲霉、雅致放射毛霉和少孢根霉分别对苦荞进行固态发酵,以蛋白酶活力、水解度、可溶性肽得率、抑菌率和体外自由基清除率作为筛菌指标。【结果】米曲霉固态发酵苦荞的可溶性肽得率最高达38.83%±1.18%,发酵产物液对大肠杆菌和金黄色葡萄球菌的抑菌率分别为96.62%±1.66%和97.54%±0.54%,同时羟自由基(·OH)清除率和二苯基苦味酰基苯肼自由基(DPPH·)清除率分别为55.65%±1.25%和10.84%±1.03%。对米曲霉发酵2 d发酵产物液的不同分子量分布及活性分析表明,分子量大小对抗菌及抗氧化活性有一定的影响。【结论】米曲霉可作为固态发酵苦荞制备多肽且发酵产物液具有抗菌及抗氧化活性的最佳菌株,并在多肽产量提升及抗菌、抗氧化活性的研究上具有巨大空间。  相似文献   

13.
Interest in the development of bioprocesses for the production or extraction of bioactive compounds from natural sources has increased in recent years due to the potential applications of these compounds in food, chemical, and pharmaceutical industries. In this context, solid-state fermentation (SSF) has received great attention because this bioprocess has potential to successfully convert inexpensive agro-industrial residues, as well as plants, in a great variety of valuable compounds, including bioactive phenolic compounds. The aim of this review, after presenting general aspects about bioactive compounds and SSF systems, is to focus on the production and extraction of bioactive phenolic compounds from natural sources by SSF. The characteristics of SSF systems and variables that affect the product formation by this process, as well as the variety of substrates and microorganisms that can be used in SSF for the production of bioactive phenolic compounds are reviewed and discussed.  相似文献   

14.
目的将双歧杆菌、醋酸菌、酵母菌和粉碎的制醋原料及麸曲共同发酵,通过生料制醋的方法来制备功能性双歧醋。方法将粉碎的玉米与麸曲、酵母液、麸皮和水搅拌均匀,使其经过液态糖化和酒精发酵后,接入醋酸菌和双歧杆菌(二者比例为1∶1),同时加入辅料,进行醋酸发酵,当检测到醋酸酸度为5.0%~7.5%时,加入食盐终止发酵,经过过滤,除菌澄清得到功能性双歧醋。结果双歧醋的最终醋酸度为3.2%,外观红棕色,光泽度好,清澈透明,无沉淀和悬浮物。总菌数:醋酸菌为3.3×1011/m l,双歧杆菌为1.9×107/m l;活菌数:醋酸菌为1.7×1011/m l,双歧杆菌为6.8×106/m l;大肠菌群数3个/100 m l;致病菌:不得检出。结论双歧杆菌及其代谢物可以在双歧醋中存活,生料固态发酵制备双歧醋的方法可行。  相似文献   

15.
Fungal enzyme preparations from Phanerochaete chrysosporium, Aspergillus oryzae, Aspergillus giganteus and Trichoderma virens, produced by solid-state fermentation (SSF) on cotton seed-coat fragment waste as substrate and enzyme inducer were investigated in biopreparation of cotton fabric. Cotton seed-coat fragment is rich in lignin, cellulose and hemicelluloses, therefore enzyme complexes produced by target fungi on such a substrate can be used effectively to degrade impurities in cotton fabrics during biopreparation. Activities of extracellular hydrolytic and ligninolytic enzymes were determined from the SSF extract materials. The potential of the hydrolytic and accompanying oxidative enzymes in the whole SSF cultures was exploited in degradation of seed-coat fragments and other coloring materials of greige cotton fabric. Enzyme assays indicated that many extracellular enzymes have been produced under these conditions including both hydrolytic and oxidative enzymes. A. oryzae NRRL 3485 produced significantly higher amounts of both hydrolytic and oxidative enzymes than other tested fungi. Best results in removal of seed-coat fragments from cotton fabric were obtained by P. chrysosporium NCAIM (=ATCC 34541), P. chrysosporium VKM F-1767 and A. oryzae NRRL 3485 SSF enzyme complexes.  相似文献   

16.
Coupled saccharification and fermentation of Eucalyptus globulus wood, pre-treated by acid hydrolysis and sodium hypochlorite, was carried out in two column reactors: one for enzymatic hydrolysis of the substrate at 50°C and the other for fermentation of sugars with calcium alginate-immobilized Saccharomyces cerevisiae at 30°C. A buffered solution containing cellulases at pH 4.8 was recycled through both reactors. The maximum yields were about 0.26 g ethanol per g of substrate. The results were reproduced reasonably well using a simple kinetic model consisting of two successive pseudo-first-order reactions.C. Albornoz and D. M. Ferrari are with the Centro de Investigaciones Tecnológicas (CIT), Administración Nacional de Combustibles, Alcohol y Portland (ANCAP), Pando, Canelones, C.P. 91000, Uruguay. S. Blanco and G. Ellenrieder are with Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa), Buenos Aires 177, 4400 Salta, Argentina.  相似文献   

17.
【目的】为提高漆酶产量,降低生产成本,以山核桃蒲壳作为基质,对粗毛栓菌D2固态发酵产漆酶的营养条件进行研究。【方法】对不同碳源、氮源、碳氮比、蒲壳含量对漆酶产量的影响进行分析。【结果】山核桃蒲壳是粗毛栓菌生长的良好载体,能够促进漆酶的合成。粗毛栓菌D2漆酶固态发酵培养基干物质组成为:山核桃蒲壳40%(质量比),玉米粉24%(质量比),菜籽饼粉36%(质量比)。发酵6 d时,漆酶活性为126.8 U/g干基。【结论】粗毛栓菌固态发酵山核桃蒲壳产漆酶具有效率高,生产成本低的优点,具有潜在的工业化应用前景。  相似文献   

18.
This work describes a numerical model for predicting simultaneous saccharification and fermentation of Avicel, an insoluble crystalline cellulose polymer. Separate anoxic cultivations of 40 g/L glucose and 100 g/L Avicel were conducted to verify model predictions and obtain parameters to describe the reaction kinetics. Saccharification of Avicel was achieved with Trichoderma reesei cellulases from the enzyme preparation Spezyme CP with an enzyme loading of 10 FPU/g cellulose. Cultivations were supplemented with 50 IU/g cellulose of β‐glucosidase from Novozym 188 to prevent product inhibition by cellobiose. Saccharomyces cerevisiae MH‐1000 is a robust industrial strain and was used to ferment glucose to ethanol, glycerol, and carbon dioxide. The numerical model presented in this paper differs from previous models by separating the endoglucanase and exoglucanase enzyme kinetics and allowing for inhibitive site competition. Assuming all enzymes remain active and that each enzyme complex has a corresponding constant specific activity, the model is capable of predicting adsorbed enzyme concentrations with reasonable accuracy. Comparison of predicted values to experimental measurements indicated that the numerical model was capable of capturing the significant elements involved with cellulose conversion to ethanol. Biotechnol. Bioeng. 2011; 108:924–933. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
【目的】为准确快速地了解紫色红曲菌固态发酵中生物量的变化,【方法】采用理化方法测定菌体量和氨基葡萄糖含量,研究了不同培养时间、培养基组成、培养方式下菌体量与氨基葡萄糖含量的关系,建立生物量和氨基葡萄糖含量的换算关系式;构建关联该菌固态培养物近红外光谱数据与实测氨基葡萄糖含量的PLS模型。【结果】建立了可通过近红外光谱法测定氨基葡萄糖来快速预测固态发酵生物量的方法,其中最优近红外模型的校正集内部交叉验证均方根误差(RMSECV)为0.209 4,预测集相关系数(Rp)和均方根误差(RMSEP)分别为0.993 4和0.217 3;同时利用所建的换算关系式也大大提高了生物量计算的准确性。【结论】基于所建立的生物量和氨基葡萄糖的换算关系式,利用近红外光谱法可以快速并且较准确地测定紫色红曲菌固态发酵过程中生物量的变化。  相似文献   

20.
A kinetic model of telomere shortening in infants and adults   总被引:2,自引:0,他引:2  
We have previously demonstrated that telomeres shorten more rapidly in peripheral mononuclear cells (PBMC) of infants than in adults (Zeichner et al., Blood 93 (1999) 2824). Here we describe a mathematical model that allows quantification of telomere dynamics both in infants and in adults. In this model the dependence of the telomere dynamics on age is accounted by assuming proportionality between the body growth, as approximated by the Gompertz equation, and the increase in the number of PBMCs. The model also assumes the existence of two subpopulations of PBMC with significantly different rates of division. This assumption is based on the results from a previous analysis of in vitro data for telomere dynamics in presence of telomerase inhibitors and our recent data obtained by measurements of BrdU incorporation in T lymphocytes in humans (Kovacs et al., J. Exp. Med. 194 (2001) 1731). The average telomere length of PBMC was calculated as the average length of these two subpopulations. The model fitted our experimental data well and allowed to derive a characteristic time of conversion of the rapidly proliferating cells to slowly proliferating cells on the order of 20 days. The half-life of the slowly proliferating cells was estimated to be about 6 months, which is in good agreement with data obtained by independent methodologies. Comparison of the one-population and two-subpopulations models demonstrated that one population model cannot explain the observed parameters of the terminal restriction fragment (TRF) dynamics while two-subpopulations model does. These results suggest that the rapid telomere shortening in infants is largely determined by the faster PBMC turnover compared to adults. This may have major implications for elucidation of the HIV pathogenesis in infants. One can speculate that the more rapid course of the HIV disease in infants is due to the existence of rapidly dividing cells, which are susceptible to HIV infection. In addition, these results could have implications for understanding of mechanisms of aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号