首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The feasibility of sewage sludge co-digestion using intermediate waste generated inside a wastewater treatment plant, i.e. trapped grease waste from the dissolved air flotation unit, has been assessed in a continuous stirred lab reactor operating at 35 °C with a hydraulic retention time of 20 days. Three different periods of co-digestion were carried out as the grease waste dose was increased. When the grease waste addition was 23% of the volatile solids fed (organic loading rate 3.0 kgCOD m−3 d−1), an increase in methane yield of 138% was reported. Specific activity tests suggested that anaerobic biomass had adapted to the co-substrate. The adapted inoculum showed higher acetoclastic methanogenic and β-oxidation synthrophic acetogenic activities but lower hydrogenotrophic methanogenic activity. The results indicate that a slow increase in the grease waste dose could be a strategy that favours biomass acclimation to fat-rich co-substrate, increases long chain fatty acid degradation and reduces the latter’s inhibitory effect.  相似文献   

2.
Kim HW  Nam JY  Shin HS 《Bioresource technology》2011,102(15):7272-7279
Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH4) production rate, CH4 yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2 m3CH4/m3system/d (0.2 m3CH4/kgVSadded) at organic loading rate of 6.1 gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization.  相似文献   

3.
Anaerobic co-digestion of press mud with water or sewage at ratios of 1:7.5, 1:10 and 1:12.5 were performed in continuously fed UASB reactors for hydrogen production. At a constant hydraulic retention time of 30 h, the specific hydrogen production rate was 187 mL/g volatile solids (VS) reduced during maximum biohydrogen production of 7960 mL/day at a 1:10 ratio of press mud to sewage. Chemical oxygen demand (COD) and VS reductions of 61% and 59% were noted on peak biohydrogen yield. A pH range of 5-6 was suitable at ambient temperature for entire process; a lower pH was inhibitory. Co-digestion of acidic press mud with sewage controlled pH for fermentation. Hence press mud can be exploited for biohydrogen production.  相似文献   

4.
This study evaluated the feasibility of methane production from fruit and vegetable waste (FVW) obtained from the central food distribution market in Mexico City using an anaerobic digestion (AD) process. Batch systems showed that pH control and nitrogen addition had significant effects on biogas production, methane yield, and volatile solids (VS) removal from the FVW (0.42 m(biogas)(3)/kg VS, 50%, and 80%, respectively). Co-digestion of the FVW with meat residues (MR) enhanced the process performance and was also evaluated in a 30 L AD system. When the system reached stable operation, its methane yield was 0.25 (m(3)/kg TS), and the removal of the organic matter measured as the total chemical demand (tCOD) was 65%. The microbial population (general Bacteria and Archaea) in the 30 L system was also determined and characterized and was closely correlated with its potential function in the AD system.  相似文献   

5.
Wang W  Xie L  Chen J  Luo G  Zhou Q 《Bioresource technology》2011,102(4):3833-3839
Thermophilic anaerobic hydrogen and methane production by co-digestion of cassava stillage (CS) and excess sludge (ES) was investigated in this study. The improved hydrogen and subsequent methane production were observed by co-digestion of CS with certain amount of ES in batch experiments. Compared with one phase anaerobic digestion, two phase anaerobic digestion offered an attractive alternative with more abundant biogas production and energy yield, e.g., the total energy yield in two phase obtained at VSCS/VSES of 3:1 was 25% higher than the value of one phase. Results from continuous experiments further demonstrated that VSCS/VSES of 3:1 was optimal for hydrogen production with the highest hydrogen yield of 74 mL/g total VS added, the balanced nutrient condition with C/N ratio of 1.5 g carbohydrate-COD/g protein-COD or 11.9 g C/g N might be the main reason for such enhancement. VSCS/VSES of 3:1 was also optimal for continuous methane production considering the higher methane yield of 350 mL/g total VS added and the lower propionate concentration in the effluent.  相似文献   

6.
Laboratory scale two-stage anaerobic digestion process model was operated for 280 days to investigate the feasibility to produce both hydrogen and methane from a mixture feedstock (1:1 (v/v)) of municipal food waste and sewage sludge. The maximum hydrogen and methane yields obtained in the two stages were 0.93 and 9.5 mL/mL feedstock. To eliminate methanogenic activity and obtain substantial hydrogen production in the hydrogen reactor, both feedstock and mixed liquor required treatment. The heat treatment (100 °C, 10 min) for feedstock and a periodical treatment (every 2-5 weeks, either heating, removal of biomass particles or flushing with air) for mixed liquor were effective in different extent. The methane production in the second stage was significantly improved by the hydrogen production in the first stage. The maximum methane production obtained in the period of high hydrogen production was more than 2-fold of that observed in the low hydrogen production period.  相似文献   

7.
The feasibility of co-digesting grease trap sludge from a meat-processing plant and sewage sludge was studied in batch and reactor experiments at 35 degrees C. Grease trap sludge had high methane production potential (918 m(3)/tVS(added)), but methane production started slowly. When mixed with sewage sludge, methane production started immediately and the potential increased with increasing grease trap sludge content. Semi-continuous co-digestion of the two materials was found feasible up to grease trap sludge addition of 46% of feed volatile solids (hydraulic retention time 16d; maximum organic loading rate 3.46 kgVS/m(3)d). Methane production was significantly higher and no effect on the characteristics of the digested material was noticed as compared to digesting sewage sludge alone. At higher grease trap sludge additions (55% and 71% of feed volatile solids), degradation was not complete and methane production either remained the same or decreased.  相似文献   

8.
Influence of bulking agent on sewage sludge composting process   总被引:3,自引:0,他引:3  
Four types of compost, consisting of mixtures of Acacia dealbata (A) with sewage sludge (SS) were studied in a laboratory reactor. Composting time was 80 days and parameters monitored over this period included temperature, organic matter, pH, CO2, O2, C/N ratio, Kjeldahl-N, as well as maturity indexes. All the studied parameters were influenced by the bulking amount used. The highest profile temperature measured was for the A/SS 1/2 (w/w) mixture that reached a maxima temperature of 67 °C and lower maximum temperatures of 52, 48 and 46 °C were observed for A/SS 1/3, 1/1 and 1/0 composts, respectively. The kinetic model used showed that a descent of sewage sludge in the composting mixtures favored the enzyme–substrate affinity. However, an increase in depending on the parameters of the process factors was observed when the sewage sludge ratio was increased in mixtures. The optimal amounts of sewage sludge for co-composting with Acacia indicate that moderate amounts of sludge (1/1) would be the best compromise.  相似文献   

9.
This paper studies the energy valorization of sewage sludge using a batch fry–drying process. Drying processes was carried out by emerging the cylindrical samples of the sewage sludge in the preheated recycled cooking oil. Experimental frying curves for different conditions were determined. Calorific values for the fried sewage sludge were hence determined to be around 24 MJ kg−1, showing the auto-combustion potential of the fried sludge. A one-dimensional model allowing for the prediction of the water removal during frying was developed. Another water replacement model for oil intake in the fried sewage sludge was also developed. Typical frying curves were obtained and validated against the experimental data.  相似文献   

10.
The effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge was investigated. For this purpose, soluble substances and variation of microbial system of sewage sludge subjected to low power ultrasonic radiation were tested. The well known hydromechanical shear forces and heating effect of low frequency ultrasound plays a major role in the sludge pre treatment process. More, the increase of soluble substance may partly result from the destruction of microbial cell by excess ultrasonic pretreatment, which will inhibit the anaerobic process. By orthogonal tests, the optimal parameters were found to be an exposure time of 15 min, ultrasonic intensity of 0.35 W/cm2 and ultrasonic power density of 0.25 W/ml. Under the optimal condition, anaerobic biodegradability of sewage sludge (R(vss/ss) %) was increased by 67.6%. Consequently, it can be concluded that low power ultrasonic pretreatment is a valid method for improving anaerobic biodegradability of sewage sludge.  相似文献   

11.
The present work developed a novel technique to treat chromite ore processing residue (COPR). The process involved mixing the COPR with sewage sludge followed by pyrolysis. The gaseous organic fraction generated during pyrolysis of sludge was beneficial to Cr(VI) reduction. Process variables, such as the amount of sludge added to COPR (sludge-to-COPR (S/C) ratio), heating temperature, reaction time and particle size, were systematically varied, and their influences on the Cr(VI) reduction in COPR were investigated. Cr(VI) content had decreased greatly, from 3384 mg kg−1 for untreated COPR to less than 30 mg kg−1 for COPR treated at 600 °C.  相似文献   

12.
The use of different proportions of rape straw and grass as amendments in the composting of dewatered sewage sludge from a municipal wastewater treatment plant was tested in a two-stage system (first stage, an aerated bioreactor and second stage, a periodically turned windrow). The composition of feedstock affected the temperature and organic matter degradation in the bioreactor and the formation of humic substances, especially humic acids (HA), during compost maturation in the windrow. The total HA content (the sum of labile and stable HA) increased according to first-order kinetics, whereas labile HA content was constant and did not exceed 12% of total HA. Δlog K of 1.0–1.1 indicated that HA was of R-type, indicating a low degree of humification. Temperature during composting was the main factor affecting polymerization of fulvic acids to HA and confirmed the value of the degree of polymerization, which increased only when thermophilic conditions were obtained.  相似文献   

13.
Activated carbons were prepared from sewage sludge by chemical activation. Pyrolusite was added as a catalyst during activation and carbonization. The influence of the mineral addition on the properties of the activated carbons produced was evaluated. The results show that activated carbons from pyrolusite-supplemented sewage sludge had up to a 75% higher BET surface area and up to a 66% increase in mesoporosity over ordinary sludge-based activated carbons. Batch adsorption experiments applying the prepared adsorbents to synthetic dye wastewater treatment yielded adsorption data well fitted to the Langmuir isotherm. The adsorbents from pyrolusite-supplemented sludges performed better in dye removal than those without mineral addition, with the carbon from pyrolusite-augmented sludge T2 presenting a significant increase in maximum adsorption capacity of 50 mg/g. The properties of the adsorbents were improved during pyrolusite-catalyzed pyrolysis via enhancement of mesopore production, thus the mesopore channels may provide fast mass transfer for large molecules like dyes.  相似文献   

14.
Modelling N mineralization from bovine manure and sewage sludge composts   总被引:1,自引:0,他引:1  
Nitrogen mineralization kinetics were compared in three different soils (pH values: 5.2, 7.1 and 8.6) when treated with bovine manure (BM) and sewage sludge (SS) composts. The soil-compost mixtures were kept at a controlled moisture content of 60% of their water holding capacity (WHC) and were incubated in the dark at 25 °C for 2 years. Five mathematical models were compared (simple exponential, double exponential, special model, hyperbolic and parabolic), using as experimental data the mineralized N accumulated during 360 and 720 days of incubation. The results showed that the best fit for describing the mineralization of organic N from the compost after 1 year of experimentation was obtained with the simple exponential model. However, the special model showed the best fit for data from 2 years of incubation and thus better reflected organic N mineralization over a longer time-span. This suggested that the organic N in the two composts was made up of two organic pools of different degrees of stability.  相似文献   

15.
污泥土地利用对农作物及土壤的影响研究   总被引:44,自引:10,他引:44  
以沈阳北部污水处理厂污泥为研究对象 ,开展了污泥土地利用对农作物及土壤环境影响的研究 .结果表明 ,污泥土地利用可提高土壤中N、P及有机质含量 .污泥用量为 2 2 .5t·hm-2 和 45t·hm-2 时有利于作物生长发育 ,使水稻生物量与对照相比分别增加了 11.48%、11.83%.污泥施用量只要控制在 45t·hm-2以内 ,污泥中的重金属不会对土壤、农产品质量及地下水产生不良的影响 .  相似文献   

16.
This contribution presents the possibility of application of natural sorbent (Transcarpathian clinoptylolite (KL)) for immobilization of selected heavy metals in the sewage sludge. The influence of ion-exchange parameters (e.g. time, amount of zeolite) were discussed. Process of immobilization was performed using a static method (Batch). It was found that best possible conditions for immobilization of heavy metal ions were as follows: zeolite fraction 0.7–1.0 mm, 5 h of shaking, zeolite/sewage sludge ratio 2/98.  相似文献   

17.
Wen Q  Li C  Cai Z  Zhang W  Gao H  Chen L  Zeng G  Shu X  Zhao Y 《Bioresource technology》2011,102(2):942-947
The aim of this work is to evaluate the adsorption performances of activated carbon derived from sewage sludge (ACSS) for gaseous formaldehyde removal compared with three commercial activated carbons (CACs) using self-designing adsorption and distillation system. Formaldehyde desorption of the activated carbons for regeneration was also studied using thermogravimetric (TG) analysis. The porous structure and surface characteristics were studied using N2 adsorption and desorption isotherms, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that ACSS has excellent adsorption performance, which is overall superior to the CACs. Adsorption theory indicates that the ACSS outperforms the CACs due to its appropriate porous structure and surface chemistry characteristics for formaldehyde adsorption. The TG analysis of desorption shows that the optimum temperature to regenerate ACSS is 75 °C, which is affordable and economical for recycling.  相似文献   

18.
Park SW  Jang CH 《Bioresource technology》2011,102(17):8205-8210
Urban sewage sludge was carbonized at 300-500 °C for 1 h, and combustible components were extracted through the solvent-extraction process. N-methyl-2-pyrrolidinone (NMP) was used as the solvent for extraction, and the extraction temperature was fixed at 360 °C. The atomic ratios of the solvent-extracted sludge of CS300 (ECS300) were shown to be 1.04 for H/C and 0.11 for O/C, which represented the characteristics of its coal band. Thus, its coal band was similar to that of a high-rank fuel such as bituminous coal. FT-IR analysis showed that the absorbance band of ECS300 was considerably different from that of dried sludge (RS) or the carbonized sludge at 300 °C (CS300) but similar to that of coal, although the ash content absorbance band of 800-1200 cm−1 was of very low intensity. The combustion profile showed that combustion of ESC300 occurred at a temperature higher than the ignition temperature (Ti) or maximum weight loss rate (DTGmax) of coal.  相似文献   

19.
Zhang L  Lee YW  Jahng D 《Bioresource technology》2011,102(8):5048-5059
The objective of this study was to evaluate the feasibility of anaerobic co-digestion of food waste and piggery wastewater, and to identify the key factors governing the co-digestion performance. The analytical results indicated that the food waste contained higher energy potential and lower concentrations of trace elements than the piggery wastewater. Anaerobic co-digestion showed a significantly improved biogas productivity and process stability. The results of co-digestion of the food waste with the different fractions of the piggery wastewater suggested that trace element might be the reason for enhancing the co-digestion performance. By supplementing the trace elements, a long-term anaerobic digestion of the food waste only resulted in a high methane yield of 0.396 m3/kg VSadded and 75.6% of VS destruction with no significant volatile fatty acid accumulation. These results suggested that the typical Korean food waste was deficient with some trace elements required for anaerobic digestion.  相似文献   

20.
Column experiments were conducted to investigate the removal of heavy metals from two mine tailings (El Arteal and Jaravías) using sewage sludge as a reactive material. When sewage sludge is used as a reactive material on the El Arteal tailings (sample SA), Fe, Mn, Zn and Pb are removed and Cu and Ni are mobilized. The experiments carried out on the Jaravías tailings give similar results, showing the retention of Cu, Pb, Fe and Mn and the mobilization of Ni and Zn. An analysis performed using the PHREEQC numerical code suggests that the retention of Fe in the sewage sludge may be caused by the precipitation of Fe(OH)2.7Cl0.3 and possibly pyrite, and that the retention of Pb at high pH may be caused by the formation of stable phase minerals such as Pb(OH)2 and PbS in these conditions. Ni mobilization in the column experiments with the two tailings samples may be caused by the presence of significant amounts of leachable Ni in the sewage sludge. The complexation of metals with dissolved organic matter, calculated with the Minteq model, may be moderate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号