首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous 23Na and 31P NMR spectra were obtained from a number of yeast suspensions. Prior to NMR spectroscopy, the yeast cells were Na-loaded: this replaced some of the intracellular K+ with Na+. These cells were also somewhat P-deficient in that they had no polyphosphate species visible in the 31P NMR spectrum. In the NMR experiments, the Na-loaded cells were suspended in media which contained inorganic phosphate, very low Na+, and a shift reagent for the Na+ NMR signal. The media differed as to whether dioxygen, glucose, or K+ was present individually or in combinations and as to whether the medium was buffered or not. The NMR spectra revealed that the cells always lost Na+ and gained phosphorus. However, the nature of the Na+ efflux time course and the P metabolism differed depending on the medium. The Na+ efflux usually proceeded linearly until the amount of Na+ extruded roughly equalled the amount of NH4+ and orthophosphate initially present in the medium (external phosphate was added as NH4H2PO4). Thus, we presume this first phase reflects a Na+ for NH4+ exchange. The Na+ efflux then entered a transition phase, either slowing, ceasing, or transiently reversing, before resuming at about the same value as that of the first phase. We presume that this last phase involves the simultaneous extrusion of intracellular anions as reported in the literature. The phosphorus metabolism was much more varied. In the absence of exogenous glucose, the P taken up accumulated first as intracellular inorganic phosphate; otherwise, it accumulated first in the "sugar phosphate" pool. In most cases, at least some of the P left the sugar phosphate pool and entered the polyphosphate reservoir in the vacuole. However, this never happened until the phase probably representing Na+ for NH4+ exchange was completed, and the P in the polyphosphate pool never remained there permanently but always eventually reverted back to the sugar phosphate pool. These changes are interpreted in terms of hierarchical energy demands on the cells under the different conditions. In particular, the energy for the Na+ for NH4+ exchange takes precedence over that required to produce and store polyphosphate. This conclusion is supported by the fact that when the cells are "forced" to exchange K+, as well as NH4+, for Na+ (by the addition of 5 times as much K+ to the NH4+-containing medium), polyphosphates are never significantly formed, and the initial linear Na+ efflux phase persists possibly 6 times as long.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
We have found that Na+ is required for the alkalotolerance of the cyanobacterium Synechococcus leopoliensis. Cell division did not occur at any pH in the absence of Na+, but cells inoculated into Na+-free growth medium at pH 6.8 did continue metabolic activity, and over a period of 48 h, the cells became twice their normal size. Many of these cells remained viable for at least 59 h and formed colonies on Na+ -containing medium. Cells grown in the presence of Na+ and inoculated into Na+ -free growth medium at pH 9.6 rapidly lost viability. An Na+ concentration of ca. 0.5 milliequivalents X liter-1 was required for sustained growth above pH 9.0. The Na+ requirement could be only partially met by Li+ and not at all by K+ or Rb+. Cells incubated in darkness in growth medium at pH 6.8 had an intracellular pH near neutrality in the presence or absence of Na+. When the external pH was shifted to 9.6, only cells in the presence of Na+ were able to maintain an intracellular pH near 7.0. The membrane potential, however, remained high (-120 mV) in the absence or presence of Na+ unless collapsed by the addition of gramicidin. Thus, the inability to maintain a neutral intracellular pH at pH 9.6 in the absence of Na+ was not due to a generalized disruption of membrane integrity.Even cells containing Na+ still required added Na+ to restore photosynthetic rates to normal after the cells had been washed in Na+ -free buffer at pH 9.6. This requirement was only partially met by Li+ and was not met at all by K+, Rb+, Cs+ Mg2+, or Ca2+. The restoration of photosynthesis by added Na+ occurred within 30 s and suggests a role for extracellular Na+. Part of our results can be explained in terms of the operation of an Na+/H+ antiporter activity in the plasma membrane, but some results would seem to require other mechanisms for Na+ action.  相似文献   

3.
23Na NMR, in combination with an anionic paramagnetic shift reagent dysprosium bis(tripolyphosphate), has been used to study intracellular Na+ in Rana oocytes, ovulated eggs, and early cleavage embryos. The technique allows accurate and simultaneous determination of both extracellular space and intracellular Na+ concentration. In prophase-arrested, follicle-enclosed oocytes, only about 17% of the total oocyte Na+ (approximately 40 mmol/kg of cells) was NMR-visible. Homogenizing oocytes in 0.24 M sucrose did not significantly affect the 23Na resonance. About 30% of the total oocyte Na+ was associated with the yolk platelets isolated at room temperature by differential centrifugation. NMR analysis, however, did not yield a detectable 23Na signal from these intact platelets. Thus, while yolk platelets are rich in Na+, this Na+ does not contribute to the oocyte 23Na NMR signal. Denuded oocytes, obtained by removing the follicular epithelium, gained about 10 mmol of total Na+/kg of cells and exhibited a comparable increase in NMR-visible Na+, suggesting the existence of compartments with varying degree of NMR visibility within the oocyte. Partially relaxed 23Na Fourier transform NMR spectra revealed the existence of at least two major intracellular compartments of NMR-visible Na+ with different magnetic environments and relaxation behavior in denuded oocytes. Since platelet Na+ appears to be NMR-invisible, one of the two observed compartments may be the nucleus. Progesterone action on the amphibian oocyte caused measurable changes in NMR-visible Na+. By ovulation (second metaphase), there is a gain in total egg Na+, and the NMR-visible Na+ is also increased. Following fertilization, however, there is some loss of total cell Na+ but, by the 2-4 cell stage, about 70% of the total Na+ becomes NMR-visible. These results indicate that a sizable fraction of the Na+ in follicle-enclosed, prophase oocyte is sequestered and located in NMR-invisible compartments and that changes in NMR-visible intracellular Na+ occur following hormonal and developmental stimuli.  相似文献   

4.
The mitochondrial Na+/Ca2+ antiporter plays a key role in the physiological regulation of intramitochondrial Ca2+, which in turn attunes mitochondrial enzymes to the changing demands of the cell for ATP. We have now purified the Na+/Ca2+ antiporter from beef heart mitochondria by assaying detergent-solubilized chromatography fractions for reconstitutive activity. Na+ and Ca2+ transport were assayed using the fluorescent probes, sodium-binding benzofuran isophthalate and Fura-2, respectively. This approach enabled us to identify Na+/Ca2+ exchange activity with a 110-kDa inner membrane protein that catalyzed Na(+)-dependent Ca2+ transport and Ca(2+)-dependent Na+ transport. A new finding was that the Na+/Ca2+ antiporter also catalyzed Na+/Li+ exchange in the absence of Ca2+. All modes of transport were electroneutral and were inhibited by diltiazem and tetraphenylphosphonium cation. Monospecific polyclonal antibodies to the 110-kDa protein inhibited Na+/Ca2+ and Na+/Li+ exchange in the reconstituted system and recognized 110-kDa proteins in mitochondrial membranes isolated from rat heart, liver, and kidney.  相似文献   

5.
The affinity and number of binding sites of [3H]ouabain to isolated transverse (T) tubules were determined in the absence and presence of deoxycholate. In both conditions the KD was approximately 53 nM while deoxycholate increased the number of binding sites from 3.5 to 37 pmol/mg protein. We concluded that the ouabain binding sites were located primarily on the inside of the isolated vesicle and that the vesicles were impermeable to ouabain. ATP induced a highly active Na+ accumulation by the T tubules which increased Na+ in the T tubular lumen by almost 200 nmol/mg protein. The accumulation had an initial fast phase lasting 2-3 min and a subsequent slow phase which continued for at least 40 min. The rate of the initial fast phase indicated a turnover number of 20 Na+/s. The Na+ accumulation was prevented by monensin but was unaffected by valinomycin. Ouabain did not influence Na+ uptake, but digitoxin inhibited it. At low K+ the accumulation of Na+ was reduced 3.7-fold below the value at 50 mM K+. 86Rb, employed as a tracer to detect K+, showed a first phase of K+ release while Na+ was accumulated. After 2-3 min, K+ was reaccumulated while Na+ continued to increase in the lumen. T tubules accumulated Cl- on addition of ATP. This suggested that ATP initiated an exchange of Na+ for K+ followed by uptake of Na+ and K+ accompanied by Cl-.  相似文献   

6.
Steroids, intracellular sodium levels, and Na+/K+-ATPase regulation   总被引:4,自引:0,他引:4  
In outer medullary kidney tubules, both specific mineralocorticoid, and specific glucocorticoid Na+/K+-ATPase activation in vitro were inhibitable by amiloride, an inhibitor of a number of Na+-transporting mechanisms (Bentley, P.J. (1968) J. Physiol. (Lond.) 195, 317-330; Kinsella, J. L., and Aronson, P. S. (1980) Am. J. Physiol. 238, F461-F469). In addition, dexamethasone raised, whereas amiloride reduced, intracellular Na+ levels. These observations are consistent with the possibility that the steroidal responses are mediated by changes in intracellular Na+ ion activity. However, when intracellular Na+ levels were increased by the incubation of tubule segments in medium containing ouabain (10(-4) M), no Na+/K+-ATPase activation was observed, over incubation periods of up to 6 h. As mineralocorticoid and glucocorticoid effects are maximal within 2 h (Rayson, B.M., and Lowther, S.O. (1984) Am. J. Physiol. 246, F656-F662), these results suggest that the Na+ ion per se does not mediate the steroidal effects observed, directly. Incubation of tubule segments in medium containing 10(-4) M ouabain, at 37 degrees C, for longer periods (18 h), however, did indeed increase Na+/K+-ATPase activity, markedly. Thus, a potential homeostatic mechanism was demonstrable, where a chronic increase in intracellular Na+ level, measured after 2-4 h of treatment, resulted in an increase in Na+/K+-ATPase activity, such that the intracellular Na+ level was restored after 18-20 h of incubation to one not significantly different from the control value. This mechanism, however, appears to be clearly distinguishable from that which mediates steroidal Na+/K+-ATPase activation.  相似文献   

7.
A method is described that permits simultaneous determination of the net charge transfer associated with Ca2+ transport by the ruthenium-red-sensitive carrier and the ionized internal [Ca2+] in heart mitochondria. The data indicate that this carrier catalyses a charge-uncompensated flux of Ca2+. Full charge compensation for Ca2+ influx is provided by the respiration-dependent efflux of H+. The net efflux of Ca2+ induced by Na+ is analysed in terms of two other carriers, a Na+-Ca2+ antiporter and a Na+-H+ antiporter. Evidence is presented that these two carriers are separate and that the Na+-H+ exchange is the more rapid. The fluxes of Ca2+, Na+ and H+ during the Na+-induced efflux of Ca2+ support a series of events in which the Na+-H+ exchange enables unidirectional Ca2+ fluxes via the uniport and antiport systems to be integrated into a cycle.  相似文献   

8.
Na,K-ATPase from rabbit kidney outer medulla was reconstituted in large unilamellar lipid vesicles by detergent dialysis. Vesicles prepared in the presence or absence of potassium allowed to study two different transport modes: the (physiological) Na,K-mode in buffers containing Na+ and K+ and the Na-only mode in buffers containing Na+ but no K+. The ATP hydrolysis activity was obtained by determination of the liberated inorganic phosphate, Pi, and the inward directed Na+ flux was measured by 22Na-tracer flux. Electrogenic transport properties were studied using the membrane potential sensitive fluorescence-dye oxonol VI. The ratio upsilon(Na,K)/upsilon(Na) of the turnover rates in the Na,K-mode and in the Na-only mode is 6.6 +/- 2.0 under otherwise identical conditions and nonlimiting Na+ concentrations. Strong evidence is found that the Na-only mode exhibits a stoichiometry of 3Na+cyt/2Na+ext/1ATP, i.e. the extracellular (= intravesicular) Na+ has a potassium-like effect. In the Na-only mode one high-affinity binding side for ATP (KM congruent to 50 nM) was found, in the Na,K-mode a high- and low-affinity binding side with equilibrium dissociation constants, KM, of 60 nM and 13 microM, respectively. The sensitivity against the noncompetitively inhibiting ADP (KI = 6 microM) is higher by a factor of 20 in the Na-only mode compared to the Na,K-mode. From the temperature dependence of the pumping activity in both transport modes, activation energies of 160 kJ/mol for the Na,K-mode and 110 kJ/mol for the Na-only mode were determined.  相似文献   

9.
10.
It was previously shown that human lymphocytes maintain a normal accumulation of K+ and exclusion of Na+ between 37 degrees and 10 degrees C., and a significant net accumulation of K+ and exclusion of Na+ at even lower temperatures. The studies reported here show that the level of ATP is near-normal for at least 24 hours between 37 degrees and 10 degrees C., but that ATP synthesis and utilization are progressively and markedly decreased with decreasing temperatures below 37 degrees C. The activities of the membrane Na+- and K+-activated ATPases have typical marked temperature-dependences. Therefore, the normal accumulation of K+ and exclusion of Na+ between 37 degrees and 10 degrees C., and the normal rate of Na+ efflux at these temperatures, do not correlate with properties of the Na+,K+-ATPase or with rates of synthesis and utilization of ATP.  相似文献   

11.
Chimeras of the catalytic subunits of the gastric H,K-ATPase and Na, K-ATPase were constructed and expressed in LLC-PK1 cells. The chimeras included the following: (i) a control, H85N (the first 85 residues comprising the cytoplasmic N terminus of Na,K-ATPase replaced by the analogous region of H,K-ATPase); (ii) H85N/H356-519N (the N-terminal half of the cytoplasmic M4-M5 loop also replaced); and (iii) H519N (the entire front half replaced). The latter two replacements confer a decrease in apparent affinity for extracellular K+. The 356-519 domain and, to a greater extent, the H519N replacement confer increased apparent selectivity for protons relative to Na+ at cytoplasmic sites as shown by the persistence of K+ influx when the proton concentration is increased and the Na+ concentration decreased. The pH and K+ dependence of ouabain-inhibitable ATPase of membranes derived from the transfected cells indicate that the H519N and, to a lesser extent, the H356-519N substitution decrease the effectiveness of K+ to compete for protons at putative cytoplasmic H+ activation sites. Notable pH-independent behavior of H85N/H356-519N at low Na+ suggests that as pH is decreased, Na+/K+ exchange is replaced largely by (Na+ + H+)/K+ exchange. With H519N, the pH and Na+ dependence of pump and ATPase activities suggest relatively active H+/K+ exchange even at neutral pH. Overall, this study provides evidence for important roles in cation selectivity for both the N-terminal half of the M4-M5 loop and the adjacent transmembrane helice(s).  相似文献   

12.
Kiegle EA  Bisson MA 《Plant physiology》1996,111(4):1191-1197
In salt-tolerant Chara longifolia, enhanced Na+ efflux plays an important role in maintaining low cytoplasmic Na+. When it is cultured in fresh water (FW), C. longifolia has a higher Na+ efflux than the obligate FW Chara corallina, although pH dependence and inhibitor profiles are similar for both species (J. Whittington and M.A. Bisson [1994] J Exp Bot 45: 657-665). When it is cultured in saltwater, C. longifolia has a Na+ efflux of 264 [plus or minus] 14 nmol m-2 s-1 at pH 7, 13 times higher than FW-adapted cultures and 31 times higher than C. corallina. As in FW-adapted plants, efflux is highest at pH 5, but pH dependence is less steep and more linear in cells adapted to saltwater. In plants of both species from FW cultures, Na+ efflux is inhibited by Li+ at pH 5 but not at pH 7 or 9, whereas in the salt-adapted C. longifolia, Li+ inhibits Na+ efflux at pH 7 and 9 but not at pH 5. Amiloride inhibits Na+ efflux in salt-adapted cells but not in FW cells. We conclude that a new type of Na+ efflux system is induced in salt-adapted plants, although both systems have characteristics suggestive of a Na+/H+ antiport. In all cases, a 1:1 Na+/H+ antiport would have sufficient energy to maintain the cytoplasmic Na+ activities measured at pH 5 and 7 but not at pH 9, which suggests that another efflux system must be operating at pH 9.  相似文献   

13.
Batrachotoxin, veratridine and aconitine, activators of the voltage-dependent sodium channel in excitable cell membranes, increase the rate of 22Na+ uptake by mouse brain synaptosomes. Batrachotoxin was both the most potent (K0.5, 0.49 microM) and most effective activator of specific 22Na+ uptake. Veratridine (K0.5, 34.5 microM) and aconitine (K0.5, 19.6 microM) produced maximal stimulations of 22Na+ uptake that were 73% and 46%, respectively, of that produced by batrachotoxin. Activation of 22Na+ uptake by veratridine was completely inhibited by tetrodotoxin (I50, 6 nM ), a specific blocker of nerve membrane sodium channels. These results identify appropriate conditions for measuring sodium channel-dependent 22Na+ flux in mouse brain synaptosomes. The pharmacological properties of mouse brain synaptosomal sodium channels described here are distinct from those previously described for sodium channels in rat brain synaptosomes and mouse neuroblastoma cells.  相似文献   

14.
T Günther  J Vormann 《FEBS letters》1989,250(2):633-637
Net Mg2+ efflux from Mg2+-loaded, human, rat and chicken erythrocytes was measured in sucrose, NaCl and choline Cl medium. Thus, Na+-dependent (NaCl minus choline Cl) and Na+-independent Mg2+ efflux (in sucrose) were determined. Na+-dependent Mg2+ efflux amounted to 0.16, 8.9 and 1.57 mmol/l cells x 30 min, Na+-independent Mg2+ efflux amounted to 0.89, 1.55 and 0.37 mmol/l cells x 30 min for human, rat and chicken erythrocytes. Na+-dependent Mg2+ efflux was inhibited by quinidine. Na+-independent Mg2+ efflux was inhibited by SITS and Cl-. A small fraction of Na+-independent Mg2+ efflux (in choline Cl) was resistant to SITS and Cl-. Ca2+ loading increased Mg2+ efflux similar to K+ efflux (Gardos effect). This effect was differently expressed in human and chicken erythrocytes.  相似文献   

15.
We examined the effects of quinidine, amiloride and Li+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. Quinidine reversibly inhibited the initial rate of Na+-H+ exchange (I50 200 microM). The plot of 1/V versus [quinidine] was curvilinear, with Hill coefficient greater than 1.0, indicating that the drug interacts at two or more inhibitory sites or at a single site on at least two different conformations of the transporter. Quinidine decreased the Vmax for Na+-H+ exchange and increased the Km for Na+, indicating a mixed-type mechanism of inhibition. In contrast, plots of 1/V versus [amiloride] and 1/V versus [Li+] were linear, indicating single inhibitory sites; amiloride and Li+ each increased the Km for Na+ with no effect on Vmax, indicating a competitive mechanism of inhibition. Addition of Li+ increased the intercept with no change in slope of the 1/V versus [amiloride] plot, indicating that Li+ and amiloride are mutually exclusive inhibitors of Na+-H+ exchange. Addition of quinidine increased the slopes of the plots of 1/V versus [amiloride] and 1/V versus [Li+], indicating that the binding of quinidine is not mutually exclusive with the binding of amiloride and Li+. Results from this and previous studies are consistent with the concept that the inhibitor amiloride and the transportable substrates Na+, H+, Li+, and NH+4 all mutually compete for binding to a single site, the external transport site of the renal Na+-H+ exchanger. However, our findings indicate that quinidine interacts with the Na+-H+ exchanger on at least one additional site that is not shared by Na+, Li+, or amiloride.  相似文献   

16.
There are two isozymes of the Na,K-ATPase, which can be purified separately from rat renal medulla and brainstem axolemma. Here the basic kinetic properties of the two Na,K-ATPases have been compared in conditions permitting enzyme turnover. The two isozymes are half-maximally activated at different concentrations of ATP, the axolemma Na,K-ATPase having the higher affinity. They are half-maximally activated by Na+ and K+ at very similar concentrations but show differences in cooperativity toward Na+. The affinities of both isozymes for ATP and Na+ are affected in a qualitatively similar way by variations in the concentration of K+. Both isozymes transport 22Na+ and 42K+ in a ratio close to 3:2 in artificial lipid vesicles. The two isozymes differ most strikingly in the inhibition of ATPase activity by ouabain. The axolemma Na,K-ATPase has a high affinity for ouabain with positive cooperativity, while the renal medulla Na,K-ATPase has a lower affinity with negative cooperativity. It is likely that the cooperativity differences are due to kinetic effects, reflecting different rates of conformation transitions during enzyme turnover. The functional result of the contrasting cooperativities is that the difference in sensitivity to ouabain is amplified.  相似文献   

17.
We have prepared human blood lymphocyte membrane vesicles of high purity in sufficient quantity for detailed enzyme analysis. This was made possible by the use of plateletpheresis residues, which contain human lymphocytes in amounts equivalent to thousands of milliliters of blood. The substrate specificity and the kinetics of the cofactor and substrate requirements of the human lymphocyte membrane Na+, K+-ATPase activity were characterized. The Na+, K+-ATPase did not hydrolyze ADP, AMP, ITP, UTP, GTP or TTP. The mean ATPase stimulated by optimal concentrations of Na+ and K+ (Na+, K+-ATPase) was 1.5 nmol of P(i) hydrolyzed, microgram protein-1, 30 min-1 (range 0.9-2.1). This activity was completely inhibited by the cardiac glycoside, ouabain. The K(m) for K+ was approximately 1.0 mM and the K(m) for Na+ was approximately 15 mM. Active Na+ and K+ transport and ouabain-sensitive ATP production increase when lymphocytes are stimulated by PHA. Na+, K+-ATPase activity must increase also to transduce energy for the transport of Na+ and K+. Some studies have reported that PHA stimulates the lymphocyte membrane ATPase directly. We did not observe stimulation of the membrane Na+, K+-ATPase when either lymphocytes or lymphocyte membranes were treated with mitogenic concentrations of PHA. Moreover, PHA did not enhance the reaction velocity of the Na+, K+-ATPase when studied at the K(m) for ATP, Na+, K+ OR Mg++, indicating that it does not alter the affinity of the enzyme for its substrate or cofactors. Thus, our data indicate that the increase in ATPase activity does not occur as a direct result of PHA action on the cell membrane.  相似文献   

18.
The purpose of the present study was to examine the characteristics of Na+ channel modification by batrachotoxin (BTX) in cardiac cells, including changes in channel gating and kinetics as well as susceptibility to block by local anesthetic agents. We used the whole cell configuration of the patch clamp technique to measure Na+ current in guinea pig myocytes. Extracellular Na+ concentration and temperature were lowered (5-10 mM, 17 degrees C) in order to maintain good voltage control. Our results demonstrated that 1) BTX modifies cardiac INa, causing a substantial steady-state (noninactivating) component of INa, 2) modification of cardiac Na+ channels by BTX shifts activation to more negative potentials and reduces both maximal gNa and selectivity for Na+; 3) binding of BTX to its receptor in the cardiac Na+ channel reduces the affinity of local anesthetics for their binding site; and 4) BTX-modified channels show use-dependent block by local anesthetics. The reduced blocking potency of local anesthetics for BTX-modified Na+ channels probably results from an allosteric interaction between BTX and local anesthetics for their respective binding sites in the Na+ channel. Our observations that use-dependent block by local anesthetics persists in BTX-modified Na+ channels suggest that this form of extra block can occur in the virtual absence of the inactivated state. Thus, the development of use-dependent block appears to rely primarily on local anesthetic binding to activated Na+ channels under these conditions.  相似文献   

19.
以药用蒲公英(Taraxacum officinale)为试材,研究不同浓度盐胁迫对其生长特性、有效成分积累和离子吸收分配的影响。结果表明,低盐胁迫(0.1%NaCl)对药用蒲公英生长和菊苣酸含量无显著影响,叶中Na+含量与对照无显著差异,K+含量及K+/Na+显著升高;高盐胁迫(≥0.2%NaCl)下其生长受到显著抑制,菊苣酸含量显著降低,类囊体膜结构随着盐胁迫加剧趋于紊乱,光合能力减弱,叶片Na+含量显著上升,而K+、Ca2+和Mg2+含量下降,K+/Na+、Ca2+/Na+和Mg2+/Na+显著降低。离子运输选择性系数(SCa,Na、SMg,Na、SK,Na)随着盐胁迫加剧呈先升后降趋势。相关性分析表明,盐胁迫下...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号