首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One mannanase and one of the three xylanases produced by Ceriporiopsis subvermispora grown on Pinus taeda wood chips were characterized. A combination of ion exchange chromatography and SDS-PAGE data revealed the existence of a high-molecular-weight mannanase of 150 kDa that was active against galactoglucomannan and xylan. Its activity was optimal at pH 4.5. The Km value with galactoglucomannan as substrate was 0.50 mg ml?1. One xylanase with molecular mass of 79 kDa was also purified and characterized. Its activity was optimal at 60 °C and pH 8.0. Its Km value with birchwood xylan as substrate was 1.65 mg ml?1. Both the mannanase and the 79 kDa xylanase displayed relatively high activity on carboxymethyl cellulose. The sensitivity of the xylanase and mannanase to various salts was evaluated. None of the tested salts inhibited the xylanase, but Mn+2, Fe+3, and Cu+2 were strong inhibitors for the mannanase.  相似文献   

2.
In this study, thermo-sensitive N-alkyl substituted polyacrylamide polymer PNNB was synthesized by using N-hydroxymethyl acrylamide(NHAM), N-isopropyl acrylamide (NIPA) and butyl acrylate (BA) as monomers, and its low critical solution temperature (LCST) was controlled to be 28 °C. The recovery of the thermo-sensitive polymer was over 98%. Butanol as a hydrophobic ligand was covalently attached onto polymer PNNB and butyl ligand density was 80 μmol g?1 polymer. The affinity polymer was used for purification of lipase from crude material. Optimized condition was pH 7.0, 35 °C adsorption temperature, 120 min adsorption time and 0.5 mg ml?1 initial concentration of lipase. The adsorption isotherm accords with a typical Langmuir isotherm. The maximum adsorption capacity (Qm) of the affinity polymer for lipase was 24.8 mg g?1polymer. The affinity copolymer could be recycled by temperature-inducing precipitation and there was only about 6% loss of adsorption capacity after five recyclings. Specific activity of lipase was improved from 14 IU mg?1 to 506 IU mg?1 protein, and its recovery achieved 82%. The affinity polymer is suitable for the purification of target proteins from the crude material with large volume and dilute solution.  相似文献   

3.
The aim of this study was to evaluate the supplementation of Vitamin E in diet on the antioxidant capacity of testis in Boer goat. Twenty-four healthy, Boer male kids of similar body weight (BW) were selected at 3 months of age from the kid flock. Kids were born from does treated with simultaneous flushing and artificial insemination technology. The Boer kids were divided into four groups randomly, supplemented with 0, 80, 320 and 880 IU kid?1 d?1 Vitamin E, which were labeled as Groups 1, 2, 3 and 4, respectively, for 150 days (5 months). Blood samples were collected at the 15th-, 30th-, 60th-, 90th-, 120th-, and 150th-day during the experimental period, and the serums were used to determine Vitamin E content. Three Boer goats in each group were slaughtered at the age of eight months at the end of the experiment. Liver and testis were collected to test the Vitamin E content and the antioxidant capacity of testis. Results showed that the content of Vitamin E in serum, liver and testis increased with the increasing addition of Vitamin E. However, the content of Vitamin E in the serum, liver and testis, in the control, was significantly lower than in Groups 2 and 3, respectively, but there was no significant difference between the control Group and Group 4. When high levels of Vitamin E (880 IU kid?1 d?1) were added, contents of Vitamin E in serum, liver and testis were decreased and compared with the controls. Adding a low level (80 IU kid?1 d?1) of Vitamin E can increase activity of total anti-oxidation competence (T-AOC) and superoxide dismutase (SOD), and decrease content of nitric oxide (NO) in testis. MDA (malondialdehyde) content was decreased significantly in Group 3 (P < 0.05). Supplementing a low level (80 IU kid?1 d?1) and middle level (320 IU kid?1 d?1) of Vitamin E decreased activity of nitric oxide syntha (NOS) in testis (P < 0.05). Vitamin E can increase activity of GSH-PX (glutathione peroxidase). These results indicate that supplementing Vitamin E protects testis from damage by preoxidation.  相似文献   

4.
Two bacteriocins, ST28MS and ST26MS, produced by Lactobacillus plantarum isolated from molasses, inhibited the growth of Lactobacillus casei, Lactobacillus sakei, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumanii. The mode of activity of the bacteriocins is bacteriostatic, as observed against L. casei and P. aeruginosa. Reduction in antimicrobial activity was recorded after treatment with Proteinase K, papain, trypsin, chymotrypsin, pronase, pepsin and protease. Both peptides remained active after 20 min at 121 °C. Bacteriocin ST28MS was produced at much higher levels (12,800 AU/mL) compared to bacteriocin ST26MS (6400 AU/mL) with glucose as carbon source. The activity of bacteriocin ST28MS decreased by 50% at pH below 4.0. Bacteriocin ST26MS, on the other hand, is more stable at this pH. Production of both bacteriocins is stimulated by tryptone. Potassium (KH2PO4 and K2HPO4) at 5 and 10 g/L stimulated the production of bacteriocin ST28MS, but not bacteriocin ST26MS. MRS supplemented with glycerol (1–5 g/L) did not result in any changes in the activity levels of the two bacteriocins. Ascorbic acid and Vitamins B1 and B12 are required for bacteriocin ST28MS production, but only Vitamin B12 for bacteriocin ST26MS production. No plasmids were recorded for strains ST28MS and ST26MS, suggesting that the genes encoding production of the two bacteriocins are located on the genomes.  相似文献   

5.
Cellobiose dehydrogenase production by Neurospora crassa was investigated in this study. N. crassa has two putative cellobiose dehydrogenase (CDH) genes (cdh) in its genome. CDH was produced only under cellulolytic conditions. Deletion of nc-cdh1 eliminated almost all of the strain’s CDH activity, whereas the deletion of nc-cdh2 had little effect on total extracellular CDH activity, which indicates that NC-CDH1 is a major contributor to overall CDH activity. The homologous expression of nc-cdh1 and nc-cdh2 under the control of the constitutive D-glyceraldehyde-3-phosphate dehydrogenase (gpdA) promoter enabled recombinant CDH production under non-cellulolytic conditions. Both NC-CDH1 and NC-CDH2 produced by N. crassa were successfully purified and characterized for the first time. NC-CDH1 and NC-CDH2 have molecular weights of 100 kDa and 130 kDa, respectively. When their N-linked glycans were removed by N-glycosidase F treatment, both enzymes showed a molecular weight of 95 kDa. Although NC-CDH2 lacks the cellulose-binding module and contributed marginally to total CDH activity in N. crassa, NC-CDH2 has specific activity similar to that of NC-CDH1 (7.93 vs. 8.89 IU mg−1), and it has a much lower Km value than that of NC-CDH1 (5.79 vs. 25.72 μM). The lower activity contribution of NC-CDH2 in the wild-type strain may results from its lower enzyme production.  相似文献   

6.
A thermo-alkaline pectate lyase (BliPelA) gene from an alkaliphilic Bacillus licheniformis strain was cloned and overexpressed in Escherichia coli. Mature BliPelA exhibited maximum activity at pH 11 and 70 °C, and demonstrated cleavage capability on a broad range of substrates such as polygalacturonic acid, pectins, and methylated pectins. The highest specific activity, of 320 U mg−1, was towards polygalacturonic acid. Significant ramie (Boehmeria nivea) fiber weight loss (21.5%) was obtained following enzyme treatment and combined enzyme-chemical treatment (29.3%), indicating a high ramie degumming efficiency of BliPelA. The total activity of recombinant BliPelA reached 1450.1 U ml−1 with a productivity of 48.3 U ml−1 h−1 under high-cell-density cultivation with a glycerol exponential feeding strategy for 30 h in 1-l fed-batch fermenter, and 1380.1 U ml−1 with a productivity of 57.5 U ml−1 h−1 after 24 h under constant glucose feeding in a 20-l fermenter using E. coli as the host. The enzyme yields reached 4.5 and 4.3 g l−1 in 1-l and 20-l fed-batch fermenters, respectively, which are higher than those of most reported alkaline Pels. Based on these promising properties and high-level production, BliPelA shows great potential for application in ramie degumming in textile industry.  相似文献   

7.
《Microbiological research》2014,169(12):948-953
Bacteriocins synthesized by entomopathogenic Bacillus thuringiensis are gaining attention owing to their inhibitory effects against a wide variety of pathogenic bacteria. In the present study, we purified and characterized Tolworthcin 524, a bacteriocin synthesized by B. thuringiensis subsp. tolworthi, and compared it with other bacteriocins synthesized by B. thuringiensis. Tolworthcin 524 was separated and purified from the secretome of B. thuringiensis by fast protein liquid chromatography with a gel filtration column to obtain yields of 17% and a specific activity of ∼3600 U/mg protein. The purified product showed two peptides of ∼9 and 6 kDa with antimicrobial activity in a gel-screening assay. The purified product was analyzed by two-dimensional electrophoresis and the resolved peptides of ∼9 and 6 kDa with isoelectric points of ∼8 were sequenced. Partial sequences (METPVVQPR and DWTCWSCLVCAACS) were obtained suggesting that the ∼9 and 6 kDa correspond to the prebacteriocin and mature Tolworthcin 524, respectively. Sequences showed high identity with Thurincin H and Thuricin 17 and had a conserved motif with other bacteriocins of B. thuringiensis. Based on sequence data, Tolworthcin 524 was classified in subclass II.2 (Thuricin-like peptides) of the Bacillus bacteriocin classification scheme. The larger peptide did not harbor a sequence suggestive of a signal peptide neither did it contain the double-glycine (GG) motif characteristic of the secretion leader recognized by the ABC transport system. Implications of these properties in Tolworthcin 524 secretion are discussed.  相似文献   

8.
A β-galactosidase gene (designated PaGalA) was cloned for the first time from Paecilomyces aerugineus and expressed in Pichia pastoris under the control of the AOX1 promoter. The coding region of 3036 bp encoded a protein of 1011 amino acids with a deduced molecular mass of 108.7 kDa. The PaGalA without the signal peptide was cloned into a vector pPIC9K and was expressed successfully in P. pastoris as active extracellular β-galactosidase. The recombinant β-galactosidase (PaGalA) was secreted into the medium at an extremely high levels of 22 mg ml−1 having an activity of 9500 U ml−1 from high density fermentation culture, which is by far the highest yield obtained for a β-galactosidase. The purified enzyme with a high specific activity of 820 U mg−1 had a molecular mass of 120 kDa on SDS-PAGE. PaGalA was optimally active at pH 4.5 and a temperature of 60 °C. The recombinant β-galactosidase was able to hydrolyze lactose efficiently at pH 5.0 and 50 °C. It also possessed transglycosylation activities at high concentrations of lactose. PaGalA exhibited better lactose hydrolysis efficiency in whey than two other widely used commercial lactases. The extremely high expression levels coupled with favorable biochemical properties make this enzyme highly suitable for commercial purposes in the hydrolysis of lactose in milk or whey.  相似文献   

9.
A rumen simulation technique (RUSITEC) apparatus with eight 940 ml fermentation vessels was used to study the effects of the steroidal saponins in Yucca schidigera extract (YE) on ruminal microbial activity and saponin degradation. The YE contained approximately 4.4% (w/w) saponin, as smilagenin equivalents, and was included at 0 (control) or 0.5 mg ml−1 (n=4) in the McDougall's buffer infused continuously into the vessels (dilution rate=0.75 day−1). Each vessel received 5 g chopped alfalfa hay and 5 g concentrate (as-fed basis) daily for 22 days. Ammonia concentrations were lower (P<0.05) in effluent from vessels receiving YE than from controls for the first half of the study, but did not differ thereafter. Total amounts of VFA in effluent were not affected (P>0.05) by YE, but molar proportions of iso-butyric and iso-valeric acids were lower (P<0.05) in the YE vessels than in the controls in the first half of the experiment. Yucca extract at 0.5 mg ml−1 did not affect (P>0.05) dry matter disappearance (DMD) from hay or from concentrate, nor did it affect total gas or methane production, or bacterial numbers (total or cellulolytic populations) in homogenates prepared from fermenter vessel liquid and feed particles. Protozoal numbers in the homogenates were substantially reduced (P<0.01) by YE (at 0.5 mg ml−1), protease activity was increased (P<0.05), deaminase activity and activity against Ala2 were unaffected (P>0.05) and activity against Ala5 was reduced by 25% (P>0.05). When the homogenates from control and YE-supplemented (0.5 mg ml−1) vessels were used to inoculate roll tubes containing 0 or 5 mg ml−1 of YE, fewer colonies developed (P<0.01) in roll tubes containing YE than in those without YE, irrespective of the source of inoculum. Homogenates were also assayed for saponin degradation and for protease, peptidase and deaminase activities. Inoculum from the vessels receiving YE degraded saponin slightly during a 2 h incubation. Yucca extract at 0.5 mg ml−1 altered proteolytic activity and reduced protozoal numbers, but did not affect DMD or bacterial activity, and did not induce resistance to YE at a concentration of 5 mg ml−1.  相似文献   

10.
A transferase was isolated, purified and characterised from Aspergillus aculeatus. The enzyme exhibited a pH and temperature optima of 6.0 and 60 °C, respectively and under such conditions remained stable with no decrease in activity after 5 h. The enzyme was purified 7.1 fold with a yield of 22.3% and specific activity of 486.1 U mg?1 after dialysis, concentration with polyethyleneglycol (30%) and DEAE-Sephacel chromatography. It was monomeric with a molecular mass of 85 kDa and Km and Vmax values of 272.3 mM and 166.7 μmol min?1 ml?1. The influence of pH, temperature, reaction time, and enzyme and sucrose concentration on the formation of short-chain fructooligosaccharides (FOS) was examined by statistical response surface methodology (RSM). The enzyme showed both transfructosylation and hydrolytic activity with the transfructosylation ratio increasing to 88% at a sucrose concentration of 600 mg ml?1. Sucrose concentration (400 mg ml?1) temperature (60 °C), and pH (5.6) favoured the synthesis of high levels of GF3 and GF4. Incubation time had a critical effect on the yield of FOS as the major products were GF2 after 4 h and GF4 after 8 h. A prolonged incubation of 16 h resulted in the conversion of GF4 into GF2 as a result of self hydrolase activity.  相似文献   

11.
The inimical effects of the ichthyotoxic harmful algal bloom (HAB)-forming raphidophytes Heterosigma akashiwo, Chattonella marina, and Chattonella antiqua on the early-life stages of the Japanese pearl oyster Pinctada fucata martensii were studied. Fertilized eggs and developing embryos were not affected following exposure to the harmful raphidophytes; however, all three algal species severely affected trochophores and D-larvae, early-stage D-larvae, and late-stage pre-settling larvae. Exposure to C. marina (5 × 102 cells ml−1), C. antiqua (103 cells ml−1), and H. akashiwo (5 × 103 cells ml−1) resulted in decreased success of metamorphosis to the trochophore stage. A complete inhibition of trochophore metamorphosis was observed following exposure to C. antiqua at 5 × 103 cells ml−1 and C. marina at 8 × 103 cells ml−1. In all experiments, more than 80% of newly formed trochophores were anomalous, and in the case of exposure to H. akashiwo at 105 cells ml−1 more than 70% of D-larvae were anomalous. The activity rates of D-larvae (1-day-old) were significantly reduced following exposure to C. antiqua (8 × 103 cells ml−1, 24 h), C. marina (8 × 103 cells ml−1, 24 h), and H. akashiwo (104 cells ml−1, 24 h). The activity rates of pre-settling larvae (21-day-old) were also significantly reduced following exposure to C. antiqua (103 cells ml−1, 24 h), C. marina (8 × 103 cells ml−1, 24 h), and H. akashiwo (5 × 104 cells ml−1, 24 h). Significant mortalities of both larval stages were induced by all three raphidophytes, with higher mortality rates registered for pre-settling larvae than D-larvae, especially following exposure to C. marina (5 × 102–8 × 103 cells ml−1, 48–86 h) and C. antiqua (103–8 × 103 cells ml−1, 72–86 h). Contact between raphidophyte cells and newly metamorphosed trochophores and D-larvae, 1-day-old D-larvae, and 21-day-old larvae resulted in microscopic changes in the raphidophytes, and then, in the motile early-life stages of pearl oysters. Upon contact and physical disturbance of their cells by larval cilia, H. akashiwo, C. marina and C. antiqua became immotile and shed their glycocalyx. The trochophores and larvae were observed trapped in a conglomerate of glycocalyx and mucus, most probably a mixture of larval mucous and raphidophyte tricosyts and mucocytes. All motile stages of pearl oyster larvae showed a typical escape behavior translating into increased swimming in an effort to release themselves from the sticky mucous traps. The larvae subsequently became exhausted, entrapped in more heavy mucous, lost their larval cilia, sank, become immotile, and died. Although other toxic mediators could have been involved, the results of the present study indicate that all three raphidophytes were harmful only for motile stages of pearl oysters, and that the physical disturbance of their cells upon contact with the ciliary structures of pearl oyster larvae initiated the harmful mechanism. The present study is the first report of lethal effects of harmful Chattonella spp. towards larvae of a bivalve mollusc. Blooms of H. akashiwo, C. antiqua and C. marina occur in all major cultivation areas of P. fucata martensii during the developmental period of their larvae. Therefore, exposure of the motile early-life stages of Japanese pearl oysters could adversely affect their population recruitment. In addition, the present study shows that further research with early-life development of pearl oysters and other bivalves could contribute to improving the understanding of the controversial harmful mechanisms of raphidophytes in marine organisms.  相似文献   

12.
We have recently discovered a new class of bacteriocin (class IId) which stimulates plant growth in a way similar to Nod factors. Nod factors have been shown to provoke aspects of plant disease resistance. We investigated the effects of bacteriocins [thuricin 17 (T17) and bacthuricin F4 (BF4)] on the activities of phenylalanine ammonia lyase (PAL), guaiacol peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and polyphenol oxidase (PPO). Bacteriocin solutions were fed into the cut stems of soybean (Glycine max L. Merr. cv. OAC Bayfield) seedlings at the first trifoliate stage. PAL activity in T17 treated leaves was the highest at 72 h after treatment and was 75.5% greater than the control at that time. At 72 h after treatment POD activities in T17 and BF4 treated leaves increased by 72.7 and 91.3%, respectively, as compared with the control treatment. APX activity was 52.3 and 49.6% respectively, greater than the control in T17 and BF4 treated leaves at 72 h after treatment. SOD activity in T17 treated leaves was the highest at 72 h after treatment and was 26.0% greater than the control at that time. SOD activity was 70.5 and 60.2% greater, respectively, than the control in T17 and BF4 treated leaves, at 72 h. Using PAGE we found that one APX isozyme (28 kDa isoform) showed the strongest induction in all bacteriocin treated leaves at 72 h. Activity of the seven SOD isozymes was increased by both bacteriocins, relative to the control treatment. The 33 kDa PPO isozyme was induced strongly by both bacteriocins, relative to the control treatment. These results indicate that class IId bacteriocins can act as an inducer of plant disease defense-related enzymes and may be acting through mechanisms similar to Nod factors.  相似文献   

13.
Mesorhizobium sp. F28 contains cobalt-NHase, which effectively converts acrylonitrile into acrylamide. When urea was added to the culture medium, the NHase activity was 62.3 U ml?1 (R2A–R2A/urea) after 22.5 h of cultivation, which was similar to that in the medium without addition (R2A–R2A, 70.0 U ml?1). The relative activity of the purified NHase was 100%, 92%, 94%, and 92% in the medium containing, respectively, 0 mM, 2 mM, 5 mM, and 10 mM of urea. Urea had no significant effect on the purified NHase activity of Mesorhizobium sp. F28. This research did not observe the NHase production by Mesorhizobium sp. F28 when acrylonitrile was supplemented in the culture medium except that cobalt ions existed. The highest enzyme activity was 328.5 U ml?1 as cobalt ions were added in the pre-culture and culture medium after 22.5 h of cultivation (R2A/Co-R2A/Co); compared to media without cobalt ions (R2A–R2A, 22.5 h, 70.5 U ml?1) this is an almost five-fold enhancement. It can be concluded that culture media containing cobalt ions was beneficial for the formation of active NHase of Mesorhizobium sp. F28.  相似文献   

14.
Modelling and simulation was done for a two-stage membrane-integrated hybrid reactor system for continuous production of L (+) lactic acid under non-neutralizing conditions. The model captures microbial conversion of sugar cane juice to lactic acid under substrate–product inhibitions with downstream purification by nanofiltration. All the major phenomena and the governing parameters like fluid flow, feed dilution, substrate–product inhibitions, Donnan and steric effects during micro and nanofiltration for cell recycle, product separation and purification have been reflected in the modelling. The model describes a green, integrated continuous process of direct lactic acid production starting with a cheap, renewable carbon source. The highest lactic acid concentration achieved after the final stage of nanofiltration was 66.97 g/L at 13 kg/cm2 operating pressure when the overall productivity reached 12.40 g/(L h). The developed model could successfully predict production, purification and transport of lactic acid through two stage membrane modules. Performance of the model was very good as indicated in the high overall correlation coefficient (R2 > 0.980) and the low relative error (RE < 0.1).  相似文献   

15.
The unicellular alga Prymnesium parvum has been responsible for toxic incidents with severe ecological impacts in many parts of the world, and causes massive fish kills worldwide. Recently the haptophyte microalgae have caused water-bloom (4.3 × 104 cells ml−1) in 6 fish ponds with high conductivity in Hungary, and caused fish mortality with typical symptoms. Toxicity of P. parvum from water samples was quantified by the assay of the influence of its cell-free filtrates on haemolysis (346 ± 42.2) and in fish and daphnia toxicity tests. High amount of proteases in P. parvum containing waterbloom samples were detected with the help of activity gel electrophoresis. The proteases of investigated P. parvum samples (125–18 kDa) showed high gelatinolytic activity and some of them showed sensitivity to EDTA (inhibitors of metalloproteases) and to PMSF (inhibitors of serine proteases).  相似文献   

16.
Monoclonal antibodies (MAbs) against Vibrio vulnificus (isolate I, VVC and isolate II, VVB) were raised using heat-killed and heat-killed plus SDS–mercaptoethanol treated forms of VVC and VVB for immunizing Swiss mice. Twenty three hybridomas producing MAbs against V. vulnificus were selected and divided into five groups according to their specificities to different V. vulnificus isolates and apparent protein antigens which ranged from ∼ 3–50 kDa. Four groups were specific to V. vulnificus without cross reactivity to either other Vibrio spp. or other bacterial species. In dot blot based assays, one group of MAbs were specific to VVC, with a sensitivity of ∼ 1.6 × 107 CFU ml 1 (∼ 1.6 × 104 cells spot 1), and bound to proteins of ∼ 50 and ∼ 39 kDa. Other MAbs, binding to proteins ranging from ∼ 3–14 and ∼ 40 kDa, detected VVB (but not VVC) with high sensitivity at ∼ 1.6 × 105 and 4 × 106 CFU ml 1 (∼ 1.6 × 102 and 4 × 103 cells spot 1), respectively. In addition, certain MAbs were able to recognize V. vulnificus in tissues by means of immunohistochemistry. The remaining groups demonstrated cross reactivity to Vibrio fluvialis. MAbs from this study can, therefore, detect the difference between some isolates of V. vulnificus and in addition to pathogen detection may, with further antibodies, form the basis of serovar typing isolates in the future.  相似文献   

17.
We report in this work the preparation and in vitro antimicrobial evaluation of novel amphiphilic aromatic amino alcohols synthesized by reductive amination of 4-alkyloxybenzaldehyde with 2-amino-2-hydroxymethyl-propane-1,3-diol. The antibacterial activity was determined against four standard strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and 21 clinical isolates of methicillin-resistant Staphylococcus aureus. The antifungal activity was evaluated against four yeast (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis). The results obtained showed a strong positive correlation between the lipophilicity and the antibiotic activity of the tested compounds. The best activities were obtained against the Gram-positive bacteria (MIC = 2–16 μg ml?1) for the five compounds bearing longer alkyl chains (4cg; 8–14 carbons), which were also the most active against Candida (MIC = 2–64 μg ml?1). Compound 4e exhibited the highest levels of inhibitory activity (MIC = 2–16 μg ml?1) against clinical isolates of MRSA. A concentration of twice the MIC resulted in bactericidal activity of 4d against 19 of the 21 clinical isolates.  相似文献   

18.
A thermoalkaline protease with a molecular weight of 22 kDa was purified from the Bacillus cereus SIU1 strain using a combination of Q-Sepharose and Sephadex G-75 chromatography. The kinetic analyses revealed the Km, Vmax and kcat to be 1.09 mg ml?1, 0.909 mg ml?1 min?1 and 3.11 s?1, respectively, towards a casein substrate. The protease was most active and stable at pH 9.0 and between a temperature range of 45–55 °C. It was fully stable at 0.0–2.0% and moderately stable at 2.5–10.0% (w/v) sodium chloride. Phenyl methyl sulfonyl fluoride, ethylene diamine tetra acetic acid and ascorbic acid were inhibitory with regard to enzyme activity, whereas cysteine, β-mercaptoethanol, calcium, magnesium, manganese and copper at concentration of 1.0 mM increased enzyme activity. Sodium dodecyl sulfate, Triton X-100, Tween 80, hydrogen peroxide and sodium perborate significantly enhanced protease activity at 0.1 and 1.0% concentrations. In the presence of 0.1 and 1.0% (w/v) detergents, the protease was fairly stable and retained 50–76% activity. Therefore, it may have a possible application in laundry formulations. An initial analysis of the circular dichroism (CD) spectrum in the ultraviolet range revealed that the protease is predominantly a β-pleated structure and a detailed structural composition showed ~50% β-sheets. The CD-based conformational evaluation of the protease after incubation with modulators, metal ions, detergents and at different pH values, revealed that the change in the β-content directly corresponded to the altered enzyme activity. The protease combined with detergent was able to destain blood stained cloth within 30 min.  相似文献   

19.
Intermedin/adrenomedullin-2 (IMD) is a member of the adrenomedullin/CGRP peptide family. Less is known about the distribution of IMD than for other family members within the mammalian cardiovascular system, particularly in humans. The aim was to evaluate plasma IMD levels in healthy subjects and patients with chronic heart failure. IMD and its precursor fragments, preproIMD25–56 and preproIMD57–92, were measured by radioimmunoassay in 75 healthy subjects and levels of IMD were also compared to those of adrenomedullin (AM) and mid-region proadrenomedullin45–92 (MRproAM45–92) in 19 patients with systolic heart failure (LVEF < 45%). In healthy subjects, plasma levels (mean + SE) of IMD (6.3 + 0.6 pg ml−1) were lower than, but correlated with those of AM (25.8 + 1.8 pg ml−1; r = 0.49, p < 0.001). Plasma preproIMD25–56 (39.6 + 3.1 pg ml−1), preproIMD57–92 (25.9 + 3.8 pg ml−1) and MRproAM45–92 (200.2 + 6.7 pg ml−1) were greater than their respective bioactive peptides. IMD levels correlated positively with BMI but not age, and were elevated in heart failure (9.8 + 1.3 pg ml−1, p < 0.05), similarly to MRproAM45–92 (329.5 + 41.9 pg ml−1, p < 0.001) and AM (56.8 + 10.9 pg ml−1, p < 0.01). IMD levels were greater in heart failure patients with concomitant renal impairment (11.3 + 1.8 pg ml−1) than those without (6.5 + 1.0 pg ml−1; p < 0.05). IMD and AM were greater in patients receiving submaximal compared with maximal heart failure drug therapy and were decreased after 6 months of cardiac resynchronization therapy. In conclusion, IMD is present in the plasma of healthy subjects less abundantly than AM, but is similarly correlated weakly with BMI. IMD levels are elevated in heart failure, especially with concomitant renal impairment, and tend to be reduced by high intensity drug or pacing therapy.  相似文献   

20.
《Process Biochemistry》2010,45(6):851-858
A high β-glucosidase (BGL)-producing strain was isolated and identified as Penicillium pinophilum KMJ601 based on its morphology and internal transcribed spacer rDNA gene sequence. Under the optimal culture conditions, a maximum BGL specific activity of 3.2 U ml−1 (83 U mg-protein−1), one of the highest levels among BGL-producing microorganisms was obtained. An extracellular BGL was purified to homogeneity by sequential chromatography of P. pinophilum culture supernatants on a DEAE-Sepharose column, a gel filtration column, and then on a Mono Q column. The relative molecular weight of P. pinophilum BGL was determined to be 120 kDa by SDS-PAGE and size exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the BGL had a pH optimum of 3.5 and a temperature optimum of 32 °C. P. pinophilum BGL showed a higher activity (Vmax = 1120 U mg-protein−1) than most BGLs purified from other sources. The internal amino acid sequences of P. pinophilum BGL showed a significant homology with hydrolases from glycoside hydrolase family 3. Although BGLs have been purified and characterized from several other sources, P. pinophilum BGL is distinguished from other BGLs by its high activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号