首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) was successfully employed as co-solvent for asymmetric bioreduction of ethyl acetoacetate (EOB) to ethyl (R)-3-hydroxybutyrate (R-EHB) catalyzed by Pichia membranaefaciens Hansen ZJPH07 cells. The results demonstrated that the addition of [BMIM]BF4 in reaction system can markedly reduce the substrate inhibition and moderately improve the enantioselectivity compared to that in monophasic aqueous system. Among different alcohols and carbohydrates tried as co-substrate, glucose was a proper electron donor. Although isopropanol gave the best enantioselectivity with the highest yield, S-enantiomer was obtained. To optimize the bioreduction, some reaction parameters for the biosynthesis of R-EHB in this IL-containing system were investigated, such as temperature, buffer pH, shaking speed, substrate concentration, wet cells concentration and reaction time. Under the optimum conditions, best conversion of 77.8% and product enantiomeric excess (e.e.) of 73.0% were obtained. A comparative study was performed either in the presence or in the absence of [BMIM]BF4, higher reaction yield (77.8% versus 68.5%) and product e.e. (73.0% versus 65.1%) were observed in IL-containing system with 0.55 M of the substrate, but 0.35 M of substrate concentration for the reduction in aqueous system without the addition of [BMIM]BF4.  相似文献   

2.
Hydroxynitrile Lyase Catalysis in Ionic Liquid-containing Systems   总被引:1,自引:0,他引:1  
Lou WY  Xu R  Zong MH 《Biotechnology letters》2005,27(18):1387-1390
The cleavage of mandelonitrile catalysed by hydroxynitrile lyases (HNL) from Prunus amygdalus (PaHNL) and Manihot esculenta (MeHNL) proceeded more rapidly in monophasic aqueous media containing 1-propyl-3-methylimidazolium tetrafluoroborate [C4MIm][BF4] than in media containing acetonitrile or THF. Both HNLs were much more thermostable in [C4MIm][BF4] than in acetonitrile or THF. The addition of each of the four ionic liquids 1-butyl-, 1-pentyl- and 1-hexyl-3-methylimidazolium tetrafluoroborates at 2–6% (v/v in the aqueous phase) increased both the enzyme activity and the product e.e. in the PaHNL-catalysed transcyanation in an aqueous/DIPE biphasic system. However, MeHNL was inactivated by the ionic liquids, as indicated by the decreased reaction rate, substrate conversion and product e.e.  相似文献   

3.
《Process Biochemistry》2010,45(3):415-418
For the first time, PSL-C, an immobilized lipase from Burkholderia cepacia, was successfully applied to the regioselective acylation of andrographolide by vinyl acetate in acetone. FT-IR spectra demonstrated the occurrence of acylation reaction. The 13C NMR, ESI-MS and elemental analysis confirmed that the 14-acetylandrographolide was formed exclusively. Water activity and reaction temperature had a significant effect on the initial rate and the substrate conversion, but little effect on the regioselectivity of the reaction. The optimal water activity and reaction temperature were 0.11 and 50 °C, respectively. Under these conditions, the initial rate and substrate conversion were 50.2 mM h−1 and 99.0%, respectively, after a reaction time of around 4 h. Besides, immobilized lipase also displayed higher operational stability and 83.5% of its original activity was maintained after being reused for eight batches.  相似文献   

4.
《Inorganica chimica acta》2006,359(6):1855-1869
A series of discrete, mononuclear palladium(II)–methyl complexes, together with several palladium(II)–chloro analogues, of pyridine-functionalised bis-NHC ligands have been prepared via ligand transmetallation from the silver(I)-NHC complexes. The reported complexes comprise examples with both the methylene-bridged 2,6-bis[(3-R-imidazolin-2-yliden-1-yl)methyl]pyridine (RCNC; R = Mes, dipp, tBu) and planar 2,6-bis(3-R-imidazolin-2-yliden-1-yl)pyridine (RCNC; R = Mes, dipp) ligands and, when combined with the previously reported MeCNC/MeCNC examples, cover a broad spectrum of ligand substituent steric and electronic properties, including the bulky Mes and dipp groups frequently used in catalytic applications. The palladium(II) complexes have been characterised by a variety of methods, including single crystal X-ray crystallography, with the shielding of the Pd–Me groups in the proton NMR spectra of some of the N-aryl substituted examples correlated with the proximity of the aryl rings to the methyl group in the solid state structures. The [PdMe(RCNC/RCNC)]+ complexes undergo thermal degradation via reductive methyl-NHC coupling to give 2-methyl-3-R-imidazolium-1-yl species with relative stabilities in the order of [PdMe(MesCNC)]BF4 > [PdMe(MeCNC)]BF4  [PdMe(MesCNC)]BF4 > [PdMe(MeCNC)]BF4 > [PdMe(tBuCNC)]BF4  [PdMe(tBuCNC)]BF4 (not isolable). A comparison of the activity of the complexes as precatalysts in a model Heck coupling reaction shows greatest activity in those species bearing bulkier N-substituents, with complexes bearing RCNC ligands generally more efficient precatalysts than those bearing RCNC ligands.  相似文献   

5.
《Process Biochemistry》2007,42(9):1326-1334
The effect of various reaction parameters on the enzymatic acylation of plant polyhydroxylated compounds, including phenolic and flavonoid glucosides (salicin, helicin, esculin and naringin), was investigated in imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate [bmim]BF4 and 1-butyl-3-methylimidazolium hexafluorophosphate [bmim]PF6), using immobilized lipase B from Candida antarctica. The conversion yield, the regioselectivity and the reaction rate of the biocatalytic process strongly depended on the ionic liquid used, their water content, the incubation temperature, as well as the solubility and the concentration of substrates. For most glucosides tested, one major product (monoacylated derivative) was detected as a result of the acylation of the primary hydroxyl group of glucose moiety. The acylation rate and the regioselectivity of the process are higher in [bmim]BF4, where the solubility of all glucosides is significantly higher than in [bmim]PF6 or acetone. Response surface methodology (RSM) based on a five level-three variable central composite circumscribed design, was employed to evaluate the interactive effect of the molar ratio of substrates (MR), the initial concentration of glucoside (N) and the reaction time (RT), as well as for their optimization in [bmim]BF4. At the optimal reaction conditions the maximum acylation yield was 87%. The amount of monoacylated derivatives produced in a single-step biocatalytic process reached values up to 31.6 g/l which is considerably higher than those reported for organic media.  相似文献   

6.
The acylation of isoamyl alcohol with acetic anhydride catalyzed by immobilized Candida antarctica lipase B was studied in ionic liquids (ILs) based on quaternary imidazolium cations with alkyl, alkenyl, alkynyl, benzyl, alkoxyl or N-aminopropyl side chains. Among the tested ILs, the highest enzyme activity together with the highest isoamyl acetate yield were obtained in [C7mmim][Tf2N]. No loss of lipase B activity was observed during one-month incubation in this hydrophobic IL without the presence of substrates. Isoamyl acetate synthesis using [C7mmim][Tf2N] as solvent was further studied in a continuously operated miniaturized enzymatic packed bed reactor at various flow rates and temperatures. Up to 92% isoamyl acetate yield could be obtained within 15 min by using 0.5 M acetic anhydride and 1.5 M isoamyl alcohol inlet concentrations at 55 °C, corresponding to the volumetric productivity of 61 mmol l?1 min?1, which to the best of our knowledge is the highest reported so far for this reaction. No decrease in productivity was experienced during the subsequent runs of continuous microbioreactor operation performed within 14 consecutive days. The benefits of reactor miniaturization along with the green solvent application were therefore successfully exploited for the development of a sustainable flavour ester production.  相似文献   

7.
8.
The present study is the first report demonstrating that ionic liquids consisting of cholinium cations and linear carboxylate anions ([Ch][CA] ILs) can be used for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Six variants of [Ch][CA] ILs were systematically prepared by combining cholinium cations with linear monocarboxylate anions ([CnH2n+1–COO], n = 0–2) or dicarboxylate anions ([HOOC–CnH2n+1–COO], n = 0–2). These [Ch][CA] ILs were analyzed for their toxicity to yeast cell growth and their ability to pretreat kenaf powder for subsequent enzymatic saccharification. When assayed against yeast growth, the EC50 for choline acetate ([Ch][OAc]) was 510 mM, almost one order of magnitude higher than that for 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]). The cellulose saccharification ratio after pretreatment at 110 °C for 16 h with [Ch][OAc] (100.6%) was almost comparable with that after pretreatment with [Emim][OAc]. Therefore, [Ch][OAc] is a biocompatible alternative to [Emim][OAc] for lignocellulosic material pretreatment.  相似文献   

9.
This research describes the immobilization of Rhizomucor miehei lipase (RML) and chemically aminated RML (NH2-RML) on different supports including octyl-sepharose (octyl-RML), activated sepharose with cyanogen bromide (CNBr-RML and CNBr-NH2-RML), glyoxyl sepharose (Gx-RML and Gx-NH2-RML) and glyoxyl sepharose dithiothreitol (Gx-DTT-RML and Gx-DTT-NH2-RML). The highest immobilization yield was achieved for octyl-RML (>98%) followed by CNBr-RML (88%). Octyl-RML had the most specific activity (13.6) among all derivatives. The other preparations had moderate activities likely because of chemical reaction during covalent attachment of the enzyme. The catalytic behavior of lipase immobilized in hydrolysis reactions was investigated using methyl, ethyl, propyl, butyl and isobutyl-ibuprofen esters and the influence of the alkyl chain and the alcoholic residue of the ester were studied. Butyl ester was the most interesting ester for carrying out hydrolysis. The highest enantioselectivity of enzyme (E = 8.8) was obtained with isooctane/sodium phosphate buffer pH 7.0 at temperature of 40 °C. Increasing temperature from 40 to 50 °C caused decreasing in enantioselectivities and conversions. Also esterification of ibuprofen was carried out in solvent systems containing isooctane and two ionic liquids (ILs); [BMIM][PF6] and [BMIM][BF4]. Poor conversions and enantioselectivities were observed during esterification in all solvents.  相似文献   

10.
Changes in pig slurry organic matter (OM) during anaerobic digestion (AD) were studied in a reactor to characterize OM evolution through AD. OM maturity and stability were evaluated using different biological and physico-chemical methods. Germination and growth chamber experiments revealed a higher maturity of digested slurry (DS) than raw slurry (RS). Soil incubations showed that DS was more stable than RS with a C-mineralization of 12.0 g CO2-C 100 g?1 Corg after 49 days as compared to 17.6 g CO2-C 100 g?1 Corg. Biochemical fractionation showed a relative increase in stable compounds such as hemicellulose-like and lignin-like molecules. Fourier-transform infrared spectroscopy showed some changes in the chemical structures of OM with a reduction in the aliphatic chain, lipid and polysaccharide levels. A comparison between the evolution of OM during AD and the first weeks of a composting process showed almost identical changes. Finally a theoretical method called Fictitious Atomic-group Separation was applied to the elemental compositions of RS and DS. DS was less humified than RS and presented the properties of a fulvic acid, indicating that the observed stability in DS was mainly due to the biodegradation of the most labile compounds.  相似文献   

11.
The hallmark of NAFLD is steatosis of unknown etiology. We tested the effect of a high-protein (HP)2 diet on diet-induced steatosis in male C57BL/6 mice with and without pre-existing fatty liver. Mice were fed all combinations of semisynthetic low-fat (LF) or high-fat (HF) and low-protein (LP) or HP diets for 3 weeks. To control for reduced energy intake by HF/HP-fed mice, a pair-fed HF/LP group was included. Reversibility of pre-existing steatosis was investigated by sequentially feeding HF/LP and HF/HP diets. HP-containing diets decreased hepatic lipids to ~ 40% of corresponding LP-containing diets, were more efficient in this respect than reducing energy intake to 80%, and reversed pre-existing diet-induced steatosis. Compared to LP-containing diets, mice fed HP-containing diets showed increased mitochondrial oxidative capacity (elevated Pgc1α, mAco, and Cpt1 mRNAs, complex-V protein, and decreased plasma free and short-chain acyl-carnitines, and [C0]/[C16 + C18] carnitine ratio); increased gluconeogenesis and pyruvate cycling (increased PCK1 protein and fed plasma–glucose concentration without increased G6pase mRNA); reduced fatty-acid desaturation (decreased Scd1 expression and [C16:1n ? 7]/[C16:0] ratio) and increased long-chain PUFA elongation; a selective increase in plasma branched-chain amino acids; a decrease in cell stress (reduced phosphorylated eIF2α, and Fgf21 and Chop expression); and a trend toward less inflammation (lower Mcp1 and Cd11b expression and less phosphorylated NFκB). Conclusion: HP diets prevent and reverse steatosis independently of fat and carbohydrate intake more efficiently than a 20% reduction in energy intake. The effect appears to result from fuel-generated, highly distributed small, synergistic increases in lipid and BCAA catabolism, and a decrease in cell stress.  相似文献   

12.
《Process Biochemistry》2014,49(4):668-672
Porcine pancreatic lipase (PPL) was chemically modified with various functional ionic liquids (ILs) to increase its catalytic performance in water-miscible IL. Catalytic activity and thermostability were tested with a p-nitrophenyl palmitate (pNPP) hydrolysis reaction. The native enzyme lost 18% of its initial activity in 0.4 M [MMIm][MeSO4], whereas the activities of all the modified enzymes increased. The [HOOCBMIm][Cl] modification led to a 2-fold increase in activity in 0.3 M [MMIm][MeSO4] than in aqueous. All the modified enzymes exhibited higher thermostability compared with the native enzyme at high temperature. In particular, the [HOOCBMIm][Cl] modification led to a 6-fold increase in thermostability at 60 °C. Conformational changes were confirmed by fluorescence spectroscopy and circular dichroism spectroscopy to elucidate the mechanism of catalytic performance alteration.  相似文献   

13.
Rhodotorula sp. AS2.2241, a newly isolated strain, was used as biocatalyst for asymmetric reduction of 4′-methoxyacetophenone (MOAP) to enantiopure (S)-1-(4-methoxyphenyl)ethanol {(S)-MOPE}. Despite the improved efficiency of the reaction with immobilized cells compared to free cells, the inhibition of the reaction by substrate and product in monophasic aqueous system proved to be big problem. For high efficient biotransformation, several water-immiscible ionic liquids (ILs) were employed as green solvents to construct ionic liquid-involving biphasic systems. Of the six ILs tested, C4MIM·PF6 exhibited the best biocompatibility with the cells, and consequently the biocatalytic reduction proceeded with the fastest initial reaction rate and the highest maximum substrate conversion in the C4MIM·PF6-based biphasic system. To better understand the bioreduction conducted in the C4MIM·PF6-based biphasic system, various variables that influenced the performance of the reaction were examined. The optimal buffer pH, reaction temperature, volume ratio of buffer to C4MIM·PF6 and substrate concentration were 7.5, 25 °C, 4/1 and 40 mM, respectively. Under the optimal conditions, the initial reaction rate, maximum substrate conversion and product e.e. were 1.6 μmol/h, 95.5% and >99%, respectively. Additionally, the cells still remained above 90% of their original activity in the C4MIM·PF6-based biphasic system, which was much higher than that in the monophasic buffer system (about 25% of their original activity), after being repeatedly used for 8 batches (50 h per batch), indicating that C4MIM·PF6 markedly enhanced the operational stability of the cells.  相似文献   

14.
《Inorganica chimica acta》2006,359(5):1549-1558
Reactions of Cp*RhCl2(PPh3) (1) with 1-alkyne and H2O in the presence of KPF6 generated alkenyl ketone complexes [Cp*Rh(CRCHCOCH2R)(PPh3)](PF6) (2) (R = Ph (a), C6H4p-Me (b), C6H4-p-COOMe (c), C6H4-p-NO2 (d)). A similar complex [Cp*Rh(CPhCHCOCH2Ph)(PMePh2)](PF6) (2e) was obtained by use of Cp*RhCl2(PMePh2). It was revealed by X-ray analyses of 2b, 2c and 2e that the complexes 2 consist of the five-membered ring structures bound by the carbon and oxygen atoms of the alkenyl ketone group. Similar reactions of Cp*IrCl2(PPh3) (6) or (C6Me6)RuCl2(PPh3) (7) proceeded with a cleavage of C–C triple bond of 1-alkyne without formation of an alkenyl ketone complex, affording the corresponding carbonyl complexes, [Cp*IrCl(PPh3)(CO)](PF6) (8) or [(C6Me6)RuCl(PPh3)(CO)](PF6) (9). The diphosphine complexes [(Cp*MCl2)2{μ-diphos}] (4: M = Rh, diphos = dppm,; 12a: M = Ir, diphos = dppm; 12b: M = Ir, diphos = dppb) gave a Cl-bridged rhodium complex [{Cp*Rh(μ-Cl)}2{μ-dppm}](PF6)2 (5), mono-carbonyl or dicarbonyl iridium complexes,[(Cp*IrCl2){μ-dppm}{Cp*IrCl(CO)}](PF6)(13a) or [{Cp*IrCl(CO)}2{μ-dppb}](PF6)2 (14b), respectively.  相似文献   

15.
The main objective of this work was to study the enzymatic synthesis of short chain ethyl esters, a group of relevant aroma molecules, by Fusarium solani pisi cutinase in an organic solvent media (iso-octane), and to assess the influence of different parameters on the reaction yield.Cutinase displayed high initial esterification rates in iso-octane, which amounted to 1.15 μmol min−1 mg−1 for ethyl butyrate (C4 acid chain) and 1.06 μmol min−1 mg−1 for ethyl valerate (C5 acid chain). High product yields, 84% for ethyl butyrate and 96% for ethyl valerate, were observed after 6 h of reaction, for an initial equimolar concentration of substrates (0.1 M).The highest product yield (97%) was observed for ethyl caproate (C6) synthesis, a compound which is a part of natural apple and pineapple flavour, for an alcohol:acid molar ratio of 2 (0.2 M ethanol concentration).Cutinase affinity for short chain length carboxylic acids (C4–C6) in ester synthesis in iso-octane confirmed previous observations in reversed micellar system.  相似文献   

16.
The α,β-unsaturated carbonyl compound (4S)-(+)-carvone was selectively reduced to (1R,2R,4S)-iso-dihydrocarveol using baker's yeasts. The conversion of the bioreduction reaction was monitored using a green hollow-fiber liquid–liquid–liquid microextraction (HF-LLLME) technique. Several parameters which may affect the bioreduction of (4S)-(+)-carvone, such as temperature, time, substrate/enzyme ratio, pH and buffer concentration, were evaluated. The effect of some additives, such as trehalose, DMSO and the ionic liquid [BMIm][PF6], was also studied. The (1R,2R,4S)-iso-dihydrocarveol was recovered with 52.7% conversion and diastereoisomeric excess >99% after 48 h of reaction at 40 °C in an aqueous monophasic system, with 0.1 mol L?1 buffer concentration (pH 7.5) and a substrate/yeast cell mass ratio of 8.0 mg g?1. The HF-LLLME microextraction technique allowed the optimization of the reaction with a reduction of over 99.5% in relation to the use of organic solvents.  相似文献   

17.
《Inorganica chimica acta》2006,359(11):3639-3648
A series of alkynylgold(I) bis(diphenylphosphino)alkyl- and aryl-amine complexes, [{Ph2PN(R)PPh2}Au2(CCR′)2] [R = nPr, R′ = Ph (1), C6H4OMe-p (2), C6H4Me-p (3), C6H4Cl-p (4); R = C6H4OMe-p, R′ = Ph (5)], has been synthesized. The X-ray crystal structures of 1 and 2 revealed the presence of short intramolecular Au⋯Au contacts with the distances of 2.8404(8) and 3.0708(7) Å. The luminescence behavior of the complexes were studied.  相似文献   

18.
Fatty acid amide hydrolase (FAAH) is the main enzyme responsible for the hydrolysis of the endocannabinoid anandamide (arachidonoyl ethanolamide, AEA) to arachidonic acid (AA) and ethanolamine (EA). Published FAAH activity assays mostly employ radiolabeled anandamide or synthetic fluorogenic substrates. We report a stable isotope liquid chromatography–tandem mass spectrometry (LC–MS/MS) assay for specific, sensitive, and high-throughput capable FAAH activity measurements. The assay uses AEA labeled with deuterium on the EA moiety (d4-AEA) as substrate and measures the specific reaction product tetradeutero-EA (d4-EA) and the internal standard 13C2-EA. Selected reaction monitoring of m/z 66  m/z 48 (d4-EA) and m/z 64  m/z 46 (13C2-EA) in the positive electrospray ionization mode after liquid chromatographic separation on a HILIC (hydrophilic interaction liquid chromatography) column is performed. The assay was developed and thoroughly validated using recombinant human FAAH (rhFAAH) and then was applied to human blood and dog liver samples. rhFAAH-catalyzed d4-AEA hydrolysis obeyed Michaelis–Menten kinetics (KM = 12.3 μM, Vmax = 27.6 nmol/min mg). Oleoyl oxazolopyridine (oloxa) was a potent, partial noncompetitive inhibitor of rhFAAH (IC50 = 24.3 nM). Substrate specificity of other fatty acid ethanolamides decreased with decreasing length, number of double bonds, and lipophilicity of the fatty acid skeleton. In human whole blood, we detected FAAH activity that was inhibited by oloxa.  相似文献   

19.
《Inorganica chimica acta》2006,359(11):3549-3556
A series of cationic trispyrazolylmethane complexes of the general form [TmRM(CH3CN)3]2+ (Tm = tris(pyrazolyl)methane, 1, R = 3,5-Me2, M = Fe(II); 2, R = 3-Ph, M = Fe(II); 3, R = 3,5-Me2, M = Co(II); 4, R = 3-Ph, M = Co(II)) with ‘piano-stool’ structures was prepared by the reaction of the N3tripodal ligands (TmR)with [(CH3CN)6M](BF4)2 in a 1:1 stoichiometric ratio. Magnetic susceptibility measurements indicate that all four complexes with BF4 counter anions are paramagnetic, high-spin systems in the solid state with μeff at high temperatures of 5.2 (1, S = 2), 5.4 (2, S = 2), 4.9 (3, S = 3/2) and 4.6 (4, S = 3/2) BM, respectively. Comparisons of bond lengths from the metal centre to the TmR nitrogen donors, and from the metal centre to the acetonitrile nitrogen donors indicate that the neutral tripodal ligands appear to be more weakly coordinated to the metal centre than are the acetonitrile ligands. Reactions of these tripodal complexes with bidentate phosphine ligands, such as 1,2-diphosphinoethane or 1,2-bis(diallylphosphino)ethane leads to displacement of the tripodal ligand, or to the formation of more thermally stable bis-ligand complexes M(TmR)2 (R = 3,5-dimethyl).  相似文献   

20.
N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or cationic protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we observe the rich structural polymorphism of pH responsive complexes prepared due to DNA interaction with C12NO/dioleoylphosphatidylethanolamine (DOPE) vesicles and discuss it in view of utilizing the surfactant for the gene delivery vector of a pH sensitive system. In neutral solutions, the DNA uptake is low, and a lamellar Lα phase formed by C12NO/DOPE is prevailing in the complexes at 0.2  C12NO/DOPE < 0.6 mol/mol. A maximum of ~ 30% of the total DNA volume in the sample is bound in a condensed lamellar phase LαC at C12NO/DOPE = 1 mol/mol and pH 7.2. In acidic conditions, a condensed inverted hexagonal phase HIIC was observed at C12NO/DOPE = 0.2 mol/mol. Commensurate lattice parameters, aHC  dLC, were detected at 0.3  C12NO/DOPE  0.4 mol/mol and pH = 4.9–6.4 suggesting that LαC and HIIC phases were epitaxially related. While at the same composition but pH ~ 7, the mixture forms a cubic phase (Pn3m) when the complexes were heated to 80 °C and cooled down to 20 °C. Finally, a large portion of the surfactant (C12NO/DOPE > 0.5) stabilizes the LαC phase in C12NO/DOPE/DNA complexes and the distance between DNA strands (dDNA) is modulated by the pH value. Both the composition and pH affect the DNA binding in the complexes reaching up to ~ 95% of the DNA total amount at acidic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号