首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(5):807-812
Under the deacetylation of fungal endophyte Penicillium canescens, which was isolated from pigeon pea, a novel and highly efficient biotransformation method of astragalosides to astragaloside IV in Radix Astragali was investigated. After single factor tests of the biotransformation procedure, the optimum biotransformation conditions were confirmed as the liquid solid ratio 20:1, the biotransformation temperature 30 °C, time 36 h and pH 7, respectively. Final content of astragaloside IV in Radix Astragali reached 7.66 ± 0.44 mg/g, which was 5.51-fold to that of untreated one and contents of astragaloside I and astragaloside II significantly decreased. The immobilized Ca-alginate gel beads with P. canescens could be reused at least for 13 runs. This is the first report that fungal endophyte was applied for the biotransformation of astragalosides to astragaloside IV in Radix Astragali and this novel high-efficiency biotransformation method will be an alternative to enhance the content of astragaloside IV in Radix Astragali in commercial process.  相似文献   

2.
In this paper, the pathways and kinetics for the production of diosgenin via biotransformation of Dioscorea zingiberensis C.H. Wright by Aspergillus oryzae CICC 2436 were analyzed. After 120 h of biotransformation at 30 °C, the concentration of diosgenin in the culture reached 36.87 ± 1.27 μmol/g raw herb, which was 21.2 times its initial concentration. A number of steroidal compounds were also isolated as minor products from the biotransformation, and one of these was identified as a novel compound named 3-O-β-d-glucopyranosyl (1  3) – β-d-glucopyranosyl (1  4) – β-d-glucopyranosyl-diosgenin (diosgenin-triglucoside). The biotransformation consisted of two stages: the release of steroids from the herb (accompanied by fungal growth) and hydrolysis of the steroids by glycosidases. Kinetic analysis and mathematical modelling showed that the process of biotransformation could be described by first-order kinetics under the condition of high Km/[S] values. It consisted of a cascade of consecutive and parallel reactions involving three kinds of enzymes, five steroid saponins and their sapogenin. The main hydrolysis reactions that led to the production of diosgenin were also discussed.  相似文献   

3.
An in situ product adsorption technique was used to enhance the biotransformation of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae BD. As a suitable adsorbent, the non-polar macroporous resin D101, selected from several resins tested, showed high adsorption capacity for 2-phenylethanol but not l-phenylalanine. Product inhibition was effectively alleviated by the addition of macroporous resin D101 to the biotransformation medium. When 2 g of hydrated resin D101 was added to 30 mL of the biotransformation medium, the total 2-phenylethanol concentration achieved was 6.17 g/L, of which 3.15 g/L remained in the aqueous phase and 3.02 g/L was adsorbed onto the resin. The molar yield of 2-phenylethanol reached 0.70 after 24 h cultivation. Addition of the macroporous resin greatly increased the volumetric productivity of 2-phenylethanol, and made the downstream processing more feasible and easier to perform in an industrial application.  相似文献   

4.
A recombinant dye-decolorizing peroxidase (rDyP) produced from Aspergillus oryzae was immobilized in synthesized silica-based mesocellular foam (MCF: average pore size 25 nm) and used for decolorization of the anthraquinone dye, Remazol Brilliant Blue R (RBBR). The adsorption yields of rDyP immobilized in MCF increased as the pH decreased from 6 to 3. However, the activity yields of the immobilized rDyP decreased with decreasing pH. The overall efficiency, defined as adsorption yield × activity yield, reached its maximum of 83% at pH 5. In repeated dye-decolorization tests, 20 batches of RBBR could be decolorized by the MCF-immobilized rDyP. MCF showed significantly better performance for rDyP immobilization in term of retaining enzyme activity and dye-decolorization ability compared to previous studies using other mesoporous materials.  相似文献   

5.
Saccharum spontaneum is a wasteland weed consists of 45.10 ± 0.35% cellulose and 22.75 ± 0.28% of hemicellulose on dry solid (DS) basis. Aqueous ammonia delignified S. spontaneum yielded total reducing sugars, 53.91 ± 0.44 g/L (539.10 ± 0.55 mg/g of substrate) with a hydrolytic efficiency of 77.85 ± 0.45%. The enzymes required for hydrolysis were prepared from culture supernatants of Aspergillus oryzae MTCC 1846. A maximum of 0.85 ± 0.07 IU/mL of filter paperase (FPase), 1.25 ± 0.04 IU/mL of carboxy methyl cellulase (CMCase) and 55.56 ± 0.52 IU/mL of xylanase activity was obtained after 7 days of incubation at 28 ± 0.5 °C using delignified S. spontaneum as carbon source under submerged fermentation conditions. Enzymatic hydrolysate of S. spontaneum was then tested for ethanol production under batch and repeated batch production system using “in-situ” entrapped Saccharomyces cerevisiae VS3 cells in S. spontaneum stalks (1 cm × 1 cm) size. Immobilization was confirmed by the scanning electron microscopy (SEM). Batch fermentation of VS3 free cells and immobilized cells showed ethanol production, 19.45 ± 0.55 g/L (yield, 0.410 ± 0.010 g/g) and 21.66 ± 0.62 g/L (yield, 0.434 ± 0.021 g/g), respectively. Immobilized VS3 cells showed maximum ethanol production (22.85 ± 0.44 g/L, yield, 0.45 ± 0.04 g/g) up to 8th cycle during repeated batch fermentation followed by a gradual reduction in subsequent cycles of fermentation.  相似文献   

6.
In this work, the hydrolysis kinetics of lactose by Aspergillus oryzae β-galactosidase was studied using the ionic exchange resin Duolite A568 as a carrier. The enzyme was immobilized using a β-galactosidase concentration of 16 g/L in pH 4.5 acetate buffer and an immobilization time of 12 h at 25 ± 0.5 °C. Next, the immobilized β-galactosidase was crosslinked using glutaraldehyde concentration of 3.5 g/L for 1.5 h. The influence of lactose concentration was studied for a range of 5–140 g/L, and the Michaelis–Menten model was fitted well to the experimental results with Vm and Km values of 0.71 U and 35.30 mM, respectively. The influence of the product galactose as an inhibitor on the hydrolysis reaction was studied. The model that was best fitted to the experimental results was the competitive inhibition by galactose with Vm, Km and Ki values of 0.77 U, 35.30 mM and 27.44 mM, respectively. The influence of temperature on the enzymatic activity of the immobilized enzyme was studied in the range of 10–80 °C, in which the temperature of the maximum activity was 60 °C, with an activation energy of 5.32 kcal/mol of lactose, using an initial concentration of lactose of 50 g/L in a pH 4.5 sodium acetate buffer solution. The thermal stability of the immobilized biocatalyst was determined to be in the range 55–65 °C. The first-order model described well the kinetics of thermal deactivation for all the temperatures studied. The activation energy of thermal deactivation from immobilized biocatalyst was 66.48 kcal/mol with a half-life of 8.9 h at 55 °C.  相似文献   

7.
This work studied the hydrolysis of lactose using β-galactosidase from Aspergillus oryzae immobilized with a combination of adsorption and glutaraldehyde cross-linking onto the ion exchange resin Duolite A568 as a carrier. A central composite design (CCD) was used to study the effects of lactose concentration and feed flow rate on the average hydrolysis reaction rate and lactose conversion in a fixed bed reactor operating continuously with an upflow at a temperature of 35 ± 1 °C. The optimal conditions for the average hydrolysis reaction rate and the lactose conversion included a lactose concentration of 50 g/L and a feed flow rate of 6 mL/min. The average reaction rate and conversion reached 2074 U and 65%, respectively. The immobilized enzyme activity was maintained during the 30 days of operation in a fixed bed reactor with a 0.3 mL/min feed flow rate of a 50 g/L lactose solution at room temperature. Feed flows ranging from 0.6 to 12 mL/min were used to determine the distribution of residence times and the kinetics of the fixed bed reactor. A non-ideal flow pattern with the formation of a bypass flow in the fixed bed reactor was identified. The conditions used for the kinetics study included a lactose solution concentration of 50 g/L at pH 4.5 and a temperature of 35 ± 1 °C. Kinetic models using a PFR and axial dispersion methods were used to describe the lactose hydrolysis in the fixed bed reactor, thus accounting for the competitive inhibition by galactose. To increase the lactose conversion, experiments were performed for two fixed bed reactors in series, operating in continuous duty with upflow, with the optimal conditions determined using the CCD for a fixed bed reactor. The total conversion for the two reactors in series was 82%.  相似文献   

8.
This work optimized the novel biotransformation process of podophyllotoxin to produce podophyllic acid by Pseudomonas aeruginosa CCTCC AB93066. Firstly, the biotransformation process was significantly affected by medium composition. 5 g/l of yeast extract and 5 g/l of peptone were favorable for podophyllic acid production (i.e. 25.3 ± 3.7 mg/l), while not beneficial for the cell growth of P. aeruginosa. This indicated that the accumulation of podophyllic acid was not corresponded well to the cell growth of P. aeruginosa. 0 g/l of sucrose was beneficial for podophyllic acid production (i.e. 34.3 ± 3.9 mg/l), which led to high podophyllotoxin conversion (i.e. 98.2 ± 0.1%). 1 g/l of NaCl was the best for podophyllic acid production (i.e. 47.6 ± 4.0 mg/l). Secondly, the production of podophyllic acid was significantly enhanced by fed-batch biotransformation. When each 100 mg/l of podophyllotoxin was added to the biotransformation system after 4, 10 and 25 h of culture, respectively, podophyllic acid concentration reached 99.9 ± 12.3 mg/l, enhanced by 284% comparing to one-time addition (i.e. 26.0 ± 2.1 mg/l). The fundamental information obtained in this study provides a simple and efficient way to produce podophyllic acid.  相似文献   

9.
Synthesis of propyl-β-galactoside catalyzed by Aspergillus oryzae β-galactosidase in soluble form was optimized using response surface methodology (RSM). Temperature and 1-propanol concentration were selected as explanatory variables; yield and productivity were chosen as response variables. Optimal reaction conditions were determined by weighing the responses through a desirability function. Then, synthesis of propyl-β-galactoside was evaluated at the optimal condition previously determined, with immobilized β-galactosidase in glyoxyl-agarose and amino-glyoxyl-agarose, and with cross-linked aggregates (CLAGs). Yields of propyl-β-galactoside obtained with CLAGs, amino-glyoxyl-agarose and glyoxyl-agarose enzyme derivatives were 0.75, 0.81 and 0.87 mol/mol and volumetric productivities were 5.2, 5.6 and 5.9 mM/h, respectively, being significantly higher than the corresponding values obtained with the soluble enzyme: 0.47 mol/mol and 4.4 mM/h. As reaction yield was increased twofold with the glyoxyl-agarose derivative, this catalyst was chosen for evaluating the synthesis of propyl-β-galactoside in repeated batch operations. Then, after ten sequential batches, the efficiency of catalyst use was 115% higher than obtained with the free enzyme. Enzyme immobilization also favored product recovery, allowing catalyst reuse, and avoiding browning reactions. Propyl-β-galactoside was recovery by extraction in 90%v/v acetone with a purity higher than 99% and its synthesis was confirmed by mass spectrometry.  相似文献   

10.
A highly active and stable derivate of immobilized Bacillus circulans β-galactosidase was prepared for the synthesis of galacto-oligosaccharides (GOS) under repeated-batch operation. B. circulans β-galactosidase was immobilized on monofunctional glyoxyl agarose and three heterofunctional supports: amino-, carboxy-, and chelate-glyoxyl agarose. Glyoxyl agarose was the support with highest immobilization yield and stability being selected for the optimization of immobilization conditions and application in GOS synthesis. A central composite rotatable design was conducted to optimize contacted protein and immobilization time, using maximum catalytic potential as the objective function. Optimal conditions of immobilization were 28.9 mg/g and 36.4 h of contact, resulting in a biocatalyst with 595 IU/g and a half-life 89-fold higher than soluble enzyme. Immobilization process did not alter the synthetic capacity of β-galactosidase, obtaining the same GOS yield and product profile than the free enzyme. GOS yield and productivity remained unchanged along 10 repeated batches, with values of 39% (w/w) and 5.7 g GOS/g of biocatalyst·batch. Total product obtained after 10 batches of reaction was 56.5 g GOS/g of biocatalyst (1956 g GOS/g protein). Cumulative productivity in terms of mass of contacted protein was higher for the immobilized enzyme than for its soluble counterpart from the second batch of synthesis onwards.  相似文献   

11.
To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40–50 °C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50 °C and was maintained even after an incubation of 24-h at 60 °C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50 °C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production.  相似文献   

12.
Surfactants were used to permeabilize cells of Pseudomonas putida KT2440 so as to maximize retention of the arginine deiminase (ADI) activity within the treated cells. The surfactants cetyltrimethylammoniumbromide (CTAB), sodium dodecyl sulfate (SDS) and Triton X100 were tested separately. Statistical models were developed for the effects on the ADI activity of the following factors: the concentration of the surfactant, the length of the treatment period and the concentration of the cells. For all surfactants, the concentration of cells was the most significant factor in influencing permeabilization. All permeabilization treatments used mild conditions (pH 7, 37 °C). The permeabilized cells were immobilized in alginate beads for the biotransformation of arginine to citrulline. The optimal conditions for immobilization and biotransformation were as follows: 2% (w/v, g/100 mL) sodium alginate, 100 g/L of treated cells, 40 mM arginine, pH 6.0, a temperature of 35 °C and an agitation speed of 150 rpm. The immobilized biocatalyst retained nearly 90% of its initial activity after nine cycles of repeated use in batch operations. In contrast, the freely suspended cells were barely active after the second use cycle.  相似文献   

13.
β-amino acids are widely used in drug research, and S-3-amino-3-phenylpropionic acid (S-APA) is an important pharmaceutical intermediate of S-dapoxetine, which has been approved for the treatment of premature ejaculation. Chiral catalysis is an excellent method for the preparation of enantiopure compounds. In this study, we used (±)-ethyl-3-amino-3-phenylpropanoate (EAP) as the sole carbon source. Three hundred thirty one microorganisms were isolated from 30 soil samples, and 17 strains could produce S-APA. After three rounds of cultivation and identification, the strain Y1-6 exhibiting the highest enantioselective activity of S-APA was identified as Methylobacterium oryzae. The optimal medium composition contained methanol (2.5 g/L), 1,2-propanediol (7.5 g/L), soluble starch (2.5 g/L), and peptone (10 g/L); it was shaken at 220 rpm for 4–5 days at 30 °C. The optimum condition for biotransformation of EAP involved cultivation at 37 °C for 48 h with 120 mg of wet cells and 0.64 mg of EAP in 1 ml of transfer solution. Under this condition, substrate ee was 92.1% and yield was 48.6%. We then attempted to use Methylobacterium Y1-6 to catalyze the hydrolytic reaction with substrates containing 3-amino-3-phenyl-propanoate ester, N-substituted-β-ethyl-3-amino-3-phenyl-propanoate, and γ-lactam. It was found that 5 compounds with ester bonds could be stereoselectively hydrolyzed to S-acid, and 2 compounds with γ-lactam bonds could be stereoselectively hydrolyzed to (-)-γ-lactam.  相似文献   

14.
Phenylacetaldehyde (PA) can be produced by the oxidation of 2-phenylethanol (PE) through biotransformation. In order to prevent substrate and product inhibitions and the transformation of the PA to phenylacetic acid (PAA), utilization of a two-phase system is very attractive. Gluconobacter oxydans B-72 was used as the microorganism and iso-octane as the solvent. The effect of initial substrate concentration on the PA production was investigated in single- and two-phase systems. In the single-phase system, substrate inhibition occurred above 5 g/l, and in the two-phase system, above 7.5 g/l. Substrate inhibition kinetics were also studied in the two-phase system and kinetic constants were determined as rmax=0.64 g/l min, KM=8.15 g/l, KPA=2.5 g/l. Because it was observed that two-phase system is insufficient to remove the substrate inhibition effect, fed-batch operation was utilised in this study. For 7.5 g/l of PE, 1.65, 3.85, and 7.35 g/l of PA were obtained in the single-phase, two-phase, and two-phase three fed-batch systems, respectively. Effect of biotransformation time, initial substrate concentration, agitation speed, and fed-batch number on the PA production was investigated in a two-phase fed-batch system by the response surface methodology (RSM). The optimum values were found as 3 fed-batch number, 2.75 g/l initial substrate concentration, 150 rpm agitation speed, and 65 min of one batch biotransformation time. In order to verify these results, an experiment was performed at these optimum conditions and 7.10 g/l of PA concentration was obtained.  相似文献   

15.
Microbial hydroxylation of long chain fatty acids has been extensively investigated. However, biotransformation productivity remains below ca. 1.0 g/g cell dry weight (CDW)/h under process conditions. In the present study, a highly efficient microbial hydroxylation process to convert oleic acid into 10-hydroxystearic acid was developed. A recombinant Escherichia coli expressing ohyA, the gene encoding oleate hydratase of Stenotrophomonas maltophilia, was used as the biocatalyst. Investigation of the ohyA expression and biotransformation conditions (e.g., inducer concentration, gene expression period before initiating biotransformation, mixing condition of reaction medium) enabled 10-hydroxystearic acid to accumulate to a final concentration of approximately 46 g/L in the culture medium. The specific product formation rate and product yield reached approximately 2.0 g/g CDW/h (i.e., 110 U/g CDW) and 91%, respectively. The specific product formation rate was more than 3-fold higher than those of a bioprocess using wild type Stenotrophomonas sp. cells. Additionally, the product of the whole-cell biotransformation was recovered at a yield of 70.9% and a purity of 99.7% via solvent fraction crystallization at low temperature. These results will contribute to developing a biological process for hydroxylation of oleic acid.  相似文献   

16.
The hydroquinone glucoside arbutin is a plant derived compound medically applied due to its uroantiseptic activity. It also has skin whitening properties and thus is widely used in dermatology and cosmetology. Origanum majorana L. (Lamiaceae) is known to produce arbutin, however the content of the compound in cultivated plants is very variable and low. Since plant cell and tissue cultures are capable to perform specific biotransformation reactions including glucosylation, this investigation targeted the formation of arbutin from hydroquinone in agitated O. majorana shoot cultures. For this purpose different doses of hydroquinone (96, 144, 192, 288 and 384 mg/L of medium) were added to the culture flasks in one, two or three portions. Arbutin was qualitatively and quantitatively determined in methanol extracts from dry biomass and lyophilized media using HPLC-DAD. Cells of O. majorana shoot cultures efficiently converted hydroquinone into arbutin. The product was accumulated in the biomass and was not observed (or in trace amounts) in the medium samples. Different doses as well as portioning of the precursor had a significant impact on the biotransformation process. Arbutin accumulation increased from 0.23 ± 0.03 mg/g DW up to 52.6 ± 4.8 mg/g DW in the biomass. The highest product content was observed after the addition of 192 mg/L hydroquinone in three portions. The highest efficiency of the biotransformation process, i.e. 67.5 ± 5.2% was calculated for a dose of 96 mg/L precursor divided into three portions. After further optimization of the biotransformation process, O. majorana shoot cultures could serve as a rich source of arbutin.  相似文献   

17.
Bovine liver catalase was covalently immobilized onto Eupergit C. Optimum conditions of immobilization: pH, buffer concentration, temperature, coupling time and initial catalase amount per gram of carrier were determined as 7.5, 1.0 M, 25 °C, 24 h and 4.0 mg/g, respectively. Vmax and Km were determined as 1.4(±0.2) × 105 U/mg protein and 28.6 ± 3.6 mM, respectively, for free catalase, and as 3.7(±0.4) × 103 U/mg protein and 95.9 ± 0.6 mM, respectively, for immobilized catalase. The thermal stability of the immobilized catalase in terms of half-life time (29.1 h) was comparably higher than that of the free catalase (9.0 h) at 40 °C. Comparison of storage stabilities showed that the free catalase completely lost its activity at the end of 11 days both at room temperature and 5 °C. However, immobilized catalase retained 68% of its initial activity when stored at room temperature and 79% of its initial activity when stored at 5 °C at the end of 28 days. The highest reuse number of immobilized catalase was 22 cycles of batch operation when 40 mg of immobilized catalase loaded into the reactor retaining about 50% of its original activity. In the plug flow type reactor, the longest operation time was found as 82 min at a substrate flow rate of 2.3 mL/min when the remaining activity of 40 mg immobilized catalase was about 50% of its original activity. The resulting immobilized catalase onto Eupergit C has good reusability, thermal stability and long-term storage stability.  相似文献   

18.
Naringinase plays a rather important role in reducing the bitterness of juice by hydrolyzing naringin. A novel extracellular naringinase was purified from Aspergillus oryzae 11250 cultured in the presence of orange peel. A 26.78-fold purification rate was achieved by salt-induced precipitation, followed by anion-exchange and gel filtration chromatography with 32% recovery and specific activity of 2194.62 units per mg protein (U/mg). The optimum pH and temperature for naringinase activity were 5.0 and 45 °C, respectively. This enzyme was stable at 30 °C for 5 h. The Km and Vmax of naringinase toward naringin determined by Lineweaver-Burk method were 1.60 ± 0.13 mM and 126.21 ± 5.52 μmol/(min mg), respectively. The enzyme activity was inhibited completely by Ag+ at 10 mM. Naringinase is capable of hydrolyzing naringin, neohesperidin, and some other glycosides. A supplement of 6 U/mL of this naringinase in citrus juice sufficiently removed naringin to relieve the bitterness of citrus juice. These properties make the enzyme an ideal candidate for commercial application in the debitterization of orange juice.  相似文献   

19.
Commercial β-galactosidase preparations from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae were evaluated as catalysts for the synthesis of lactulose. Among them, the enzyme from A. oryzae was selected for further studies. The effect of reaction conditions was then studied on product composition during the kinetically controlled synthesis of lactulose by transgalactosylation with A. oryzae β-galactosidase. Product composition was not affected by pH, temperature, total initial concentration of sugar (lactose plus fructose) and enzyme to substrate ratio within the ranges studied. However, lactose to fructose ratio strongly influenced product composition being then possible to control the lactulose to galacto-oligosaccharide ratio within ample margins. Maximum lactulose yield (0.282 g of lactulose per g initial lactose) was obtained using 1/8 lactose to fructose molar ratio, 50% (w/w) total initial sugars, 40 °C, pH 4.5 and enzyme to initial lactose ratio equivalent to 200 IU/g.  相似文献   

20.
A novel method was developed for the immobilization of glucoamylase from Aspergillus niger. The enzyme was immobilized onto polyglutaraldehyde-activated gelatin particles in the presence of polyethylene glycol and soluble gelatin, resulting in 85% immobilization yield. The immobilized enzyme has been fully active for 30 days. In addition, the immobilized enzyme retained 90 and 75% of its activity in 60 and 90 days, respectively. The enzyme optimum conditions were not affected by immobilization and the optimum pH and temperature for free and immobilized enzyme were 4 and 65 °C, respectively. The kinetic parameters for the hydrolysis of maltodextrin by free and immobilized glucoamylase were also determined. The Km values for free and immobilized enzyme were 7.5 and 10.1 g maltodextrin/l, respectively. The Vmax values for free and immobilized enzyme were estimated as 20 and 16 μmol glucose/(min μl enzyme), respectively. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号