首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes in the de novo purine biosynthesis pathway are recruited to form a dynamic metabolic complex referred to as the purinosome. Previous studies have demonstrated that purinosome assembly responds to purine levels in culture medium. Purine-depleted medium or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) treatment stimulates the purinosome assembly in HeLa cells. Here, several metabolomic technologies were applied to quantify the static cellular levels of purine nucleotides and measure the de novo biosynthesis rate of IMP, AMP, and GMP. Direct comparison of purinosome-rich cells (cultured in purine-depleted medium) and normal cells showed a 3-fold increase in IMP concentration in purinosome-rich cells and similar levels of AMP, GMP, and ratios of AMP/GMP and ATP/ADP for both. In addition, a higher level of IMP was also observed in HeLa cells treated with DMAT. Furthermore, increases in the de novo IMP/AMP/GMP biosynthetic flux rate under purine-depleted condition were observed. The synthetic enzymes, adenylosuccinate synthase (ADSS) and inosine monophosphate dehydrogenase (IMPDH), downstream of IMP were also shown to be part of the purinosome. Collectively, these results provide further evidence that purinosome assembly is directly related to activated de novo purine biosynthesis, consistent with the functionality of the purinosome.  相似文献   

2.
Ribonucleotide flavor enhancers such as inosine monophosphate (IMP) and guanosine monophosphate (GMP) provide umami taste, similarly to glutamine. Japanese cuisine frequently uses soup stocks containing these nucleotides to enhance umami. We quantified 18 types of purines (nucleotides, nucleosides, and purine bases) in three soup stocks (chicken, consommé, and dried bonito soup). IMP was the most abundant purine in all umami soup stocks, followed by hypoxanthine, inosine, and GMP. The IMP content of dried bonito soup was the highest of the three soup stocks. We also evaluated the effects of these purines on extracellular and intracellular purine metabolism in HepG2 cells after adding each umami soup stock to the cells. An increase in inosine and hypoxanthine was evident 1 h and 4 h after soup stock addition, and a low amount of xanthine and guanosine was observed in the extracellular medium. The addition of chicken soup stock resulted in increased intracellular and extracellular levels of uric acid and guanosine. Purine metabolism may be affected by ingredients present in soups.  相似文献   

3.
The Leishmania guanosine 5′‐monophosphate reductase (GMPR) and inosine 5′‐monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine‐β‐synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH‐dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10‐fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.  相似文献   

4.
Cytosolic 5′ nucleotidase II (cN-II) catalyses both the hydrolysis of a number of nucleoside monophosphates (e.g., IMP + H2O→ inosine + Pi), and the phosphate transfer from a nucleoside monophosphate donor to the 5′ position of a nucleoside acceptor (e.g., IMP + guanosine → inosine + GMP). The enzyme protein functions through the formation of a covalent phosphoenzyme intermediate, followed by the phosphate transfer either to water (phosphatase activity) or to a nucleoside (phosphotransferase activity). It has been proposed that cN-II regulates the intracellular concentration of IMP and GMP and the production of uric acid. The enzyme might also have a potential therapeutic importance, since it can phosphorylate some anti-tumoral and antiviral nucleoside analogues that are not substrates of known kinases. In this review we summarise our recent studies on the structure, regulation and function of cN-II. Via a site-directed mutagenesis approach, we have identified the amino acids involved in the catalytic mechanism and proposed a structural model of the active site. A series of in vitro studies suggests that cN-II might contribute to the regulation of 5-phosphoribosyl-1-pyrophosphate (PRPP) level, through the so-called oxypurine cycle, and in the production of intracellular adenosine, formed by ATP degradation.  相似文献   

5.
Guanosine 5′-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5′-diphosphate (GDP)-l-fucose. In this study, improvement of GDP-l-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-l-fucose. The effects of overexpression of inosine 5′-monophosphate (IMP) dehydrogenase, guanosine 5′-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine–inosine kinase (Gsk) on GDP-l-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-l-fucose production. Maximum GDP-l-fucose concentration of 305.5 ± 5.3 mg l−1 was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-l-fucose production compared with the control strain overexpressing GDP-l-fucose biosynthetic enzymes. Such an enhancement of GDP-l-fucose production could be due to the increase in the intracellular level of GMP.  相似文献   

6.
The effects of adenine and (or) guanosine concentration on the accumulation of inosine, xanthosine, adenosine and succino-adenosine were studied with various purine auxotrophs of Bacillus subtilis K strain. Genetical derepression of the common pathway enzymes resulted in increase in the accumulation of inosine, xanthosine and adenosine. Co-operative repression system of a common pathway enzyme, succino-AMP lyase with respect to adenine and guanosine, was confirmed under the condition of the accumulation test. From these and the relating other studies it was concluded that the synthesis of AMP was regulated mainly by the inhibition of PRPP amidotransferase by AMP and secondly by the repression of the common pathway enzymes by adenine and guanosine, that the synthesis of GMP was regulated mainly by the inhibition and repression of IMP dehydrogenase by guanine derivatives and that GMP was synthesized in preference to AMP at the branch point, IMP.  相似文献   

7.
A sensitive and simple micromethod for the accurate measurement of GMP reductase (EC 1.6.6.8) activity in crude extracts is described. The reaction product of [8-14C]IMP was separated from the substrate [8-14C]GMP by descending chromatography on Whatman DE81 ion-exchange paper. This separation method provides an analysis of the possible interfering reactions, such as the metabolic conversion of the substrate GMP to GDP, GTP, and/or guanosine, and guanine and the loss of the product IMP to inosine, hypoxanthine, and other metabolites. Low blank values (70-90 cpm) were obtained consistently with this assay because the IMP spot moves faster than the GMP spot. The major advantages of this method are direct measurement of GMP reductase activity in crude extracts, high sensitivity (with a limit of detection of < 10 pmol of IMP production), high reproducibility (< +/- 5%), and capability to measure activity in small samples (9 micrograms protein).  相似文献   

8.
We tried some improvement of inosine production using an inosine-producing mutant of Escherichia coli which is deficient in purF (phosphoribosylpyrophosphate (PRPP) amidotransferase gene), purA (succinyl-adenosine 5'-monophosphate (AMP) synthetase gene), deoD (purine nucleoside phosphorylase gene), purR (purine repressor gene) and add (adenosine deaminase gene), and harboring the desensitized PRPP amidotransferase gene as a plasmid. The guaB (inosine 5'-monophosphate (IMP) dehydrogenase gene) disruption brought about a slightly positive effect on the inosine productivity. Alternatively, the gsk (guanosine-inosine kinase gene) disruption caused a considerable amount of guanosine accumulation together with a slight increase in the inosine productivity. The further addition of guaC (guanosine 5'-monophosphate (GMP) reductase gene) disruption did not lead to an increased guanosine accumulation, but brought about the decrease of inosine accumulation.  相似文献   

9.
The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5’-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5’-monophosphate (GMP) to inosine 5’-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR’s was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis.  相似文献   

10.
H Matsui  K Sato  H Enei    Y Hirose 《Applied microbiology》1977,34(4):337-341
An inosine-producing strain of Bacillus subtilis was mutated to resistance against the antagonist of glutamine, DL-methionine sulfoxide. Among the mutants derived, guanosine producers were observed frequently. The best strain, 14119, produced 9.6 g of guanosine per liter at a weight yield of 12% from consumed sugar. Inosine production decreased concomitantly. When resistance was increased further by exposure to higher doses of DL-methionine sulfoxide, another strain, AG169, was obtained that did not excrete inosine but produced increased amounts of xanthosine. In these strains, the specific activity of 5'-nucleotidase was lower and that of inosine 5'-monophosphate (IMP) dehydrogenase was higher than the parent strain. It is speculated that the metabolic flow from IMP to xanthosine 5'-monophosphate proceeds more smoothly than that from IMP to inosine and yields more xanthosine and guanosine.  相似文献   

11.
An inosine-producing strain of Bacillus subtilis was mutated to resistance against the antagonist of glutamine, DL-methionine sulfoxide. Among the mutants derived, guanosine producers were observed frequently. The best strain, 14119, produced 9.6 g of guanosine per liter at a weight yield of 12% from consumed sugar. Inosine production decreased concomitantly. When resistance was increased further by exposure to higher doses of DL-methionine sulfoxide, another strain, AG169, was obtained that did not excrete inosine but produced increased amounts of xanthosine. In these strains, the specific activity of 5'-nucleotidase was lower and that of inosine 5'-monophosphate (IMP) dehydrogenase was higher than the parent strain. It is speculated that the metabolic flow from IMP to xanthosine 5'-monophosphate proceeds more smoothly than that from IMP to inosine and yields more xanthosine and guanosine.  相似文献   

12.
In attempts to obtain GMP producing strains, Brevibacterium ammoniagenes was treated with UV, N.T.G. or D.E.S. as a mutagen. Adenine-guanine requiring mutants were obtained from an adenine-requiring mutant of Brev. ammoniagenes, KY 3482–9 and two of them, presumably adenine-xanthine requiring mutants, were then reverted to mutants which required only adenine for their growth.

Although these revertants were not able to accumulate a copious amount of GMP, most of them and of adenine-guanine requiring mutants produced larger amounts of IMP than the parent adenine-requiring strain.

Effects of Mn2+ and purine bases in the medium on IMP production by these mutants were examined and IMP productivities of these mutants were compared with the parent strain under optimal conditions.

These mutagenic treatments were thus proved to be effective for the increase of de novo IMP production by Brev. ammoniagenes mutants.

Brevibacterium ammoniagenes ATCC 6872 accumulates 5′-GDP and -GTP, or 5′-ADP and -ATP together with GMP or AMP in nucleotide fermentation by salvage synthesis.

With cell free extract of this strain, transphosphorylating reactions of AMP or GMP were investigated.

ATP-AMP transphosphorylating enzyme(s) was partially purified to 21.7 fold with acid treatment, salting-out and column chromatography.

In ATP-AMP and ATP-GMP transphosphorylating reactins, optimal conditions were decided such as for concentrations of enzyme, of MgCl2 and of phosphate donor, pH and cell age as the enzyme sources.

Specificities of phosphate donors and acceptors were examined with both the partially purified enzymes or the sonicate. AMP and GMP were phosphorylated by ATP rapidly, but IMP and XMP were not, therefore supporting our previous finding that Brev. ammoniagenes could not accumulated IDP, ITP, XDP and XTP in IMP and XMP fermentation, respectively.

Although ATP was the best donor for both AMP and GMP phosphorylations, other nucleoside triphosphates and PRPP were used as phosphate donors.

Furthermore, phosphorylation of ADP to ATP was investigated and possible mechanisms of nucleoside di- or triphosphates synthesis in the nucleotide fermentation were discussed.

From these results, it is suggested as a possible mechanism for nucleoside di- and triphosphate accumulation by Brev. Ammoniagenes, that a nucleoside monophosphate formed is phosphorylated to a nucleoside di-phosphate with ATP or other phosphate donors and then the nucleoside diphosphate is converted to a triphosphate with these phosphate donors.

Both AMP and GMP were transphosphorylated rapidly to the corresponding nucleoside-diphosphates and triphosphates by ATP and by other high energy phosphate compounds with cell free extracts of Brevibacterium ammoniagenes.

Some enzyme inhibitors, such as metals and PCMB were shown to inhibit the phosphorylations of AMP and GMP. Higher levels of ATP, ADP, GTP and GDP also inhibited the activity of the partially purified ATP-AMP transphosphorylating enzyme(s).

In guanine nucleotides fermentation by salvage synthesis with this strain, addition of these inhibitors to the medium increased the amounts of GMP and total guanine nucleotides accumulated.

On the contrary, supplement of xylene or of other organic solvents to the medium stimulated the accumulation of both GTP and total guanine compouuds in this fermentation. From enzymatic studies, these solvents are presumed to have the ability to change cell permeability.

Such findings give an effective method for controlling the amounts of nucleotides accumulated in these fermentations.  相似文献   

13.
Derepression of the synthesis of inosine 5′-monophosphate (IMP) dehydrogenase and of xanthosine 5′-monophosphate (XMP) aminase in pur mutants of Escherichia coli which are blocked in the biosynthesis of adenine nucleotides and guanine nucleotides differs in two ways from derepression in pur mutants blocked exclusively in the biosynthesis of guanine nucleotides. (i) The maximal derepression is lower, and (ii) a sharp decrease in the specific activities of AMP dehydrogenase and XMP aminase occurs, following maximal derepression. From the in vivo and in vitro experiments described, it is shown that the lack of adenine nucleotides in derepressed pur mutants blocked in the biosynthesis of adenine and guanine nucleotides is responsible for these two phenomena. The adenine nucleotides are shown to play an important regulatory role in the biosynthesis of guanosine 5′-monophosphate (GMP). (i) They induce the syntheses of IMP dehydrogenase and XMP aminase. (The mechanism of induction may involve the expression of the gua operon.) (ii) They appear to have an activating function in IMP dehydrogenase and XMP aminase activity. The physiological importance of these regulatory characteristics of adenine nucleotides in the biosynthesis of GMP is discussed.  相似文献   

14.
The metabolic fate of guanine and of guanine ribonucleotides (GuRNs) in cultured rat neurons was studied using labeled guanine. 8-Aminoguanosine (8-AGuo), an inhibitor of purine nucleoside phosphorylase, was used to clarify the pathways of GMP degradation, and mycophenolic acid, an inhibitor of IMP dehydrogenase, was used to assess the flux from IMP to GMP and, indirectly, the activity of the guanine nucleotide cycle (GMP----IMP----XMP----GMP). The main metabolic fate of guanine in the neurons was deamination to xanthine, but significant incorporation of guanine into GuRNs, at a rate of approximately 8.5-13.1% of that of the deamination, was also demonstrated. The turnover rate of GuRNs was fast (loss of 80% of the radioactivity of the prelabeled pool in 22 h), reflecting synthesis of nucleic acids (32.8% of the loss in radioactivity) and degradation to xanthine, guanine, hypoxanthine, guanosine, and inosine (49.3, 4.3, 4.1, 1.1, and 0.5% of the loss, respectively). Of the radioactivity in GuRNs, 7.9% was shifted to adenine nucleotides. The accumulation of label in xanthine indicates (in the absence of xanthine oxidase) that the main degradative pathway from GMP is that to xanthine through guanosine and guanine. The use of 8-AGuo confirmed this pathway but indicated the operation of an additional, relatively slower degradative pathway, that from GMP through IMP to inosine and hypoxanthine. Hypoxanthine was incorporated mainly into adenine nucleotide (91.5%), but a significant proportion (6%) was found in GuRNs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Shelp BJ  Atkins CA 《Plant physiology》1983,72(4):1029-1034
Cell-free extracts from nodules of cowpea (Vigna unguiculata L. (Walp.) cv Caloona:Rhizobium strain CB756) prepared in the presence of 15% (v/v) glycerol showed high rates (30 to 60 nanomoles NAD reduced per minute per gram fresh weight nodule) of inosine monophosphate oxidoreductase (EC 1.2.1.14) activity. The enzyme was labile (half-life of activity less than 3 hours) but could be stabilized for up to 18 hours by inclusion of the substrates NAD and inosine monophosphate in the breaking media. Activity showed a broad pH optimum between 8.5 and 9.5, had an apparent Km (inosine monophosphate) of 4 and 12 micromolar at pH 7.5 and 9.0, respectively, and was largely (96%) associated with the plant cell cytosol fraction of the nodule.

Metabolism of [8-14C]inosine monophosphate and [1-14C]glycine by the cell-free system showed two pathways for purine base production from inosine monophosphate, one via xanthosine monophosphate, xanthosine, and xanthine, the other via inosine and hypoxanthine. The proportion of inosine monophosphate utilized by inosine monophosphate oxidoreductase and the xanthine-based pathway was increased from 30% at 0.5 millimolar to 80% at 0.01 millimolar inosine monophosphate. The data are interpreted to indicate that in vivo inosine monophosphate oxidation rather than dephosphorylation is the predominant metabolic route leading to ureide synthesis and that inosine monophosphate provides the link between de novo purine nucleotide synthesis in the plastid and ureide production in the plant cell cytosol.

  相似文献   

16.
Coggin, Joseph H. (University of Chicago, Chicago, Ill.), Muriel Loosemore, and William R. Martin. Metabolism of 6-mercaptopurine by resistant Escherichia coli cells. J. Bacteriol. 92:446-454. 1966.-6-Mercaptopurine (MP) utilization as a source of purine in MP-sensitive and -resistant cultures of Escherichia coli was investigated. The label of MP-8-C(14) appeared in adenine and guanine of ribonucleic acid and deoxyribonucleic acid in sensitive and resistant cultures. Studies using MP-S(35) further demonstrated that the MP moiety was degraded, as shown by a rapid decrease in radioactivity from cells upon exposure to MP for 20 min. Enzymatic analysis showed that MP was converted to 6-mercaptopurine ribonucleotide (MPRP) by extracts derived from both sensitive and resistant cells. Resistant cell preparations, however, degraded MPRP to inosine monophosphate (IMP) rapidly when compared with analogue degradation by sensitive cells. Inosineguanosine-5'-phosphate pyrophosphorylase from resistant cells did not catalyze the synthesis of IMP from hypoxanthine when the cells were cultured in the presence of MP, but these enzyme preparations actively converted guanine to guanosine monophosphate (GMP). Pyrophosphorylase derived from resistant cells cultured in medium without MP catalyzed the conversion of hypoxanthine to IMP and also guanine to GMP. These observations suggest that inosine-guanosine-5'-phosphate pyrophosphorylase is composed of two distinct enzymes. The mode of resistance to MP in E. coli is related to an enhancement of the enzymatic degradation of MPRP to the pivotal purine intermediate, IMP.  相似文献   

17.
Li J  Wei Z  Zheng M  Gu X  Deng Y  Qiu R  Chen F  Ji C  Gong W  Xie Y  Mao Y 《Journal of molecular biology》2006,355(5):980-988
Guanosine monophosphate reductase (GMPR) catalyzes the irreversible and NADPH-dependent reductive deamination of GMP to IMP, and plays a critical role in re-utilization of free intracellular bases and purine nucleosides. Here, we report the first crystal structure of human GMP reductase 2 (hGMPR2) in complex with GMP at 3.0 A resolution. The protein forms a tetramer composed of subunits adopting the ubiquitous (alpha/beta)8 barrel fold. Interestingly, the substrate GMP is bound to hGMPR2 through interactions with Met269, Ser270, Arg286, Ser288, and Gly290; this makes the conformation of the adjacent flexible binding region (residues 268-289) fixed, much like a door on a hinge. Structure comparison and sequence alignment analyses show that the conformation of the active site loop (residues 179-187) is similar to those of hGMPR1 and inosine monophosphate dehydrogenases (IMPDHs). We propose that Cys186 is the potential active site, and that the conformation of the loop (residues 129-133) suggests a preference for the coenzyme NADPH over NADH. This structure provides important information towards understanding the functions of members of the GMPR family.  相似文献   

18.
19.
A major problem involved in the direct fermentation of nucleotides is their breakdown by phosphohydrolases. Thus, adenine auxotrophs of most microorganisms produce hypoxanthine and/or inosine rather than inosine 5′-monophosphate (IMP) while guanine auxotrophs excrete xanthosine rather than xanthosine 5′-monophosphate (XMP). Examination of a Bacillus subtilis mutant producing hypoxanthine plus inosine revealed at least four phosphohydrolases, three of which could attack nucleotides. Even when the extracellular nucleotide phosphohydrolase was inhibited by Cu+2 and its surface-bound alkaline phosphohydrolase was repressed and inhibited by inorganic phosphate, or removed by mutation, the breakdown products were still the only products of fermentation. Under these conditions, the third enzyme, a surface-bound non-repressible nucleotide phosphohydrolase was still active. It appears, at least in B. subtilis, that excretion is dependent upon breakdown by this enzyme and if hydrolysis does not occur, excretion of purine nucleotides is feedback inhibited by the resultant high intracellular IMP concentration. Corynebacterium glutamicum mutants, on the other hand, can excrete intact nucleotides, and direct fermentations for IMP, XMP, and GMP have been described. An examination of phosphohydrolases in a GMP-producing culture revealed no extracellular or surface enzymes. Disruption of the cells resulted in liberation of cellular phosphohydrolase activity with a substrate specificity remarkably similar to the flavorenhancing properties of the 5′-nucleotides. The order of decreasing susceptibility was GMP, IMP, XMP; AMP was not attacked.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号