首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While endogenous Myc (c-myc) and Mycn (N-myc) have been reported to be separately dispensable for murine embryonic stem cell (mESC) function, myc greatly enhances induced pluripotent stem (iPS) cell formation and overexpressed c-myc confers LIF-independence upon mESC. To address the role of myc genes in ESC and in pluripotency generally, we conditionally knocked out both c- and N-myc using myc doubly homozygously floxed mESC lines (cDKO). Both lines of myc cDKO mESC exhibited severely disrupted self-renewal, pluripotency, and survival along with enhanced differentiation. Chimeric embryos injected with DKO mESC most often completely failed to develop or in rare cases survived but with severe defects. The essential nature of myc for self-renewal and pluripotency is at least in part mediated through orchestrating pluripotency-related cell cycle and metabolic programs. This study demonstrates that endogenous myc genes are essential for mESC pluripotency and self-renewal as well as providing the first evidence that myc genes are required for early embryogenesis, suggesting potential mechanisms of myc contribution to iPS cell formation.  相似文献   

2.
A major prognostic marker for neuroblastoma (Nb) is N-myc gene amplification, which predicts a poor clinical outcome. We sought genes differentially expressed on a consistent basis between multiple human Nb cell lines bearing normal versus amplified N-myc, in hopes of finding target genes that might clarify how N-myc overexpression translates into poor clinical prognosis. Using differential display, we find the previously described growth-inhibitory gene Ndrg1 is strongly repressed in all tested Nb cell lines bearing N-myc amplification, as well as in a neuroepithelioma line with amplified c-myc. Overexpression of N-myc in non-amplified Nb cells leads to repression of Ndrg1, as does activation of an inducible c-myc transgene in fibroblasts. Conversely, N-myc downregulation in N-myc-amplified Nb cells results in re-expression of the Ndrg1, and stimuli known to induce Ndrg1 do so in Nb cells while simultaneously down-regulating N-myc. Relevant to these results, we demonstrate an in vitro interaction of Myc protein with the Ndrg1 core promoter. We also find that Ndrg1 levels increase dramatically during in vitro differentiation of two cell lines modeling neural and glial development, while c- and N-myc levels decline. Our results combined with previous information on the Ndrg1 gene product suggest that downregulation of this gene is an important component of N-Myc effects in neuroblastomas with poor clinical outcome. In support of this notion, we find that re-expression of Ndrg1 in high-Myc Nb cells results in smaller cells with reduced colony size in soft-agar assays, further underscoring the functional significance of this gene in human neuroblastoma cells.  相似文献   

3.
Many signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators. Depletion of one such molecule, aurora kinase A?(Aurka), resulted in compromised self-renewal and consequent differentiation. By integrating global gene expression and computational analyses, we discovered that loss of Aurka leads to upregulated p53 activity?that triggers ESC differentiation. Specifically, Aurka regulates pluripotency through phosphorylation-mediated inhibition of p53-directed ectodermal and mesodermal gene expression. Phosphorylation of p53 not only impairs p53-induced ESC differentiation but also p53-mediated suppression of iPSC reprogramming. Our studies demonstrate an essential role for Aurka-p53 signaling in the regulation of self-renewal, differentiation, and somatic cell reprogramming.  相似文献   

4.
5.
6.
Embryonic stem cell (ESC) pluripotency is orchestrated by distinct signaling pathways that are often targeted to maintain ESC self-renewal or their differentiation to other lineages. We showed earlier that inhibition of PKC signaling maintains pluripotency in mouse ESCs. Therefore, in this study, we investigated the importance of protein kinase C signaling in the context of rat ESC (rESC) pluripotency. Here we show that inhibition of PKC signaling is an efficient strategy to establish and maintain pluripotent rESCs and to facilitate reprogramming of rat embryonic fibroblasts to rat induced pluripotent stem cells. The complete developmental potential of rESCs was confirmed with viable chimeras and germ line transmission. Our molecular analyses indicated that inhibition of a PKCζ-NF-κB-microRNA-21/microRNA-29 regulatory axis contributes to the maintenance of rESC self-renewal. In addition, PKC inhibition maintains ESC-specific epigenetic modifications at the chromatin domains of pluripotency genes and, thereby, maintains their expression. Our results indicate a conserved function of PKC signaling in balancing self-renewal versus differentiation of both mouse and rat ESCs and indicate that targeting PKC signaling might be an efficient strategy to establish ESCs from other mammalian species.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.

Background

REST is abundantly expressed in mouse embryonic stem cells (ESCs). Many genome-wide analyses have found REST to be an integral part of the ESC pluripotency network. However, experimental systems have produced contradictory findings: (1) REST is required for the maintenance of ESC pluripotency and loss of REST causes increased expression of differentiation markers, (2) REST is not required for the maintenance of ESC pluripotency and loss of REST does not change expression of differentiation markers, and (3) REST is not required for the maintenance of ESC pluripotency but loss of REST causes decreased expression of differentiation markers. These reports highlight gaps in our knowledge of the ESC network.

Methods

Employing biochemical and genome-wide analyses of various culture conditions and ESC lines, we have attempted to resolve some of the discrepancies in the literature.

Results

We show that Rest+/− and Rest−/− AB-1 mutant ESCs, which did not exhibit a role of REST in ESC pluripotency when cultured in the presence of feeder cells, did show impaired self-renewal when compared with the parental cells under feeder-free culture conditions, but only in early passage cells. In late passage cells, both Rest+/− and Rest−/− AB-1 ESCs restored pluripotency, suggesting a passage and culture condition-dependent response. Genome-wide analysis followed by biochemical validation supported this response and further indicated that the restoration of pluripotency was associated by increased expression of the ESC pluripotency factors. E14Tg2a.4 ESCs with REST-knockdown, which earlier showed a REST-dependent pluripotency when cultured under feeder-free conditions, as well as Rest−/− AB-1 ESCs, showed no REST-dependent pluripotency when cultured in the presence of either feeder cells or laminin, indicating that extracellular matrix components can rescue REST''s role in ESC pluripotency.

Conclusions

REST regulates ESC pluripotency in culture condition- and ESC line-dependent fashion and ESC pluripotency needs to be evaluated in a context dependent manner.  相似文献   

16.
17.
18.
19.
20.
2006年Takahashi研究小组成功地将小鼠的胚胎成纤维细胞和鼠尾成纤维细胞重编成为诱导性多能干细胞(iPSC),开创了体细胞重编程的全新方法,所得iPSC具有和胚胎干细胞相似的生物学特性,不仅解决了人类胚胎干细胞研究所面临的伦理学困境和免疫排斥问题,而且进一步深化了对细胞多能性和基因组重编程的认识,再次掀起了干细胞研究的热潮。iPSC结合基因治疗和细胞治疗的成果已经应用到动物疾病模型上。iPSC能够自我更新并维持未分化状态,可分化为3个胚层来源的所有细胞,参与形成机体所有组织和器官,体外定向诱导能够分化出各种成体细胞,在理论研究和临床应用等方面都极具应用价值。但iPSC技术也存在一系列问题需要研究解决。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号