首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fire and herbivores alter vegetation structure and function. Future fire activity is predicted to increase, and quantifying changes in vegetation communities arising from post‐fire herbivory is needed to better manage natural environments. We investigated the effects of post‐fire herbivory on understory plant communities in a coastal eucalypt forest in southeastern Australia. We quantified herbivore activity, understory plant diversity, and dominant plant morphology following a wildfire in 2017 using two sizes of exclosures. Statistical analysis incorporated the effect of exclusion treatments, time since fire, and the effect of a previous prescribed burn. Exclusion treatments altered herbivore activity, but time since fire did not. Herbivory reduced plant species richness, diversity, and evenness and promoted the dominance of the most abundant plants within the understory. Increasing time since fire reduced community diversity and evenness and influenced morphological changes to the dominant understory plant species, increasing size and dead material while decreasing abundance. We found the legacy effects of a previous prescribed burn had no effect on herbivores or vegetation within our study. Foraging by large herbivores resulted in a depauperate vegetation community. As post‐fire herbivory can alter vegetation communities, we postulate that management burning practices may exacerbate herbivore impacts. Future fire management strategies to minimize herbivore‐mediated alterations to understory vegetation could include aggregating management burns into larger fire sizes or linking fire management with herbivore management. Restricting herbivore access following fire (planned or otherwise) can encourage a more diverse and species‐rich understory plant community. Future research should aim to determine how vegetation change from post‐fire herbivory contributes to future fire risk.  相似文献   

2.
Pleistocene extinctions affected mainly large‐bodied animals, determining the loss or changes in numerous ecological functions. Evidence points to a central role of many extinct megafauna herbivores as seed dispersers. An important step in understanding the legacy of extinct mutualistic interactions is to evaluate the roles and effectiveness of megafauna herbivores in seed dispersal. Here we use morphological and ecophysiological allometries to estimate both quantitative and qualitative aspects of seed‐dispersal services likely provided by extinct megafauna. We developed a mechanistic model that encompasses four stages of seed dispersal – seed ingestion, gut retention, animal movement, and seed deposition. We estimate seed‐dispersal kernels through simulations to infer the role of Pleistocene megafauna in promoting long‐distance dispersal and examine how seed dispersal was affected by extinctions. Simulations suggest extinct large‐bodied frugivores would frequently disperse large seeds over a thousand meters, whereas smaller‐bodied frugivores are more likely to deposit the seeds over a few hundred meters. Moreover, events of long‐distance seed dispersal by the extinct megafauna would be up to ten times longer than long‐distance dispersal by smaller‐sized extant mammals. By estimating the combined distribution of seed dispersal distances considering all large‐bodied mammalian frugivores in specific South American Pleistocene assemblages we found that long‐distance dispersal contracted by at least two thirds after the megafauna died out. The disruption of long‐distance dispersal is expected to have consequences for recruitment, spatial and genetic structure of plant populations, population persistence and community composition. Promoting long‐distance seed dispersal was one among other salient features of extinct Pleistocene megafauna that reveal their influence on natural ecosystems. Modeling the consequences of megafaunal extinctions can offer quantitative predictions on the consequences of ongoing defaunation to plant populations and ecological communities.  相似文献   

3.
Abstract There has been debate over the cause of the extinction of ‘megafauna’ species during the late Pleistocene of Australia. One view is that environmental change, either natural or human‐induced, was the main factor in the extinctions. Some support for this comes from the observation that, among herbivores, most of the species that went extinct were apparently browsers rather than grazers. Browsers would presumably have been more dependent on shrubland and woodland habitats than grazers, and it has been argued that such habitats might have contracted in response to aridity or changed fire regimes in the late Pleistocene. Here, we test this idea by comparing extinction rates of browsers and grazers in the late Pleistocene, controlling for body mass in both groups. We show that in both browsers and grazers the probability of extinction was very strongly related to body mass, and the body mass at which extinction became likely was similar in the two groups. It is true that more browsers than grazers went extinct, but this is largely because most very large herbivores in the late Pleistocene were browsers, not because large browsers were more likely to go extinct than similarly sized grazers. This result provides evidence against some forms of environmental change as a cause of the extinctions.  相似文献   

4.
Has land surface cover in South America been impacted by the loss of most large herbivores following the severe Pleistocene and Early Holocene megafauna extinctions on this continent? Here, we estimate how mean savanna woody biomass may have changed in the Americas following these extinctions by creating an empirical model to understand how large herbivores impact savanna woody biomass. To create this empirical model, we combine a large recently published dataset of savanna woody cover from Lehmann et al. (2014) (n = 2154 plots) with estimates of mammals ranges and weights from the IUCN database. We evaluate how variables such as number of megaherbivores (mammal species ≥ 1000 kg), log10 sum species weights, and total number of mammal species predict changes to woody cover by using both ordinary least squares regression analysis (OLS) and simultaneous auto‐regressive (SAR) analysis to control for spatial autocorrelation. Both number of megaherbivores and log10 sum species weights, which both disproportionately weight for megaherbivores, significantly explained much (~ 5–13%) variance in woody cover, but the third variable weighting all animals equally, did not. We then combined these biotic variables with abiotic variables such as temperature, precipitation, and fire frequency to create a model predicting 36% of the variance of savanna woody cover. We used this model combined with estimated range maps of extinct South American megafauna to estimate that had those South American megafauna not gone extinct, total savanna woody cover in South America could possibly have decreased by ~ 29% and that savannas would likely have been more open like current African savannas.  相似文献   

5.
Productive tundra plant communities composed of a variety of fast growing herbaceous and woody plants are likely to attract mammalian herbivores. Such vegetation is likely to respond to different-sized herbivores more rapidly than currently acknowledged from the tundra. Accentuated by currently changing populations of arctic mammals there is a need to understand impacts of different-sized herbivores on the dynamics of productive tundra plant communities. Here we assess the differential effects of ungulate (reindeer) and small rodent herbivores (voles and lemmings) on high productive tundra vegetation. A spatially extensive exclosure experiment was run for three years on river sediment plains along two river catchments in low-arctic Norway. The river catchments were similar in species pools but differed in species abundance composition of both plants and vertebrate herbivores. Biomass of forbs, deciduous shrubs and silica-poor grasses increased by 40–50% in response to release from herbivory, whereas biomass of silica-rich grasses decreased by 50–75%. Hence both additive and compensatory effects of small rodents and reindeer exclusion caused these significant changes in abundance composition of the plant communities. Changes were also rapid, evident after only one growing season, and are among the fastest and strongest ever documented in Arctic vegetation. The rate of changes indicates a tight link between the dynamics of productive tundra vegetation and both small and large herbivores. Responses were however not spatially consistent, being highly different between the catchments. We conclude that despite similar species pools, variation in plant species abundance and herbivore species dynamics give different prerequisites for change.  相似文献   

6.
For hundreds of millions of years, large vertebrates (megafauna) have inhabited most of the ecosystems on our planet. During the late Quaternary, notably during the Late Pleistocene and the early Holocene, Earth experienced a rapid extinction of large, terrestrial vertebrates. While much attention has been paid to understanding the causes of this massive megafauna extinction, less attention has been given to understanding the impacts of loss of megafauna on other organisms with whom they interacted. In this review, we discuss how the loss of megafauna disrupted and reshaped ecological interactions, and explore the ecological consequences of the ongoing decline of large vertebrates. Numerous late Quaternary extinct species of predators, parasites, commensals and mutualistic partners were associated with megafauna and were probably lost due to their strict dependence upon them (co‐extinctions). Moreover, many extant species have megafauna‐adapted traits that provided evolutionary benefits under past megafauna‐rich conditions, but are now of no or limited use (anachronisms). Morphological evolution and behavioural changes allowed some of these species partially to overcome the absence of megafauna. Although the extinction of megafauna led to a number of co‐extinction events, several species that likely co‐evolved with megafauna established new interactions with humans and their domestic animals. Species that were highly specialized in interactions with megafauna, such as large predators, specialized parasites, and large commensalists (e.g. scavengers, dung beetles), and could not adapt to new hosts or prey were more likely to die out. Partners that were less megafauna dependent persisted because of behavioural plasticity or by shifting their dependency to humans via domestication, facilitation or pathogen spill‐over, or through interactions with domestic megafauna. We argue that the ongoing extinction of the extant megafauna in the Anthropocene will catalyse another wave of co‐extinctions due to the enormous diversity of key ecological interactions and functional roles provided by the megafauna.  相似文献   

7.
At least five species of large flightless waterfowl have become extinct in the Hawaiian Islands in recent millennia. These birds are thought to have occupied the role of large herbivores in a wide range of terrestrial habitats. A collection of coprolites from one of the species ( Thambetochen chauliodous ) was obtained during excavations in Holocene cave sediments on the island of Maui. The chemical composition and pollen and spore content of the coprolites are analysed and compared with pollen/spore spectra from the cave sediments and from recent goose scats. The results support the contention that these birds were primarily folivorous, and further suggest that ferns were important in the diet. The coprolites have a very fine texture that may result from efficient hindgut fermentation and digestion of plant fibre. Our data are discussed in the light of a recent hypothesis of plant/herbivore coevolution between extinct avian herbivores and native Hawaiian lobelias. The loss of large native herbivores, as well as other changes in vertebrate trophic structure due to extinctions over the past few thousand years, may still be affecting ecological processes in areas of the Hawaiian islands with native vegetation.  相似文献   

8.
Recent studies suggest that extinction of Pleistocene megafauna had large impacts on the structure and functioning of ecosystems, including increased fire and shifts in vegetation state. We argue that the ecological effects of mega‐herbivore extinction are likely to have varied geographically, and might have been reduced in environments of low productivity. We tested this at Caledonia Fen, a cool, high‐elevation site in southeast Australia with a palynological record reaching back approximately 140 ka. The dung fungus Sporormiella indicated that large herbivores were present through most of the early part of the last glacial cycle, but declined abruptly between 50–40 ka and did not recover. This event corresponds with evidence for continent‐wide extinction of Australia's Pleistocene megafauna at that time. An earlier episode of low Sporormiella occurrence coincided with evidence of raised water levels in the fen. Changes in wetland conditions can alter the accumulation of Sporormiella, but there was no such change when Sporormiella counts fell in the period 50–40 ka. We found no evidence that the decline in Sporormiella triggered increased fire or a change in vegetation, which remained a low grass/shrub steppe. This contrasts with a warmer and more humid site, Lynch's Crater in northeast Australia, where decline of dung fungi was followed by increased fire and transition from mixed sclerophyll forest and rainforest to uniform sclerophyll forest. Our results suggest that the magnitude of ecological responses to Pleistocene megafaunal extinction varied geographically, under the control of regional climates.  相似文献   

9.
The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.  相似文献   

10.
We studied spatial and temporal effects of local extinction of the plains vizcacha (Lagostomus maximus) on plant communities following widespread, natural extinctions of vizcachas in semi-arid scrub of Argentina. Spatial patterns in vegetation were examined along transects extending outward from active and extinct vizcacha burrow systems. Responses of vegetation to removal of vizcachas were assessed experimentally with exclosures and by documenting vegetation dynamics for 6 years following extinctions. Transect data demonstrated clear spatial patterns in plant cover, particularly an increase in perennial grasses, outward from active vizcacha burrows. These patterns were consistent with predictions based on foraging theory and studies that document grasses as the preferred food of vizcachas. Removal of vizcachas, experimentally and with extinctions, resulted in an immediate increase in perennial and annual forbs indicating that intense herbivory can depress forb cover, as well as grasses. After a 1-year lag following cessation of herbivory, cover of grasses increased. Forbs declined as grasses increased. The long-term effect of extinction of vizcachas was a conversion of colony sites from open patches dominated by forbs to dense bunch grass characteristic of the matrix. Major changes in vegetation occurred within 2–3 years after extinction, resulting in a large pulse of landscape change. However, some species of grasses were uncommon until 5–6 years after the vizcacha extinction. With extinction and colonization, vizcachas generate a dynamic mosaic of patches on the landscape and create temporal, as well as spatial, heterogeneity in semi-arid scrub.  相似文献   

11.
Large herbivorous mammals, already greatly reduced by the late‐Pleistocene extinctions, continue to be threatened with decline. However, many herbivorous megafauna (body mass ≥ 100 kg) have populations outside their native ranges. We evaluate the distribution, diversity and threat status of introduced terrestrial megafauna worldwide and their contribution towards lost Pleistocene species richness. Of 76 megafauna species, 22 (~29%) have introduced populations; of these eleven (50%) are threatened or extinct in their native ranges. Introductions have increased megafauna species richness by between 10% (Africa) and 100% (Australia). Furthermore, between 15% (Asia) and 67% (Australia) of extinct species richness, from the late Pleistocene to today, have been numerically replaced by introduced megafauna. Much remains unknown about the ecology of introduced herbivores, but evidence suggests that these populations are rewilding modern ecosystems. We propose that attitudes towards introduced megafauna should allow for broader research and management goals.  相似文献   

12.
Over‐grazing or browsing by large herbivores may result in the loss of individual plant species or entire plant communities. Restoration schemes often involve exclusion of large mammals, but the resulting changes in vegetation may alter other important ecological processes such as regeneration, via changes in microsite availability for seed germination or increases in populations of seedling predators. Working within a large fenced area from which large mammals were excluded, we experimentally tested the effects of microsite, small herbivores, and their interactions on post‐dispersal seed and early seedling mortality of one nationally scarce (Salix arbuscula) and one nationally rare (S. lapponum) species of montane willow. Seeds were sown in three different microsites: natural vegetation, mown vegetation (mimicking grazed sward), and bare ground. Small exclosures and slug pellets were used to examine the effects of small mammal and slug predation, respectively. Survival of seedlings was monitored during the summer following planting. The presence of bare ground, rather than the absence of herbivores, was of over‐riding importance for early seedling survival and establishment. Protecting seedlings from small mammals made no difference to the levels of survival; however, protecting seedlings from slugs (Arion spp.) resulted in approximately 45% of seedlings surviving until the end of the summer compared to only 30% when seedlings were available to slugs. Although excluding large herbivores may increase seed production of existing individuals, the impacts of changes to plant communities on processes such as regeneration need to be considered if restoration projects are to be fully successful.  相似文献   

13.
The response of semiarid grasslands to small, non‐colonial herbivores has received little attention, focusing primarily on the effects of granivore assemblages on annual plant communities. We studied the long‐term effects of both small and large herbivores on vegetation structure and species diversity of shortgrass steppe, a perennial semiarid grassland considered marginal habitat for small mammalian herbivores. We hypothesized that 1) large generalist herbivores would affect more abundant species and proportions of litter‐bare ground‐vegetation cover through non‐selective herbivory, 2) small herbivores would affect less common species through selective but limited consumption, and 3) herbivore effects on plant richness would increase with increasing aboveground net primary production (ANPP). Plant community composition was assessed over a 14‐year period in pastures grazed at moderate intensities by cattle and in exclosures for large (cattle) and large‐plus‐small herbivores (additional exclusion of rabbits and rodents). Exclusion of large herbivores affected litter and bare ground and basal cover of abundant, common and uncommon species. Additional exclusion of small herbivores did not affect uncommon components of the plant community, but had indirect effects on abundant species, decreased the cover of the dominant grass Bouteloua gracilis and total vegetation, and increased litter and species diversity. There was no relationship between ANPP and the intensity of effects of either herbivore body size on richness. Exclusion of herbivores of both body sizes had complementary and additive effects which promoted changes in vegetation composition and physiognomy that were linked to increased abundance of tall and decreased abundance of short species. Our findings show that small mammalian herbivores had disproportionately large effects on plant communities relative to their small consumption of biomass. Even in small‐seeded perennial grasslands with a long history of intensive grazing by large herbivores, non‐colonial small mammalian herbivores should be recognized as an important driver of grassland structure and diversity.  相似文献   

14.
Global changes are influencing fire regimes in many parts of the world. In the Fynbos plant diversity hotspot (Cape Floristic Region, South Africa), fire frequency has increased in protected areas where the mean fire interval went from 12–19 to 6–9 years between 1970 and 2000. Fire is one of the main drivers of plant diversity in the Cape Floristic Region. Too frequent fires threaten the persistence of slow-maturing plant species, and such insights have led to the adoption of fire management principles based on plant responses. The effects of fire on Fynbos fauna are much more poorly understood, and have not generally been considered in depth in Fynbos conservation policies, planning or management. We assessed the response of bird communities to long-term fire-induced vegetation changes using space-for-time substitution. We studied bird communities, vegetation structure and plant functional composition in 84 Fynbos plots burnt between two and 18 years before. Ten of the 14 bird species analysed showed a significant change in their abundance with time since fire. We observed a significant species turnover along the post-fire succession due to changes both in vegetation structure and plant functional composition, with a characteristic shift from non-Fynbos specialists and granivorous species to Fynbos specialists and nectarivorous species.If current trends of increasing fire frequency continue, Fynbos endemic birds such as nectarivores may become vulnerable. Conservation management should thus aim more carefully to maintain mosaics of Fynbos patches of different ages. Future research needs to estimate the proportion of vegetation of different ages and patch sizes needed to support dependent fauna, particularly endemics.  相似文献   

15.
Most studies of mammal extinctions during the Pleistocene–Holocene transition explore the relative effects of climate change vs human impacts on these extinctions, but the relative importance of the different environmental factors involved remains poorly understood. Moreover, these studies are strongly biased towards megafauna, which may have been more influenced by human hunting than species of small body size. We examined the potential environmental causes of Pleistocene–Holocene mammal extinctions by linking regional environmental characteristics with the regional extinction rates of large and small mammals in 14 Palaearctic regions. We found that regional extinction rates were larger for megafauna, but extinction patterns across regions were similar for both size groups, emphasizing the importance of environmental change as an extinction factor as opposed to hunting. Still, the bias towards megafauna extinctions was larger in southern Europe and smaller in central Eurasia. The loss of suitable habitats, low macroclimatic heterogeneity within regions and an increase in precipitation were identified as the strongest predictors of regional extinction rates. Suitable habitats for many species of the Last Glacial fauna were grassland and desert, but not tundra or forest. The low‐extinction regions identified in central Eurasia are characterized by the continuous presence of grasslands and deserts until the present. In contrast, forest expansion associated with an increase in precipitation and temperature was likely the main factor causing habitat loss in the high‐extinction regions. The shift of grassland into tundra also contributed to the loss of suitable habitats in northern Eurasia. Habitat loss was more strongly related to the extinctions of megafauna than of small mammals. Ungulate species with low tolerance to deep snow were more likely to go regionally extinct. Thus, the increase in precipitation at the Pleistocene–Holocene transition may have also directly contributed to the extinctions by creating deep snow cover which decreases forage availability in winter.  相似文献   

16.
Understanding how ecological interactions have shaped the evolutionary dynamics of species traits remains a challenge in evolutionary ecology. Combining trait evolution models and phylogenies, we analysed the evolution of characters associated with seed dispersal (fruit size and colour) and herbivory (spines) in Neotropical palms to infer the role of these opposing animal–plant interactions in driving evolutionary patterns. We found that the evolution of fruit colour and fruit size was associated in Neotropical palms, supporting the adaptive interpretation of seed‐dispersal syndromes and highlighting the role of frugivores in shaping plant evolution. Furthermore, we revealed a positive association between fruit size and the presence of spines on palm leaves, bracteas and stems. We hypothesize that interactions between palms and large‐bodied frugivores/herbivores may explain the evolutionary relationship between fruit size and spines. Large‐bodied frugivores, such as extinct megafauna, besides consuming the fruits and dispersing large seeds, may also have consumed the leaves or damaged the plants, thus simultaneously favouring the evolution of large fruits and defensive structures. Our findings show how current trait patterns can be understood as the result of the interplay between antagonistic and mutualistic interactions that have happened throughout the evolutionary history of a clade.  相似文献   

17.
The extinction of large vertebrates in the last few millennia has left a legacy of evolutionary anachronisms. Among these are plant structural defences that persist long after the extinction of the browsers. A peculiar, and controversial, example is a suite of traits common in divaricate (wide-angled branching) plants from New Zealand. Divaricate architecture has been interpreted as an adaptive response to cold climates or an anachronistic defence against the extinct moas. Madagascar, a larger tropical island, also had a fauna of large flightless birds, the elephant birds. If these extinct ratites selected for similar plant defences, we expected to find convergent features between New Zealand and Malagasy plants, despite their very different climates. We searched the southern thickets of Madagascar for plants with putative anti-ratite defences and scored candidate species for a number of traits common to many New Zealand divaricates. We found many Malagasy species in 25 families and 36 genera shared the same suite of traits, the 'wire plant' syndrome, as divaricates in New Zealand that resist ratite browsing. Neither ecologically, nor phylogenetically, matched species from South Africa shared these traits. Malagasy wire plants differ from many New Zealand divaricates in lacking the distinctive concentration of leaves in the interior of shrubs. We suggest that New Zealand divaricates have a unique amalgam of traits that acted as defences and also confer tolerance to cold. We conclude that many woody species in the thickets of southern Madagascar share, with New Zealand, anachronistic structural defences against large extinct bird browsers.  相似文献   

18.
In areas with diverse herbivore communities such as African savannas, the frequency of disturbance by fire may alter the top–down role of different herbivore species on plant community dynamics. In a seven year experiment in the Kruger National Park, South Africa, we examined the habitat use of nine common herbivore species across annually burned, triennially burned and unburned areas. We also used two types of exclosures (plus open access controls) to examine the impacts of different herbivores on plant community dynamics across fire disturbance regimes. Full exclosures excluded all herbivores > 0.5 kg (e.g. elephant, zebra, impala) while partial exclosures allowed access only to animals with shoulder heights ≤ 0.85 m (e.g. impala, steenbok). Annual burns attracted a diverse suite of herbivores, and exclusion of larger herbivores (e.g. elephant, zebra, wildebeest) increased plant abundance. When smaller species, mainly impala, were also excluded there were declines in plant diversity, likely mediated by a decline in open space available for colonization of uncommon plant species. Unburned areas attracted the least diverse suite of herbivores, dominated by impala. Here, herbivore exclusion, especially of impala, led to strong declines in plant richness and diversity. With no fire disturbance, herbivore exclusion led to competitive exclusion via increases in plant dominance and light limitation. In contrast, on triennial burns, herbivore exclusion had no effect on plant richness or diversity, potentially due to relatively little open space for colonization across exclosure treatments but also little competitive exclusion due to the intermediate fire disturbance. Further, the diverse suite of grazers and browsers on triennial burns may have had a compensating effect of on the diversity of grasses and forbs. Ultimately, our work shows that differential disturbance regimes can result in differential consumer pressure across a landscape and result in heterogeneous patterns in top–down control of community dynamics.  相似文献   

19.
The end of the Pleistocene was marked by the extinction of almost all large land mammals worldwide except in Africa. Although the debate on Pleistocene extinctions has focused on the roles of climate change and humans, the impact of perturbations depends on properties of ecological communities, such as species composition and the organization of ecological interactions. Here, we combined palaeoecological and ecological data, food-web models and community stability analysis to investigate if differences between Pleistocene and modern mammalian assemblages help us understand why the megafauna died out in the Americas while persisting in Africa. We show Pleistocene and modern assemblages share similar network topology, but differences in richness and body size distributions made Pleistocene communities significantly more vulnerable to the effects of human arrival. The structural changes promoted by humans in Pleistocene networks would have increased the likelihood of unstable dynamics, which may favour extinction cascades in communities facing extrinsic perturbations. Our findings suggest that the basic aspects of the organization of ecological communities may have played an important role in major extinction events in the past. Knowledge of community-level properties and their consequences to dynamics may be critical to understand past and future extinctions.  相似文献   

20.
Theoretical models of tree–grass coexistence in savannas have focused primarily on the role of resource availability and fire. It is clear that herbivores heavily impact vegetation structure in many savannas, but their role in driving tree–grass coexistence and the stability of the savanna state has received less attention. Theoretical models of tree–grass dynamics tend to treat herbivory as a constant rather than a dynamic variable, yet herbivores respond dynamically to changes in vegetation structure in addition to modifying it. In particular, many savannas host two distinct herbivore guilds, grazers and browsers, both of which have the potential to exert profound effects on tree/grass balance. For example, grazers may indirectly favor tree recruitment by suppressing the destructive effects of fire, and browsers may facilitate the expansion of grassland by reducing the competitive dominance of trees. We use a simple theoretical model to explore the role of grazer and browser dynamics on savanna vegetation structure and stability across fire and resource availability gradients. Our model suggests that herbivores may expand the range of conditions under which trees and grasses are able to stably coexist, as well as having positive reciprocal effects on their own niche spaces. In addition, we suggest that given reasonable assumptions, indirect mutualisms can arise in savannas between functional groups of herbivores because of the interplay of consumption and ecosystem feedbacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号