首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Verticillium wilt caused by Verticillium dahliae is a serious problem of olive trees leading to significant reduction in yield. Verticillium wilt of olive trees was first recorded in Iran 1996 and confirm as due to Verticillium dahliae Kleb. 101 isolates of V. dahliae from olive trees at deferent locations in north provinces of Iran were assigned to vegetative compatibility groups (VCGS), using nitrate non-utilizing (Nit) mutants. A higher frequency of nit 1/nit 3 mutants (93%) was obtained compared with NitM (7%) with 10% of the isolates being assigned to VCG1 and 51% VCG4B and 19% VCG2A. 20% of isolates could not be classified in standard isolates. The pathogenecity of 15 randomly selected isolates (5 of each VCG) was tested on olive seedling (cv. Zard) and eggplant. The VCGs isolates were similarly aggressive on olive. However, VCG1 isolates were more aggressive on eggplant cv. Local than the VCG2A and VCG4B isolates as indicated by a higher colonization index. The pathogenecity tests of the pathogen on test plants (cotton cv. 'sahel', eggplant cv. 'local' and tomato cv. 'ps') show all isolates category in 2 pathogenecity groups defoliate and non-defoliate (with severe and mild subgroups). The morphology of V. dahliae isolates on C'zapeck's agar and water agar medium were different especially for microsclerotia appearance time in culture and their morphology.  相似文献   

2.
In the Mediterranean basin, Verticillium Wilt of Olive (VWO) is diffused throughout its range of cultivation, causing severe yield losses and tree mortality. The disease was reported in almost all the Mediterranean and Middle East countries, and in Lebanon it is of increasing significance also on many valuable crops. The disease has already been reported on potato, peach and almond in the Bekaa valley; however, to date no information is available about the incidence of VWO and the inoculum density of Verticillium dahliae microsclerotia in soil of the main agricultural areas of Lebanon. Results from the present investigations demonstrate a high V. dahliae frequency in soils (75.3%), coupled with a mean soil inoculum density of 17.0 MS g?1, clearly indicating a great impact on the production of susceptible hosts in Lebanon, mainly in Bekaa region. Molecular method to assess the microsclerotia inoculum density in soil allowed the detection of a higher frequency of infested soils, as compared with the traditional plating, thus confirming its higher sensitivity. The overall Verticillium wilt prevalence in the inspected olive orchards was 46.2%, and the frequency of V. dahliae‐infected trees was 25.7%. The widespread presence of V. dahliae in all olive growing areas of Lebanon enforces the adoption of measures aimed at reducing the soil inoculum density before any new olive plantation, and the use of strong phytosanitary regulations to improve the certification schemes of propagating material.  相似文献   

3.
Ulvan, carrageenan, alginate and laminarin were tested in olive trees’ twigs to elicit phenolic metabolism and control verticillium wilt of olive (VWO) caused by Verticillium dahliae. The elicitation effect was determined through phenylalanine ammonia-lyase activity, total polyphenol content and lignin content. VWO was assessed in twigs previously elicited (24?h) and maintained in a solution containing bio-elicitors (2?g/L) and conidial suspension (106?conidia/mL). Our results showed stimulation of the phenolic metabolism and the decline of wilt symptoms. Ulvan reduced significantly the area under the disease progress curve for severity to 39.9% and the final incidence to 28.9%. Ulvan and alginate produced significant inhibitory rates on mycelial growth of the fungus in vitro. Seaweed polysaccharides might help to overcome VWO by strengthening the host defense metabolism and restricting the pathogen’s growth.  相似文献   

4.
Olive trees play an important role in cultural, ecological, environmental and social fields, constituting in large part the Mediterranean landscape. In Tuscany, an important economic activity is based on olive. Unfortunately, the Verticillium wilt affects this species and causes vascular disease. In the present study, a real-time quantitative PCR approach has been used to detect and quantify Verticillium dahliae in soil and in olive tree tissues both in micropropagated and in seedling olives. The minimum amounts of V. dahliae DNA sequences detected in soil were 11.4 fg which is equivalent to less than one fungal haploid genome. In micropropagated olive the pathogen was detected in the leaves after 43 days, showing a vertical upward movement of the fungus from the culture medium to stem and leaves. A similar fungal behaviour was observed in inoculated olive stem where after 15 days the fungal DNA was detected from symptomless stem tissue above 8 cm the inoculation site. The described molecular approach is expected to provide a more sensitive and less time-consuming alternative detection method for V. dahliae than plating assay procedures, which were traditionally proposed as an early diagnosis method for Verticillium wilt to farmers and tree nursery growers.  相似文献   

5.
Olive (Olea europaea L.) is one of the first domesticated and cultivated tree species and has historical, social and economical relevance. However, its future as a strategic commodity in Mediterranean agriculture is threatened by diverse biotic (traditional and new/emerging pests and diseases) and abiotic (erosion, climate change) menaces. These problems could also be of relevance for new geographical areas where olive cultivation is not traditional but is increasingly spreading (i.e., South America, Australia, etc). One of the major constraints for olive cultivation is Verticillium wilt, a vascular disease caused by the soil-borne fungus Verticillium dahliae Kleb. In this review we describe how Verticillium wilt of olive (VWO) has become a major problem for olive cultivation during the last two decades. Similar to other vascular diseases, VWO is difficult to manage and single control measure are mostly ineffective. Therefore, an integrated disease management strategy that fits modern sustainable agriculture criteria must be implemented. Multidisciplinary research efforts and advances to understand this pathosystem and to develop appropriate control measures are summarized. The main conclusion is that a holistic approach is the best strategy to effectively control VWO, integrating biological, chemical, physical, and cultural approaches.  相似文献   

6.
In the present study, the efficiency of the biocontrol agent Paenibacillus alvei (strain K165) to suppress Verticillium wilt of olive tree was evaluated in greenhouse and field experiments. In planta bioassays were conducted under greenhouse conditions and revealed that K165 significantly decreased symptoms on the susceptible cultivar ‘Amfissis’ by 44.5 and 51.6 % of the final disease severity index and relative area under disease progress curve (AUDPC), respectively. Thereafter, the suppressive effect of K165 against Verticillium dahliae was studied for two consecutive years (2007 and 2008) in a newly established olive orchard of the susceptible cv Amfissis and the resistant cv Kalamon, naturally infested with V. dahliae. The evaluation of K165 was carried out by recording symptoms, isolations and qPCR quantification of the pathogen in olive tissues. In both years, ‘Amfissis’ trees treated with K165 showed significantly lower final disease severity and relative AUDPC values compared to the non treated controls, whereas, in 2008 decreased symptom severity was associated with significantly lower V. dahliae DNA levels in plant tissues, indicating the suppressive effect of the biocontrol agent. However, no significant suppression was observed in ‘Kalamon’. Pathogen isolations along with qPCR quantification revealed a seasonal fluctuation of V. dahliae biomass in olive tissues with higher amounts occurring in May, and lower amounts in February, August and November. This is the first report of biological control of Verticillium wilt of olive tree under field conditions, associated with reduced pathogen levels inside the xylem tissues.  相似文献   

7.
During 2000--03, different areas in Zanjan, Golestan and Khorasan provinces were surveyed for the presence of olive dieback. Olive branches, leaves and roots showing typical symptoms and soil around the roots were collected for further study. Samples were surface-sterilized with sodium hypochlorite or ethanol and then cultured on PDA and Czapek media. Soil samples were diluted in ethanol-agar for fungal isolation and purification. Morphological characteristics of the fungal mycelium particularly phialide and spores identified the causal agent to be the soil-borne pathogen, Verticillium dahliae. The disease was present in all olive growing regions but it was severe in temperate and relatively humid regions such as Gorgan. Infection index of the disease varied between 5 to 30% with an average of 11.89+/-1.12 among various orchards in this area. The newly established orchards showed more infection than the older ones. A significant difference in disease incidence and severity were observed among olive cultivars of Michen, Roughani, Zard and Koronakei. The latter cultivar had the least amount of infection. Strains of V. dahliae isolated from olive trees had different morphological and pathogenicity characteristics. These strains had different growth rates in response to the optimum temperature of 20 or 25 degrees C. The number of fungal propagules per gram of air-dried soil ranged from 2 to 32 with an average number of 13.42+/-0.50. Regarding the number of propagules of V. dahliae in the soil and susceptibility of cultivars in the newly established orchards, it seems necessary to take serious control measures to prevent disease spread.  相似文献   

8.
不同抗病性茄子根系分泌物对黄萎菌的化感作用   总被引:7,自引:0,他引:7  
周宝利  陈志霞  杜亮  谢玉宏  叶雪凌 《生态学报》2011,31(14):3964-3972
以不同抗病性茄子为试材,即抗病类型Solanum tor、S.sis,耐病类型立原紫茄,感病类型西安绿茄,研究了不同茄子品种抗黄萎病特性,根际微生物结构与黄萎菌数量的变化,茄子根系分泌物对黄萎菌的化感作用,并利用GC-MS对根系分泌物的成分进行了鉴定。结果表明:抗病类型的根系分泌物既可以直接影响黄萎菌的生长、发育,又可以通过调节土壤微生物种群结构间接影响黄萎菌的生长,达到抗病效果。而感病类型则正相反。推断这可能是因为抗病类型根系分泌物中存在醇类、胺类、吡喃类、芴类等特异物质,而感病类型根系分泌物中酮类、酚类、酯类、酚酸类物质种类或含量较高。  相似文献   

9.
Despite its proven agronomic value, the plant disease suppressive effect of composts from olive waste has not been adequately investigated. In the present study, the disease suppressive potential of two olive waste (OW) composts against soil-borne plant pathogens was investigated. Both OW composts showed sizeable, active microbial populations, which were able to grow actively on chitin and cellulose. In plate inhibition trials, OW compost water extracts (CWEs) exerted a significant inhibitory effect on the growth of the pathogens Fusarium oxysporum f.sp. lycopersici (Fol), Pythium ultimum, Phytophtora infestans, Sclerotina sclerotiorum and Verticillium dahliae; and in pot experiments, the OW composts significantly reduced P. ultimum damping-off and Fol wilt diseases on tomato seedlings. The disease suppressive effect of OW composts seems to be due to the combined effects of suppression phenomena caused by the presence of microorganisms competing for both nutrients and space as well as by the activity of specific antagonistic microorganisms.  相似文献   

10.
Confocal microscopy combined with three-dimensional olive root tissue sectioning was used to provide evidence of the endophytic behaviour of Pseudomonas fluorescens PICF7, an effective biocontrol strain against Verticillium wilt of olive. Two derivatives of the green fluorescent protein (GFP), the enhanced green and the red fluorescent proteins, have been used to visualize simultaneously two differently fluorescently tagged populations of P. fluorescens PICF7 within olive root tissues at the single cell level. The time-course of colonization events of olive roots cv. Arbequina by strain PICF7 and the localization of tagged bacteria within olive root tissues are described. First, bacteria rapidly colonized root surfaces and were predominantly found in the differentiation zone. Thereafter, microscopy observations showed that PICF7-tagged populations eventually disappeared from the root surface, and increasingly colonized inner root tissues. Localized and limited endophytic colonization by the introduced bacteria was observed over time. Fluorescent-tagged bacteria were always visualized in the intercellular spaces of the cortex region, and no colonization of the root xylem vessels was detected at any time. To the best of our knowledge, this is the first time this approach has been used to demonstrate endophytism of a biocontrol Pseudomonas spp. strain in a woody host such as olive using a nongnotobiotic system.  相似文献   

11.
棉花黄萎病及其抗病育种的研究   总被引:6,自引:0,他引:6  
就棉花黄萎病菌的致病机理、棉花的抗黄萎病机制、抗黄萎病的遗传方式以及抗黄萎病棉花育种等方面的研究进行了综述。  相似文献   

12.
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.  相似文献   

13.
Verticillium wilt is a destructive disease with international consequences for cotton production. Breeding broad-spectrum resistant cultivars is considered to be one of the most effective means for reducing crop losses. A resistant cotton cultivar, 60182, was crossed with a susceptible cultivar, Jun-mian 1, to identify markers for Verticillium resistance genes and validate the mode of its inheritance. Genetic segregation analysis for Verticillium wilt resistance was evaluated based upon infected leaf percentage in the seedling stage using major gene-polygene mixed inheritance models and joint analysis of P1, P2, F1, B1, B2 and F2 populations obtained from the cultivar cross. We found that resis-tance of upland cotton cultivar 60182 to isolates BP2, VD8 and T9, and their isoconcentration mixture was controlled by two major genes with additive-dominance-epistatic effects, and the inheritance of the major gene was dominant. Furthermore, a genetic linkage map was constructed using F2 segregating population and resistance phenotypic data were obtained using F2︰3 families inoculated with different isolates and detected in different developmental stages. The genetic linkage map with 139 loci was comprised of 31 linkage groups covering 1165 cM, with an average distance of 8.38 cM between two markers, or 25.89% of the cotton genome length. From 60182, we found 4 QTL on chromosome D7 and 4 QTL on D9 for BP2, 5 QTL on D7 and 9 QTL on D9 for VD8, 4 QTL on D7 and 5 QTL on D9 for T9 and 3 QTL on D7 and 7 QTL on D7 for mixed pathogens. The QTL mapping results revealed that QTL clusters with high contribution rates were screened simultaneously on chromosomes D9 and D7 by multiple interval mapping (CIM), whether from resistance phenotypic data from different developmental stages or for different isolates. The result is consistent with the genetic model of two major genes in 60182 and suggests broad-spectrum resistance to both defoliating isolates of V. dahliae and nondefoliating iso-lates. The markers associated with resistance QTL may facilitate the use of Verticillium wilt resistance genes in improving breeding programs for cotton.  相似文献   

14.
新疆棉花黄萎病株内生真菌荧光定量检测及时空动态分析   总被引:2,自引:0,他引:2  
【背景】棉花黄萎病严重制约新疆棉花持续高产和稳产,内生菌在棉花黄萎病生物防治中潜力巨大。棉花黄萎病发生与内生菌有密切关系,但棉花黄萎病株内生真菌含量的研究鲜见报道。【目的】了解棉花黄萎病株内生真菌数量的时空动态变化及其与黄萎病病原数量的关系。【方法】用TaqMan探针实时荧光定量PCR方法对棉花黄萎病株内生真菌数量进行周年动态测定,分析棉花内生真菌数量与黄萎病原菌数量的关系。【结果】不同生育时期棉花植株根部内生真菌数量表现出不同变化趋势。库尔勒棉花吐絮期根部最大值达1.46×10~9 copies/g FRW,阿拉尔棉花根部内生真菌数量表现为蕾期缓慢上升,花铃期达到最大值,为8.30×10~7 copies/g FRW。棉花根部内生真菌数量以南疆棉区库尔勒的数量最高,吐絮期平均达1.46×10~9 copies/g FRW;其次为阿拉尔,花期平均达8.30×10~7 copies/g FRW;精河最少,苗期平均为1.85×10~4 copies/g FRW。棉花根部内生真菌数量的空间变化趋势是南疆、东疆、北疆依次递减:南疆库尔勒和阿拉尔内生真菌数量较高,库尔勒吐絮期达到最大值1.46×10~9 copies/g FRW,其次为阿拉尔8.30×10~7 copies/g FRW,精河最低1.85×10~4 copies/g FRW。精河棉花内生真菌数量与黄萎病病原菌数量显著正相关,其皮尔逊相关系数高达0.639。石河子和哈密棉花内生真菌与黄萎病病原菌呈负相关,其相关系数分别为-0.180和-0.275。其他内生真菌与黄萎病病原菌之间存在正相关,但相关性不显著。【结论】棉花黄萎病株根部内生真菌含量较高,内生真菌数量均随采样棉花生育时期和采样地点不同而呈现波动性变化,内生真菌数量最大值出现在库尔勒花铃期。  相似文献   

15.
Zheng H  Zhou L  Dou T  Han X  Cai Y  Zhan X  Tang C  Huang J  Wu Q 《Fungal biology》2010,114(4):359-368
G protein-coupled receptors (GPCRs) are critical factors in regulating morphogenesis, mating, infection and virulence in fungi. In this study, various computational strategies were applied to identify GPCR-like proteins from the genomes of both Verticillium dahliae and Verticillium albo-atrum. The putative GPCRs were distributed over 13 classes, and significantly, three of those represented novel classes of GPCR-like proteins in fungi. The three novel GPCRs had high levels of identity to their counterparts in higher eukaryotes, including Homo sapiens. The numbers of GPCR-like proteins in the two Verticillium spp. were similar to those seen in other filamentous fungi, such as Magnaporthe grisea, Neurospora crassa and Fusarium graminearum. Additionally, the carbon/amino acid receptors were divided into three different subclasses, indicating that differences among the GPCRs existed not only among different classes but also within classes. In conclusion, the identification and classification of GPCRs and their homology to some well-studied fungi will be an important starting point for future research in Verticillium spp.  相似文献   

16.
【背景】棉花黄萎病是由大丽轮枝菌(Verticillium dahliae Kleb.)引起的一种世界性病害,近年来对该病害的生物防治因具有环境友好和人畜安全的特性而倍受关注。【目的】筛选棉花黄萎病高效拮抗细菌并对其进行鉴定,为棉花黄萎病的生物防治扩充菌种资源。【方法】采用稀释涂布平板法分离细菌,并进行拮抗细菌的初筛和复筛,通过形态特征、生理生化特征和16S rRNA基因序列分析对筛选到的细菌进行鉴定,确定其分类地位。【结果】初筛分离到535株对病原菌具有拮抗作用的细菌,并选取了108株拮抗细菌进行复筛,最终筛选到了4株优势拮抗细菌。通过形态观察、生理生化特征和16SrRNA基因序列分析,将菌株BHZ-29、SHT-15、SHZ-24和SMT-24分别鉴定为贝莱斯芽孢杆菌(Bacillusvelezensis)、枯草芽孢杆菌斯皮兹仁亚种(Bacillus subtilis subsp. spizizenii)、萎缩芽孢杆菌(Bacillus atrophaeus)和香草芽孢杆菌(Bacillus vanillea)。【结论】获得了4株高效拮抗细菌,并且首次报道了香草芽孢杆菌对棉花黄萎病菌具有抑制作用。  相似文献   

17.
Infection of tomato plants by Verticillium albo-atrum was encouraged by application of nitrogenous manures. Application of phosphate had no significant effect on the progress of the disease, but a deficiency of potash tended to encourage it. Steam-sterilized soil inoculated with Verticillium immediately after treatment produced a very high total of infected plants. When inoculation of the steamed soil by Verticillium was delayed for 17 days or longer after steaming, the steamed soil was no more favourable for development of the disease than untreated soil. Spread of Verticillium from the roots of an infected plant to those of neighbouring healthy plants was hastened by killing the infected plant.  相似文献   

18.
Vascular wilts caused by soil-borne fungal species of the Verticillium genus are devastating plant diseases. The most common species, Verticillium dahliae and Verticillium albo-atrum, have broad host ranges and are notoriously difficult to control. Therefore, genetic resistance is the preferred method for disease control. Only from tomato (Solanum lycopersicum) has a Verticillium resistance locus been cloned, comprising the Ve1 gene that encodes a receptor-like protein-type cell surface receptor. Due to lack of a suitable model for receptor-like protein (RLP)-mediated resistance signaling in Arabidopsis (Arabidopsis thaliana), so far relatively little is known about RLP signaling in pathogen resistance. Here, we show that Ve1 remains fully functional after interfamily transfer to Arabidopsis and that Ve1-transgenic Arabidopsis is resistant to race 1 but not to race 2 strains of V. dahliae and V. albo-atrum, nor to the Brassicaceae-specific pathogen Verticillium longisporum. Furthermore, we show that signaling components utilized by Ve1 in Arabidopsis to establish Verticillium resistance overlap with those required in tomato and include SERK3/BAK1, EDS1, and NDR1, which strongly suggests that critical components for resistance signaling are conserved. We subsequently investigated the requirement of SERK family members for Ve1 resistance in Arabidopsis, revealing that SERK1 is required in addition to SERK3/BAK1. Using virus-induced gene silencing, the requirement of SERK1 for Ve1-mediated resistance was confirmed in tomato. Moreover, we show the requirement of SERK1 for resistance against the foliar fungal pathogen Cladosporium fulvum mediated by the RLP Cf-4. Our results demonstrate that Arabidopsis can be used as model to unravel the genetics of Ve1-mediated resistance.  相似文献   

19.
Ethylene evolved during compatible or susceptible disease interactions may hasten and/or worsen disease symptom development; if so, the prevention of disease-response ethylene should reduce disease symptoms. We have examined the effects of reduced ethylene synthesis on Verticillium wilt (causal organism, Verticillium dahliae) of tomato by transforming tomato with ACC deaminase, which cleaves ACC, the immediate biosynthetic precursor of ethylene in plants. Three promoters were used to express ACC deaminase in the plant: (i) CaMV 35S (constitutive expression); (ii) rolD (limits expression specifically to the site of Verticillium infection, i.e. the roots); and (iii) prb-1b (limits expression to certain environmental cues, e.g. disease infection). Significant reductions in the symptoms of Verticillium wilt were obtained for rolD- and prb-1b-, but not for 35S-transformants. The pathogen was detected in stem sections of plants with reduced symptoms, suggesting that reduced ethylene synthesis results in increased disease tolerance. The effective control of formerly recalcitrant diseases such as Verticillium wilt may thus be obtained by preventing disease-related ethylene production via the tissue-specific expression of ACC deaminase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号