首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foliar fungal species are diverse and colonize all plants, though whether forest tree species composition influences the distribution of these fungal communities remains unclear. Fungal communities include quiescent taxa and the functionally important and metabolically active taxa that respond to changes in the environment. To determine fungal community shifts along a tree species diversity gradient, needles of Norway spruce were sampled from trees from four mature European forests. We hypothesized that the fungal communities and specific fungal taxa would correlate with tree species diversity. Furthermore, the active fungal community, and not the total community, would shift along the tree diversity gradient. High-throughput sequencing showed significant differences in the fungal communities in the different forests, and in one forest, tree diversity effects were observed, though this was not a general phenomenon. Our study also suggests that studying the metabolically active community may not provide additional information about community composition or diversity.  相似文献   

2.
Effects of biodiversity on ecosystem functioning have been mainly studied in experiments that artificially create gradients in grassland plant diversity. Woody species were largely excluded from these early experiments, despite the ecological and socioeconomic importance of forest ecosystems. We discuss conceptual aspects of mechanistically driven research on the biodiversity–ecosystem functioning relationship in forests, including the comparison of scientific approaches like ‘observational studies’, ‘removal experiments’, and ‘synthetic-assemblage experiments’. We give a short overview on the differences between herbaceous and forest ecosystems, focusing on canopy characteristics, and the possibilities for individual versus population-based investigations.We present detailed information about the first large-scale, multisite and long-term biodiversity–ecosystem functioning experiment with tree species of temperate forests (BIOTREE – BIOdiversity and ecosystem processes in experimental TREE stands). At three sites of differing geology and local climate, we planted 200,000 saplings on a total area of 70 ha. At two sites, diversity gradients were established by varying the number of tree species (BIOTREE-SPECIES). At a third site, only functional diversity at a constant level of tree species richness was manipulated by selecting mixtures that differ in the functional trait values of the corresponding species (BIOTREE-FD). Additional experimental treatments at the subplot level include silvicultural management options, the addition of subdominant species, and the reduction of genetic diversity. Response variables focus on productivity, biogeochemical cycles and carbon sequestration, and resource use complementarity.We explore the use of different measures of functional diversity for a posteriori classifications of functional richness and their use in the analysis of our tree diversity experiment. The experiment is thought to provide a long-term research platform for a variety of scientific questions related to forest biodiversity and ecosystem processes.  相似文献   

3.
《农业工程》2014,34(2):85-91
Functional diversity, which is the value, variation and distribution of traits in a community assembly, is an important component of biodiversity. Functional diversity is generally viewed as a key to understand ecosystem and community functioning. There are three components of functional diversity, i.e. functional richness, evenness and divergence. Functional diversity and species diversity can be either positively or negatively correlated, or uncorrelated, depending on the environmental conditions and disturbance intensity. Ecosystem functioning includes ecosystem processes, ecosystem properties and ecosystem stability. The diversity hypothesis and the mass ratio hypothesis are the two major hypotheses of explaining the effect of functional diversity on ecosystem functioning, diversity hypothesis reflects that organisms and their functional traits in a assemblage effect on ecosystem functioning by the complementarity of using resources, and mass ratio hypothesis emphasises the identify of the dominant species in a assemblage. These two hypotheses do not contradict each other and instead they reflect the two different sides of functional diversity and functional composition. The effect of functional diversity on ecosystem functioning also depends on abiotic factors, perturbation, management actions, etc. Function diversity potentially influences ecosystem service and management by effecting on ecosystem functioning. Ecosystem management groups should include functional diversity in their scheme and not just species richness.  相似文献   

4.
European forests host a diversity of tree species that are increasingly threatened by fungal pathogens, which may have cascading consequences for forest ecosystems and their functioning. Previous experimental studies suggest that foliar and root pathogen abundance and disease severity decrease with increasing tree species diversity, but evidences from natural forests are rare. Here, we tested whether foliar fungal disease incidence was negatively affected by tree species diversity in different forest types across Europe. We measured the foliar fungal disease incidence on 16 different tree species in 209 plots in six European countries, representing a forest‐type gradient from the Mediterranean to boreal forests. Forest plots of single species (monoculture plots) and those with different combinations of two to five tree species (mixed species plots) were compared. Specifically, we analyzed the influence of tree species richness, functional type (conifer vs. broadleaved) and phylogenetic diversity on overall fungal disease incidence. The effect of tree species richness on disease incidence varied with latitude and functional type. Disease incidence tended to increase with tree diversity, in particular in northern latitudes. Disease incidence decreased with tree species richness in conifers, but not in broadleaved trees. However, for specific damage symptoms, no tree species richness effects were observed. Although the patterns were weak, susceptibility of forests to disease appears to depend on the forest site and tree type.  相似文献   

5.
热带森林中的斑块动态与物种多样性维持   总被引:11,自引:1,他引:10  
斑块作为景观要素之一,直接到景观结构的空间格局及其内部各要素之间的相互关系,其动态也将导致景观格局的变化。异质性的斑块在自然森林中是普遍存在的,这就是说,顶极森林中仍然存在着由不同种类或不同生长时期的植物种群组成的森林斑块。由自然或人为干扰所驱动的森林生长循环导致敢这些斑块在空间上的镶嵌,对于持定的地域片段,也导致了不同生长时期的森林斑块的周期性循环。在热带森林中,森林的生长循环由林窗期(gap  相似文献   

6.
黄林娟  于燕妹  安小菲  余林兰  薛跃规 《生态学报》2022,42(24):10264-10275
以天坑内部-边缘-外部森林植物群落为研究对象,通过调查植物的群落结构、叶功能性状,探究天坑内外森林植物群落叶功能性状、物种多样性和功能多样性变化特征及其内在关联,为深入了解负地形森林生态系统的功能和恢复退化喀斯特地区的植被提供一定参考。研究结果如下:(1)比叶面积(SLA: 198.75 cm2/g))、叶面积(LA: 42.70 cm2)、叶磷含量(LPC: 1.70 g/kg)和叶钾含量(LKC: 10.27 g/kg)在天坑内部最高,叶组织密度(LTD: 0.32 g/cm3)和叶干物质含量(LDMC: 0.41 g/g)在天坑外部最高,天坑内外森林均易受到磷限制,表明随天坑内部-边缘-外部生境变化,植物对环境的适应机制和生存策略发生了部分调整,物种的防御策略增强,生长投入策略减弱。(2)Shannon-Wiener指数(2.82)、Simpson指数(0.92)和Pielou’s均匀度指数(0.87)均以天坑外部最高,功能丰富度(1.05)、功能离散度(1.88)和Rao’s二次熵(4.52)以天坑内部最高,表明随天坑内部-边缘-外部生境的变化,植物功能性状的差异减少,物种分布及其功能性状分布总体上更为均匀、物种数量增多。(3)物种多样性指数之间、功能多样性指数之间存在较强的相关性,表明物种多样性指数之间、功能多样性指数之间存在不同的制约关系。(4)叶功能性状与物种多样性、功能多样性的相关性强,物种多样性和功能多样性之间相关性较弱,表明叶性状对生态学过程的变化较为敏感,叶功能性状与物种多样性之间存在较强的耦合关系。  相似文献   

7.
The effects of mixing tree species on tree growth and stand production have been abundantly studied, mostly looking at tree species diversity effects while controlling for stand density and structure. Regarding the shift towards managing forests as complex adaptive systems, we also need insight into the effects of structural diversity. Strict forest reserves, left for spontaneous development, offer unique opportunities for studying the effects of diversity in tree species and stand structure. We used data from repeated inventories in ten forest reserves in the Netherlands and northern Belgium to study the growth of pine and oak. We investigated whether the diversity of a tree's local neighbourhood (i.e., species and structural diversity) is important in explaining its basal area growth. For the subcanopy oak trees, we found a negative effect of the tree species richness of the local neighbours, which – in the studied forests – was closely related to the share of shade-casting tree species in the neighbourhood. The growth of the taller oak trees was positively affected by the height diversity of the neighbour trees. Pine tree growth showed no relation with neighbourhood diversity. Tree growth decreased with neighbourhood density for both species (although no significant relationship was found for the small pines). We found no overall diversity-growth relationship in the studied uneven-aged mature forests; the relationship depended on tree species identity and the aspect of diversity considered (species vs. structural diversity).  相似文献   

8.
Higher tree species richness generally increases the storage of soil organic carbon (SOC). However, less attention is paid to the influence of varied tree species composition on SOC storage. Recently, the perspectives for the stronger persistence of SOC caused by the higher molecular diversity of organic compounds were proposed. Therefore, the influences of tree species richness and composition on the molecular diversity of SOC need to be explored. In this study, an index of the evenness of diverse SOC chemical components was proposed to represent the potential resistance of SOC to decomposition under disturbances. Six natural forest types were selected encompassing a diversity gradient, ranging from cold temperate to tropical forests. We examined the correlations of tree species richness, composition, and functional diversity, with the evenness of SOC chemical components at a molecular level by 13C nuclear magnetic resonance. Across the range, tree species richness correlated to the evenness of SOC chemical components through tree species composition. The negative correlation of evenness of SOC chemical components with tree species composition, and the positive correlation of evenness of SOC chemical components with tree functional diversity were found. These indicate the larger difference in tree species composition and the lower community functional diversity resulted in the higher heterogeneity of SOC chemical components among the communities. The positive correlation of the evenness of SOC chemical components with the important value of indicator tree species, further revealed the specific tree species contributing to the higher evenness of SOC chemical components in each forest type. Soil fungal and bacterial α-diversity had effect on the evenness of SOC chemical components. These findings suggest that the indicator tree species conservation might be preferrable to simply increasing tree species richness, for enhancing the potential resistance of SOC to decomposition.  相似文献   

9.
Over the past decade an increasing amount of research has sought to understand how the diversity of species in an ecosystem can influence fluxes of biologically important materials, such as the decomposition of organic matter and recycling of nutrients. Generalities among studies have remained elusive, perhaps because experimental manipulations have been performed at relatively small spatial scales where site-specific variation generates patterns that appear idiosyncratic. One approach for seeking generality is to perform parallel experiments at different sites using an identical species pool. Here we report results from a study where we manipulated the diversity of leaf litter from the same six dominant tree species in the litter layer of three forested ecosystems. These ecosystems spanned a 300 km latitudinal transect in Wisconsin, USA, and were characterized by a large gradient in temperature and moisture, and thus, rates of decomposition. After allowing combinations of one, two, four, and six species of leaf litter to decompose for 1 year, we found that increasing leaf litter richness led to slower rates of decomposition and higher fractions of nitrogen lost from litter. Across all sites, climate and initial litter chemistry explained more of the variation in decomposition rates than did litter richness. Effects of leaf litter diversity were non-additive, meaning they were greater than expected from the impacts of individual species, and appeared to be strongly influenced by the presence/absence of just 1–2 species (Tilia americana and Acer saccharum). The rate of decomposition of these two species was highly site-specific, which led to strong negative effects of litter richness only being observed at the southernmost sites where T. americana and A. saccharum decomposed more quickly. In contrast, litter diversity increased nitrogen loss at the northernmost sites where decomposition of T. americana was notably slowed. Our study shows that species diversity affected at least one of the two litter processes at each site along this 300-km gradient, but the exact nature of these effects were spatially variable because the performance of individual species changed across the heterogeneous landscape.  相似文献   

10.
In the past years, a number of studies have used experimental plant communities to test if biodiversity influences ecosystem functioning such as productivity. It has been argued, however, that the results achieved in experimental studies may have little predictive value for species loss in natural ecosystems. Studies in natural ecosystems have been equivocal, mainly because in natural ecosystems differences in diversity are often confounded with differences in land use history or abiotic parameters. In this study, we investigated the effect of plant diversity on ecosystem functioning in semi-natural grasslands. In an area of 10×20 km, we selected 78 sites and tested the effects of various measures of diversity and plant community composition on productivity. We separated the effects of plant diversity on ecosystem functioning from potentially confounding effects of community composition, management or environmental parameters, using multivariate statistical analyses. In the investigated grasslands, simple measures of biodiversity were insignificant predictors of productivity. However, plant community composition explained productivity very well (R2=0.31) and was a better predictor than environmental variables (soil and site characteristics) or management regime. Thus, complex measures such as community composition and structure are important drivers for ecosystem functions in semi-natural grasslands. Furthermore, our data show that it is difficult to extrapolate results from experimental studies to semi-natural ecosystems, although there is a need to investigate natural ecosystems to fully understand the relationship of biodiversity and ecosystem functioning.  相似文献   

11.
On the statistical significance of functional diversity effects   总被引:6,自引:0,他引:6  
  相似文献   

12.
Chlorophyll a fluorescence (ChlF) and leaf morphology were assessed in two sites in Europe (Kaltenborn, Germany, and Satakunta, Finland) within a forest diversity experiment. Trees at Satakunta, planted in 1999, form a stratified canopy, while in Kaltenborn the trees are 7 years old, with no apparent canopy connection among broadleaf species. The following ChlF parameters from measured OJIP transient curves were examined: FV/FM (a proxy for maximum quantum yield); ΨEo (a proxy for efficiency in transferring an electron from reduced QA to the electron transport chain); I‐P phase (a proxy for efficiency of reducing final acceptors beyond PSI); and PItot (total performance index for potential energy conservation from photons absorbed by PSII to reduction of PSI end acceptors). At Satakunta FV/FM and ΨEo in Betula pendula were higher in monocultures and lower in mixed plots, perhaps due to increasing light availability in mixed plots, which can induce photoinhibition. The opposite trend was observed in Picea abies, which was shaded in mixed plots. At Kaltenborn FV/FM decreased in Fagus sylvatica and P. abies in mixed plots due to competition both above‐ and belowground. At Satakunta LMA increased in B. pendula leaves with increasing species richness. Leaf area of ten leaves was reduced in F. sylvatica in mixed plots at Kaltenborn. By up‐scaling the overall fluorescence response to plot level (PItot_plot), a significant positive correlation with tree diversity was found at Kaltenborn, but not at Satakunta. This could suggest that competition/facilitation processes in mixed stands play a significant role in the early stages of forest establishment, but then tend to be compensated in more mature stands.  相似文献   

13.
Tropical dry deciduous forests play a significant role in regulating the biogeochemical cycles. Present study assesses the carbon stock of tropical dry deciduous forests varying in tree density, basal cover, and diversity located in Singrauli district of Madhya Pradesh in Central India. Field sampling was carried out in six forest sites viz., Chitrangi, East Sarai, Gorbi, Renukoot, West Sarai, and Waidhan, of Singrauli. A total of 29 tree species belonging to 18 families were recorded across the forest ranges where tree density, basal area and diversity values varied from 702 (Gorbhi Range) – 1671 (East Sarai range) individuals ha?1; 15.43 (Renukhund range) – 71.76 m2 ha?1 (Chitrange range) and 0.69 (West Sarai range) – 2.52 (Gorbi range), respectively. Total biomass estimated ranged from 103.32 (Renukhund range) – 453.54 Mg ha?1 (Chitrange range) while the total tree carbon density varied from 48.97 to 214.97 Mg C ha?1. The variation in carbon storage in the studied ranges was found dependent on density of trees in different diameter and age classes and tree species diversity. Diospyros melanoxylon, Butea monosperma, Shorea robusta, Senegalia catechu, Spondias pinnata, and Lagerstroemia parviflora were the dominant species at different study sites (forest ranges) and contributed towards higher carbon storage in respective forest ranges. Study endorses field-based approach for carbon estimations based on above and belowground assessments as a more realistic approach to understand sink potential of natural forests.  相似文献   

14.
The hypothesis that plant species diversity and genetic variation of the host species decrease the severity of plant diseases is supported by studies of agricultural systems, but experimental evidence from more complex systems is scarce. In an experiment with grassland communities of varying species richness (1, 2, 4, 8, 16, and 60 species) and functional group richness (1, 2, 3, and 4 functional groups), we used different cultivars of Lolium perenne (perennial ryegrass) to study effects of biodiversity and cultivar identity on the occurrence and severity of foliar fungal diseases caused by Puccinia coronata (crown rust) and P. graminis (stem rust). Cultivar monocultures of perennial ryegrass revealed strong differences in pathogen susceptibility among these cultivars. Disease intensity caused by both rust fungi decreased significantly with growing species richness of species mixtures. The response to the diversity gradient was related to the decreased density and size of the host individuals with increasing species richness. The occurrence of other grass species known to be possible hosts of the pathogens in the experimental mixtures did not promote disease intensity in L. perenne, indicating that there was a high host specificity of pathogen strains. Differences in pathogen susceptibility among perennial ryegrass cultivars persisted independent of diversity treatment, host density and host individual size, but resulted in a cultivar-specific pattern of changes in pathogen infestation across the species-richness gradient. Our study provided evidence that within-species variation in pathogen susceptibility and competitive interactions of the host species with the environment, as caused by species diversity treatments, are key determinants of the occurrence and severity of fungal diseases. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
The rate at which a plant species is attacked by invertebrate herbivores has been hypothesized to depend on plant species richness, yet empirical evidence is scarce. Current theory predicts higher herbivore damage in monocultures than in species-rich mixtures. We quantified herbivore damage by insects and molluscs to plants in experimental plots established in 2002 from a species pool of 60 species of Central European Arrhenatherum grasslands. Plots differed in plant species richness (1, 2, 4, 8, 16, 60 species), number of functional groups (1, 2, 3, 4), functional group and species composition. We estimated herbivore damage by insects and molluscs at the level of transplanted plant individuals (“phytometer” species Plantago lanceolata, Trifolium pratense, Rumex acetosa) and of the entire plant community during 2003 and 2004. In contrast to previous studies, our design allows specific predictions about the relative contributions of functional diversity, plant functional identity, and species richness in relation to herbivory. Additionally, the phytometer approach is new to biodiversity-herbivory studies, allowing estimates of species-specific herbivory rates within the larger biodiversity-ecosystem functioning context. Herbivory in phytometers and experimental communities tended to increase with plant species richness and the number of plant functional groups, but the effects were rarely significant. Herbivory in phytometers was in some cases positively correlated with community biomass or leaf area index. The most important factor influencing invertebrate herbivory was the presence of particular plant functional groups. Legume (grass) presence strongly increased (decreased) herbivory at the community level. The opposite pattern was found for herbivory in T. pratense phytometers. We conclude that (1) plant species richness is much less important than previously thought and (2) plant functional identity is a much better predictor of invertebrate herbivory in temperate grassland ecosystems.  相似文献   

17.
Many studies reported biotic change along a continental warming gradient. However, the temporal and spatial change of tree diversity and their sensitivity to climate warming might differ from region to region. Understanding of the variation among studies with regard to the magnitude of such biotic changes is minimal, especially in montane ecosystems. Our aim is to better understand changes in spatial heterogeneity and temporal dynamics of mountain tree communities under climate warming over the past four decades. In 2017, we resurveyed and recorded all tree species from 107 long‐term monitoring plots that were first studied between 1974 and 1976. These plots were located in montane forests in the Giant Panda National Park (GPNP), China. Our results showed that spatial differences were found in tree species diversity changes response to mean annual temperature change over the past four decades. Tree species richness increased significantly under climate warming in Minshan (MS) and Xiaoxiangling (XXL) with higher warming rate than Qionglai (QLS) and Liangshan (LS). The trees species diversity in MS and XXL were more sensitive to climatic warming. MS and XXL should receive priority protection in the next conservation plan of the GPNP. The GPNP should avoid taking a “one‐size‐fits‐all” approach for diversity conservation due to spatial heterogeneity in plant community dynamics.  相似文献   

18.
王月  赵亮 《广西植物》2020,40(4):546-556
该研究通过对重庆市不同时期(解放前、直辖前、直辖后)建造的15个综合公园的绿化乔木树种进行调查,分析了公园年龄对绿化乔木多样性和组成的影响以及公园之间的同质化情况。结果表明:(1)共调查到乔木59种,隶属于28科48属。其中,乡土树种占81.36%,外来树种占18.64%。(2)不同年龄公园乔木物种丰富度之间虽无显著差异,但解放后和直辖后公园乔木多度明显高于解放前;不同年龄公园外来树种的比例无显著差异;黄葛树、雅榕、复羽叶栾树在公园中的应用呈减少趋势,而日本晚樱、荷花玉兰、木犀、黄兰在绿化中的应用却呈增加趋势。(3)不同年龄公园之间同质化程度较低,解放前公园植物群落间Jaccard相似性指数明显高于其他两个阶段,且公园之间的Jaccard相似性指数与公园年龄差距无显著相关关系。综上结果发现,我国历史因素、园林文化和近代城市绿化相关规定可能是外来物种使用的限制因子,并可能导致了小尺度植物群落同质化程度偏低的现象。  相似文献   

19.
20.
The paper deals with the hypothesis that ecosystems have well-defined potentials of biodiversity. These potentials can be quantified as information entropy of the corresponding ecosystem type. The hypothesis is verified for the diversity of plant species.

A vegetation database of North-Central European forests containing more than 12000 relevés is analyzed computationally. The samples are classified into ecosystem types that are homogeneous with respect to vegetation patterns, ecological site factors, and, implicitly, with respect to ecosystem processes. Growing numbers of relevés are selected randomly from the representatives of different ecosystem types and investigated mathematically.

Shannon information (product of logarithmic species number and evenness) obeys a hyperbolic saturation equation approaching a finite value on infinite area. This asymptotic limit defines the ecological potential of species diversity. Within a given plant-geographical region, it is determined by ecological site factors like climate and soil controlling interrelations between plants. Competition relationships and hence potentials of phytodiversity are altered by management significantly. The curve of evenness versus area size is hump-shaped. Maximum evenness is proportional to the ecological potential of species diversity. The area size where evenness attains its maximum can be interpreted as the minimum area of the respective forest type. The ecological potentials of plant species diversity modelled from information entropies correspond to vegetation patterns consisting of a limited number of plant species. These vegetation patterns are closely related to ecosystem processes like nutrient cycling, plant nutrition, evapotranspiration, microbial processes, or net-primary production. Revealing the relationships between vegetation patterns and ecosystem processes allows scaling functional information from local measurement scales up to regional scales.

It is suggested to explore genetic, proteomic, and species data in order to derive comprehensive ecological potentials of biodiversity on various levels from population to landscape. The expected results could improve the understanding of the relationship between biodiversity and ecosystem functioning as well as the sustainability of ecosystem management.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号