首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2007,42(3):401-408
This study systematically characterized an aerobic bacterial strain Sphingomonas sp. GY2B for biotransformation of phenanthrene. The strain was isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and was shown to efficiently use phenanthrene as the sole carbon and energy source. The antibiotics discs susceptibility test revealed that the bacterium was susceptible to some commonly used antibiotics, such as cefuroxime, chloramphenicol, erythromycin and tetracycline. It showed better growth at pH 7.4 and 30 °C and in a mineral salts medium (MSM) with phenanthrene at 100 mg L−1 as the substrate. The results indicated that 99.8% of the substrate had been degraded and that salicylate route was likely the metabolic pathway. When added as the second organic chemical, glucose could enhance the bacterial growth at low concentration (10–200 mg L−1), but could inhibit cell growth at high concentration (>500 mg L−1). Further study showed that strain GY2B could also use naphthalene, phenol, 1-hydroxy-2-naphthoic acid, 2-naphthol, salicylic acid and catechol as the sole carbon and energy source, but did not grow on 1-naphthol which could be co-metabolized in the present of phenanthrene or 1-hydroxy-2-naphthoic acid.  相似文献   

2.
A sediment sample from Venice Lagoon was found to be contaminated with 475 mg Kg−1 polycyclic aromatic hydrocarbons (PAHs). Naphthalene was the principal pollutant at 26% of total PAHs. Two strains of Pseudomonas SN1 and SB1 were isolated from sediment amended with 2% naphthalene. 16S rRNA gene sequence analysis indicated that the two strains have about 99% nucleotide identity with strains of the genus Pseudomonas, and are very close to Pseudomonas stutzeri. Their metabolic profiles showed significant nutritional differences, the most significant of which was that SN1 grows in marine mineral medium spiked with naphthalene and SB1 grows with biphenyl as sole carbon and energy sources. Pseudomonas sp. SN1 had a doubling time of 3.1 h with 2% naphthalene and SB1 had a doubling time of 19.5 h with 2% biphenyl. Strain SN1 oxidised naphthalene at 564±32 mg O2 l−1 d−1 and SB1 oxidised biphenyl at 426±25 mg O2 l−1 d−1 in respirometry reaction vessels under controlled conditions. Screening of the two strains for dioxygenase genes involved in the first step of the two hydrocarbon degradation pathways, by polymerase chain reaction, showed naphthalene dioxygenase in SN1 and biphenyl dioxygenase in SB1. The strains each have a different catechol 2,3-dioxygenase responsible for cleavage of the aromatic ring.  相似文献   

3.
The effects of heavy metals (Cd, Cr and Cd + Cr) on the motility parameters and oxidative stress of sterlet (Acipenser ruthenus) sperm were investigated in vitro. Sturgeon sperm were exposed for 2 h to heavy metals at environmental related concentrations (0.1 mg L?1 Cr, 0.001 mg L?1 Cd, 0.1 mg L?1 Cr + 0.001 mg L?1 Cd) and higher concentrations (5.0 mg L?1 Cr, 0.05 mg L?1 Cd, 5.0 mg L?1 Cr + 0.05 mg L?1 Cd). Results revealed that environmental concentrations of heavy metals had no significant influence on motility parameters and antioxidant responses indices in sturgeon sperm, except for LPO level and SOD activity. But higher concentrations of these metals induced oxidative tress in sturgeon sperm in vitro, associated with sperm motility parameters inhibition. Our results suggest that using of sperm in vitro assays may provide a novel and efficiently means for evaluating the effects of residual heavy metals in aquatic environment on sturgeon.  相似文献   

4.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   

5.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L?1 and 210 mg L?1 in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L?1. The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day?1 and 48–50%, respectively) as the NB concentration was increased from 30 to 210 mg L?1. In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L?1 NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.  相似文献   

6.
A new laccase from Shiraia sp.SUPER-H168 was purified by ion exchange column chromatography and gel permeation chromatography and the apparent molecular mass of this enzyme was 70.78 kDa, as determined by MALDI/TOF-MS. The optimum pH value of the purified laccase was 4, 6, 5.5 and 3 with 2,6-dimethoxyphenol (DMP), syringaldazine, guaiacol and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as substrates, respectively. The optimum temperature of the purified laccase was 50 °C using DMP, syringaldazine and guaiacol as substrates, but 60 °C for ABTS. Inhibitors and metal ions of SDS, NaN3, Ag+ and Fe3+ showed inhibition on enzyme activity of 10.22%, 7.86%, 8.13% and 67.50%, respectively. Fe2+ completely inhibited the purified laccase. The Kcat/Km values of the purified laccase toward DMP, ABTS guaiacol and syringaldazine were 3.99 × 106, 3.74 × 107, 8.01 × 104 and 2.35 × 107 mol?1 L S?1, respectively. The N-terminal amino acid sequence of the purified laccase showed 36.4% similarity to Pleurotus ostrestus. Approximately 66% of the Acid Blue 129 (100 mg L?1) was decolorized by 2.5 U of the purified laccase after a 120 min incubation at 50 °C. Acid Red 1 (20 mg L?1) and Reactive Black 5 (50 mg L?1) were decolorized by the purified laccase after the addition of Acid Blue 129 (100 mg L?1).  相似文献   

7.
In this study, zinc (Zn) and cadmium (Cd) tolerance, accumulation and distribution was conducted in Potentilla griffithii H., which has been identified as a new Zn hyperaccumulator found in China. Plants were grown hydroponically with different levels of Zn2+ (20, 40, 80 and 160 mg L?1) and Cd2+ (5, 10, 20 and 40 mg L?1) for 60 days. All plants grew healthy and attained more biomass than the control, except 40 mg L?1 Cd treatment. Zn or Cd concentration in plants increased steadily with the increasing addition of Zn or Cd in solution. The maximum metal concentrations in roots, petioles and leaves were 14,060, 19,600 and 11,400 mg kg?1 Zn dry weight (DW) at 160 mg L?1 Zn treatment, and 9098, 3077 and 852 mg kg?1 Cd DW at 40 mg L?1 Cd treatment, respectively. These results suggest that P. griffithii has a high ability to tolerate and accumulate Cd and Zn, and it can be considered not only as Zn but also as a potential cadmium hyperaccumulator. Light microscope (LM) with histochemical method, scanning electron microscope combined with energy dispersive spectrometry (SEM-EDS) and transmission electron microscope (TEM) were used to determine the distribution of Zn and Cd in P. griffithii at tissue and cellular levels. In roots, SEM-EDS confirmed that the highest Zn concentration was found in xylem parenchyma cells and epidermal cells, while for Cd, a gradient was observed with the highest Cd concentration in rhizodermal and cortex cells, followed by central cylinder. LM results showed that Zn and Cd distributed mainly along the walls of epidermis, cortex, endodermis and some xylem parenchyma. In leaves, Zn and Cd shared the similar distribution pattern, and both were mostly accumulated in epidermis and bundle sheath. However, in leaves of 40 mg L?1 Cd treatment, which caused the phytotoxicity, Cd was also found in the mesophyll cells. The major storage site for Zn and Cd in leaves of P. griffithii was vacuoles, to a lesser extent cell wall or cytosol. The present study demonstrates that the predominant sequestration of Zn and Cd in cell walls of roots and in vacuoles of epidermis and bundle sheath of leaves may play a major role in strong tolerance and hyperaccumulation of Zn and Cd in P. griffithii.  相似文献   

8.
In soil, high variability of U bioavailability results in large range of apparent U toxic levels for plants. U toxicity on hairy roots of carrot was studied in nutrient gel with a standardized in vitro device. After exposure to 2.5 and 20 mg U L?1 for 34 days, U concentration ranged between 4 and 563 mg U kg?1 fresh weight which was in good accordance with U accumulation by roots of plant from contaminated soils. Threshold of U toxicity for root length decreased with time and a transient hormesis occurred for exposure to 2.5 and 5 mg U L?1. After 34 days and with root length as endpoint, significant toxicity appeared at a gel contamination level above 7.5 mg U L?1 corresponding to a maximum U concentration in the liquid phase of 0.8 mg L?1. The calculated EC50 for root length as a function of gel contamination was 9.4 mg U L?1. Lower threshold and EC50 were observed for biomass as endpoint (resp. 5 and 7.3 mg U L?1). The low values observed in this study could result from high sensitivity of carrot to U, high bioavailability of U in gel or absence of interferences with microorganisms. This in vitro device appeared adapted to study toxicity of U to plant roots in optimal conditions of both exposure and observations and is recommended to examine further physiological processes and the influence of microorganism interactions.  相似文献   

9.
A biosurfactant-producing strain S6 was isolated from oil-containing wastewater and identified as Pseudomonas aeruginosa based on physiological and biochemical tests together with 16S rDNA sequence analysis. Thin layer chromatography (TLC) and high-performance liquid chromatography electrospray ionization mass spectra (HPLC-ESI-MS) worked together to reveal that the strain S6 produced rhamnolipid biosurfactant. Mass spectrometry confirmed the presence of some major components in the rhamnolipid surfactant showing m/z of 675.8, 529.6, 503.3 and 475.4, which corresponded to RhaRhaC10C12:1, RhaC12:1C10, RhaC10C10 and RhaC8C10, respectively. The biosurfactant produced by strain S6 had the ability to decrease the surface tension of water from 72 to 33.9 mN m?1, with the critical micelle concentration (CMC) of 50 mg L?1. Emulsification experiment indicated that this biosurfactant effectively emulsified the crude petroleum and the measurements of surface tension demonstrated that the biosurfactant possessed stable surface activity at variable ranges of pH and salinity. The biosurfactant also exhibited good performance of phenanthrene solubilization with about 23 times higher solubility of phenanthrene in water than the control. Thus, this biosurfactant may have a potential for application in bioremediation of crude oil contamination.  相似文献   

10.
Flavonoid glycosides are highly attractive targets due to their dominant roles in clinical, cosmetic production and in the food industry. In this research, an Escherichia coli strain bearing the reconstructed uridine-diphosphate glucose (UDP-glucose) pathway cassette and a putative glycosyltransferase from Arabidopsis thaliana, was developed as a host for the production of apigenin-7-O-β-d-glucoside (APG) and baicalein-7-O-β-d-glucoside (BCG) from exogenously supplied flavone aglycones (apigenin and baicalein, respectively). In order to improve the yield, genetic engineering of E. coli strains for optimization of intracellular UDP-glucose generation, as well as media optimization were carried out. The production was scaled up using a fed batch fermentation, and the maximal yield of products reached 90.88 μM (39.28 mg L?1) and 76.82 μM (33.19 mg L?1) of APG and BCG, respectively. And, the maximum bioconversion rate corresponded to 90.88% and 76.82% of apigenin and baicalein, respectively.  相似文献   

11.
In this study an experiment was carried out to study the process of stress adaptation in Groenlandia densa (opposite-leaved pondweed) grown under cadmium stress (0–20 mg L?1 Cd). The results showed that Cd concentrations in plants increased with increasing Cd supply levels and reached a maximum of 0.43 mg kg?1 DW at 0.5 mg L?1 Cd concentrations. The level of photosynthetic pigments and soluble proteins decreased only upon exposure to high Cd concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Cd concentration. These results suggested an alleviation of stress that was presumably the result of by antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST) as well as ascorbate peroxidase (APX), which increased linearly with increasing Cd levels. Cellular antioxidants levels showed a decline suggesting a defensive mechanism to protect against oxidative stress caused by Cd. In addition, the proline content in G. densa increased with increasing cadmium levels. These findings suggest that G. densa is equipped with an efficient antioxidant mechanism against Cd-induced oxidative stress which protects the plant's photosynthetic machinery from damage.Our present work concluded that G. densa has a high level of Cd tolerance and accumulation. We also found that moderate Cd treatment (0.05–5 mg L?1 Cd) alleviated oxidative stress in plants, while the addition of higher amounts of Cd (10–20 mg L?1) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

12.
The feasibility of the anaerobic ammonium oxidation (Anammox) process to treat wastewaters containing antibiotics was studied in this work. Concentrations ranging from 100 to 1000 mg L?1 for tetracycline hydrochloride and from 250 to 1000 mg L?1 for chloramphenicol were tested in batch assays. A strong inhibitory effect was observed for both antibiotics.A concentration of 20 mg L?1 of chloramphenicol was continuously added to an Anammox Sequential Batch Reactor (SBR) system, causing a decrease of the nitrogen removal efficiency of 25%. The Specific Anammox Activity (SAA) of the biomass also decreased from 0.25 to 0.05 g N (g VSS d)?1. Similar effects were observed when 50 mg L?1 of tetracycline hydrochloride were continuously fed. Both antibiotics did not cause any changes in the physical properties of the biomass. A previous degradation step could be necessary in order to treat wastewaters containing inhibitory concentrations of antibiotics by the Anammox process.  相似文献   

13.
Five-day carbonaceous biochemical oxygen demand (CBOD5) removal efficiency was evaluated for the marshland upwelling system (MUS) under both intermediate and saltwater conditions. The MUS treated decentralized wastewater from two private camps and a public restroom in the Grand Bay National Estuarine Research Reserve, Moss Point, Mississippi, and one private camp in the Barataria Terrebonne National Estuary, along Bayou Segnette, Louisiana. Raw wastewater was injected into the surrounding subsurface at a depth of 3.8 or 4.3 m. Various injection flow rates and frequencies were tested in addition to a synthetic wastewater trial. All trials followed a first-order background corrected removal equation, resulting in removal constants ranging from 0.49 to 3.32 m?1 and predicted surface concentrations from 5.7 to 33.0 mg L?1. CBOD5 (unfiltered) influent concentrations of 282 ± 173 mg L?1 were reduced to an overall effluent mean of 13 ± 13 mg L?1 by a vector distance of 7 m at Moss Point and from 365 ± 151 mg L?1 to 3.6 ± 7.6 mg L?1 by a vector distance of 6 m for Bayou Segnette. Of seven trials, only one failed to achieve effluent CBOD5 levels below a National Pollutant Discharge Elimination System (NPDES) standard level of 25 mg L?1.  相似文献   

14.
This research investigated the effects of various nutrients on arsenic (As) removal by arsenic hyperaccumulator Pteris vittata L. in a Hoagland nutrient solution (HNS). The treatments included different concentrations of Ca and K in 20% strength of HNS, different strengths of HNS (10, 20 and 30%), different strengths of HNS (10 and 20%) with and without CaCO3, and different concentrations of Ca, K, NO3, NH4, and P in 20% strength of HNS. The plants were grown in nutrient solution containing 1 mg As L?1 for 4 weeks except the Ca/K experiment where the plants were grown in nutrient solution containing 10 or 50 mg As L?1 for 1 week. Adding up to 4 mM Ca or 3 mM K to 20% strength HNS significantly (P < 0.05) increased plant arsenic accumulation when the solution contained 10 mg As L?1. Plant arsenic removal was reduced with increasing Ca and K concentrations at 50 mg As L?1. Lower strength of HNS (10%) resulted in the greatest plant arsenic removal (79%) due to lower competition of P with As for plant uptake. Addition of CaCO3 to 20% strength of HNS significantly increased arsenic removal by P. vittata. Among the nutrients tested, NO3 and CaCO3 were beneficial to plant arsenic removal while NH4, P and Cl had adverse effects. This experiment demonstrated that it is possible to optimize plant arsenic removal by adjusting nutrients in the growth medium.  相似文献   

15.
Constructed wetlands have been widely used to treat various wastewaters with large differences in their concentration of pollutants. The capability of wetland plants to resist these wastewaters is crucial for a wetland's healthy development. Phragmites australis has been shown to have the capability to grow in simulated wastewater containing a wide concentration of pollutants. In this study, the physiological responses of P. australis to simulated wastewaters with high chemical oxygen demands (CODs) were investigated in a bucket experiment. P. australis was incubated in buckets for 30 days at five treatments of 0, 100, 200, 400, and 800 mg L?1 COD simulated wastewater. The net photosynthesis rate of the plants declined markedly with increasing COD levels. Proline and malondialdehyde (MDA) contents also increased dramatically. The plants further showed a unimodal pattern of superoxide dismutase (SOD) and peroxidase (POD) distribution along external COD values on the whole, indicating that high COD values (≥200 mg L?1) can disrupt the normal metabolism of the plant. High COD levels (COD  400 mg L?1) caused evident physiological changes in P. australis.  相似文献   

16.
The decolorization potential of two bacterial consortia developed from a textile wastewater treatment plant showed that among the two mixed bacterial culture SKB-II was the most efficient in decolorizing individual as well as mixture of dyes. At 1.3 g L?1 starch supplementation in the basal medium by the end of 120 h decolorization of 80–96% of four out of the six individual azo dyes Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC (10 mg L?1) was noted. The culture exhibited good potential ability in decolorizing 50–60% of all the dyes (Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC) when present as a mixture at 10 mg L?1. The consortium SKB-II consisted of five different bacterial types identified by 16S rDNA sequence alignment as Bacillus vallismortis, Bacillus pumilus, Bacillus cereus, Bacillus subtilis and Bacillus megaterium which were further tested to decolorize dyes. The efficient ability of this developed consortium SKB-II to decolorize individual dyes and textile effluent using packed bed reactors is being carried out.  相似文献   

17.
The bioaccumulation of chromium(VI), nickel(II), copper(II), and reactive dye by the yeast Rhodotorula mucilaginosa has been investigated in media containing molasses as a carbon and energy source. Optimal pH values for the yeast cells to remove the pollutants were pH 4 for copper(II) and dye, pH 6 for chromium(VI) and dye, and pH 5 for nickel(II) and dye in media containing 50 mg l?1 heavy metal and 50 mg l?1 Remazol Blue. The maximum dye bioaccumulation was observed within 4–6 days and uptake yields varied from 93% to 97%. The highest copper(II) removal yields measured were 30.6% for 45.4 mg l?1 and 32.4% for 95.9 mg l?1 initial copper(II) concentrations. The nickel(II) removal yield was 45.5% for 22.3 mg l?1, 38.0% for 34.7 mg l?1, and 30.3% for 62.2 mg l?1. Higher chromium(VI) removal yields were obtained, such as 94.5% for 49.2 mg l?1 and 87.7% for 129.2 mg l?1 initial chromium(VI) concentration. The maximum dye and heavy metal bioaccumulation yield was investigated in media with a constant dye (approximately 50 mg l?1) and increasing heavy metal concentration. In the medium with 48.9–98.8 mg l?1 copper(II) and constant dye concentration, the maximum copper(II) bioaccumulation was 27.7% and 27.9% whereas the maximum dye bioaccumulation was 96.1% and 95.3%. The maximum chromium(VI) bioaccumulation in the medium with dye was 95.2% and 80.3% at 48.2 and 102.2 mg l?1 chromium(VI) concentrations. In these media dye bioaccumulation was 76.1% and 35.1%, respectively. The highest nickel(II) removal was 6.1%, 20.3% and 16.0% in the medium with 23.8 mg l?1 nickel(II) + 37.8 mg l?1 dye, 38.1 mg l?1 nickel(II) + 33.4 mg l?1 dye and 59.0 mg l?1 nickel(II) + 39.2 mg l?1 dye, respectively. The maximum dye bioaccumulation yield in the media with nickel(II) was 94.1%, 78.0% and 58.7%, respectively.  相似文献   

18.
Recently, a bubbleless membrane bioreactor (BMBR) has been successfully developed for biosurfactant production by Bacillus subtilis [1]. In this study, for the first time, continuous culture were carried out for the production of surfactin in a BMBR, both with or without a coupled microfiltration membrane. Results from continuous culture showed that a significant part of biomass was immobilized onto the air/liquid membrane contactor. Immobilized biomass activity onto the air/liquid membrane contactor was monitored using a respirometric analysis. Kinetics of growth, surfactin and primary metabolites production were investigated. Planktonic biomass, immobilized biomass and surfactin production and productivity obtained in batch culture (3 L) of 1.5 days of culture were 4.5 g DW, 1.3 g DW, 1.8 g and 17.4 mg L?1 h?1, respectively. In continuous culture without total cell recycling (TCR), the planktonic biomass was leached, but immobilized biomass reached a steady state at an estimated 6.6 g DW. 11.5 g of surfactin was produced after 3 days of culture, this gave an average surfactin productivity of 54.7 mg L?1 h?1 for the continuous culture, which presented a surfactin productivity of 30 mg L?1 h?1 at the steady state. TCR was then investigated for the continuous production, extraction and purification of surfactin using a coupled ultrafiltration step. In continuous culture with TCR at a dilution rate of 0.1 h?1, planktonic biomass, immobilized biomass, surfactin production and productivity reached 7.5 g DW, 5.5 g DW, 7.1 g and 41.6 mg L?1 h?1 respectively, after 2 days of culture. After this time, biomass and surfactin productions stopped. Increasing dilution rate to 0.2 h?1 led to the resumption of biomass and surfactin production and these values reached 11.1 g DW, 10.5 g DW, 7.9 g and 110.1 mg L?1 h?1, respectively, after 3 days of culture. This study has therefore shown that with this new integrated bioprocess, it was possible to continuously extract and purify several grams of biosurfactant, with purity up to 95%.  相似文献   

19.
Mine tailings are an environmental problem in Southern Spain because wind and water erosion of bare surfaces results in the dispersal of toxic metals over nearby urban or agricultural areas. Revegetation with tolerant native species may reduce this risk. We grew two grasses, Lygeum spartum and Piptatherum miliaceum, and the crop species Cicer arietinum (chickpea) under controlled conditions in pots containing a mine tailings mixed into non-polluted soil to give treatments of 0%, 25%, 50%, 75% and 100% mine tailings. We tested a neutral (pH 7.4) mine tailings which contained high concentrations of Cd, Cu, Pb and Zn. Water-extractable metal concentrations increased in proportion to the amount of tailings added. The biomass of the two grasses decreased in proportion to the rate of neutral mine-tailing addition, while the biomass of C. arietinum only decreased in relation to the control treatment. Neutron radiography revealed that root development of C. arietinum was perturbed in soil amended with the neutral tailings compared to those of the control treatment, despite a lack of toxicity symptoms in the shoots. In all treatments and for all metals, the plants accumulated higher concentrations in the roots than in shoots. The highest concentrations occurred in the roots of P. miliaceum (2500 mg kg?1 Pb, 146 mg kg?1 Cd, 185 mg kg?1 Cu, 2700 mg kg?1 Zn). C. arietinum seeds had normal concentrations of Zn (70–90 mg kg?1) and Cu (6–9 mg kg?1). However, the Cd concentration in this species was ~1 mg kg?1 in the seeds and 14.5 mg kg?1 in shoots. Consumption of these plant species by cattle and wild fauna may present a risk of toxic metals entering the food chain.  相似文献   

20.
The anammox process, under different organic loading rates (COD), was evaluated using a semi-continuous UASB reactor at 37 °C. Three different substrates were used: initially, synthetic wastewater, and later, two different pig manure effluents (after UASB-post-digestion and after partial oxidation) diluted with synthetic wastewater. High ammonium removal was achieved, up to 92.1 ± 4.9% for diluted UASB-post-digested effluent (95 mg COD L?1) and up to 98.5 ± 0.8% for diluted partially oxidized effluent (121 mg COD L?1). Mass balance clearly showed that an increase in organic loading (from 95 mg COD L?1 to 237 mg COD L?1 and from 121 mg COD L?1 to 290 mg COD L?1 for the UASB-post-digested effluent and the partially oxidized effluent, respectively) negatively affected the anammox process and facilitated heterotrophic denitrification. Partial oxidation as a pre-treatment method improved ammonium removal at high organic matter concentration. Up to threshold organic load concentration of 142 mg COD L?1 of UASB-post-digested effluent and 242 mg COD L?1 of partially oxidized effluent, no effect of organic loading on ammonia removal was registered (ammonium removal was above 80%). However, COD concentrations above 237 mg L?1 (loading rate of 112 mg COD L?1 day?1) for post-digested effluent and above 290 mg L?1 (loading rate of 136 mg COD L?1 day?1) for partially oxidized effluent resulted in complete cease of ammonium removal. Results obtained showed that, denitrification and anammox process were simultaneously occurring in the reactor. Denitrification became the dominant ammonium removal process when the COD loading was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号