首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant roots are required for the acquisition of water and nutrients, for responses to abiotic and biotic signals in the soil, and to anchor the plant in the ground. Controlling plant root architecture is a fundamental part of plant development and evolution, enabling a plant to respond to changing environmental conditions and allowing plants to survive in different ecological niches. Variations in the size, shape and surface area of plant root systems are brought about largely by variations in root branching. Much is known about how root branching is controlled both by intracellular signalling pathays and by environmental signals. Here, we will review this knowledge, with particular emphasis on recent advances in the field that open new and exciting areas of research.  相似文献   

2.
Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field.Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars.Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals.Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models.  相似文献   

3.
Abstract

Five chelated iron sources have been applied to barley and maize to investigate the effect of differing chemical form on the formation and persistence of root apoplastic Fe pools. Short-term Fe exposure (barley) experiments indicated that the charged state of the Fe complex was the most important factor regulating the initial formation and magnitude of the apoplastic pool. Longer term experiments (maize), incorporating a period of Fe deprivation, produced more complex results. Differences in plant growth during the experiment produced changes in the magnitude of the root Fe pool; these interacted with the chemical form of the applied Fe to regulate the release, utilisation and hence the ultimate size of the apoplastic pool produced by each Fe source. It is concluded that such experiments are poor indicators of the potential performance of novel chelated Fe sources.  相似文献   

4.
Lithium was used as a non-radioactive tracer to investigate the root activity of two cereals (wheat and barley), and of two contrasting cultivars of pea (leafy and semi-leafless), both in pure stands and in mixtures. The mixtures included combinations of each cereal with each pea cultivar in single rows, alternative rows and cross-drilled. Total lithium uptake (mg m-2) was higher for wheat than for barley, and higher for semi-leafless pea than for leafy peas. Growing cereals with peas reduced the total lithium uptake by peas, compared with pure stands, especially in alternate-row mixtures. Growing peas with cereals only reduced the total Li uptake by cereals when they were cross-drilled. The Li uptake by wheat, barley and peas generally decreased with soil depth in a similar manner; however, semi-leafless peas absorbed proportionately more Li from close to the soil surface than did leafy peas. Both pea cultivars absorbed more Li at 10–20 cm depth when grown in intimate mixtures with cereals, compared with less intimate mixtures or pure stands. The potential of lithium as a non-radioactive tracer in mixed-cropping studies is briefly discussed.  相似文献   

5.
Current methods of studying roots are either labour intensive or require expensive equipment. In 1986 and 1987 root pruning treatments were given to maize plants grown indoors. In both years the amount of xylem exudate collected from plant stumps shortly after root pruning increased with the dry weight of roots attached to the plant. The measurement of xylem exudation is presented as an alternative for conventional laborious root-study methods.  相似文献   

6.
Rice is mostly cultivated in wetlands, where arbuscular mycorrhization (AM) is reported to decrease. The mechanisms regulating such events are largely unknown. Rice uninoculated and inoculated with Rhizophagus irregularis were grown in dry and flooded conditions, allowing also for the transfer of plants from one water regime to the other. Roots were sampled at different times, from 7 to 35 d post‐inoculation (dpi). The morphological and molecular parameters (root branching, aerenchyma formation, mycorrhizal colonization, AM marker gene expression) were evaluated. Root branching was more pronounced in dry conditions, and such phenotype was enhanced by the fungus. In wetlands, the colonization level was comparable till 21 dpi, when the mycorrhization then decreased, paralleled by an increase in aerenchyma. Expression of the fungal transporters was comparable under the two conditions. The root apparatus, when shifted from one water regime to the other, rapidly adapted to the new condition, revealing a marked plasticity. The reversibility of the AM rice symbiosis was also mirrored by expression changes of plant marker genes. The results demonstrate that the water regime is the driving force that regulates AM colonization under flooding conditions, by directly influencing root architecture and anatomy, but without impacting the basic AM functionality.  相似文献   

7.
Based on fractal and pipe model assumptions, a static three-dimensional model of the Gliricidia sepium root system was developed, in order to provide a basis for the prediction of root branching, size and mass in an alley cropping system. The model was built from observations about the topology, branching rules, link length and diameter, and root orientation, provided by in situ and extracted root systems. Evaluation tests were carried out at the plant level and at the field level. These tests principally concerned coefficients α and q –- the proportionality factor α between total cross-sectional area of a root before and after branching, and allocation parameter q that defines the partitioning of biomass between the new links after a branching event –- that could be considered as key variables of this fractal approach. Although independent of root diameter, these coefficients showed a certain variability that may affect the precision of the predictions. When calibrated, however, the model provided suitable predictions of root dry matter, total root length and root diameter at the plant level. At the field level, the simulation of 2D root maps was accurate for root distribution patterns, but the number of simulated root dots was underestimated in the surface layers. Hence recommendations were made to improve the model with regard to α and q. This static approach appeared to be well suited to study the root system of adult trees. Compared with explicit models, the main advantage of the fractal approach is its plasticity and ease of use. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The spatial distribution of root length density (RLD) is important because it affects water and nutrient uptake. It is difficult to obtain reliable estimates of RLD because root systems are very variable and heterogeneous. We identified systematic trends, clustering, and anisotropy as geometrical properties of root systems, and studied their consequences for the sampling and observation of roots. We determined the degree of clustering by comparing the coefficient of variation of a simulated root system with that of a Boolean model. We also present an alternative theoretical derivation of the relation between RLD and root intersection density (RID) based on the theory of random processes of fibres. We show how systematic trends, clustering and anisotropy affect the theoretical relation between RLD and RID, and the consequences this has for measurement of RID in the field. We simulated the root systems of one hundred maize crops grown for a thermal time of 600 K d, and analysed the distribution of RLD and root intersection density RID on regular grids of locations throughout the simulated root systems. Systematic trends were most important in the surface layers, decreasing with depth. Clustering and anisotropy both increased with depth. Roots at depth had a bimodal distribution of root orientation, causing changes in the ratio of RLD/RID. The close proximity of the emerging lateral roots and the parent axis caused clustering which increased the coefficient of variation.  相似文献   

9.
A plant's ability to maintain or improve its yield under limiting conditions,such as nutrient de ficiency or drought,can be strongly in fluenced by root system architecture(RSA),the three-dimensional distribution of the different root types in the soil. The ability to image,track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system,while allowing for aeration,solution replenishment and the imposition of nutrient treatments,as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modi fications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity(detection of fine roots and other root details),higher ef ficiency,and a broad array of growing conditions for plants that more closely mimic those found under field conditions.  相似文献   

10.
Most existing water and nutrient uptake models are based on the assumption that roots are evenly distributed in the soil volume. This assumption is not realistic for field conditions, and significantly alters water or nutrient uptake calculations. Therefore, development of models of root system growth that account for the spatial distribution of roots is necessary.The objective of this work was to test a three dimensional architectural model of the maize root system by comparing simulated horizontal root maps with observed root maps obtained from the field. The model was built using the current knowledge on maize root system morphogenesis and parameters obtained under field conditions. Simulated root maps (0.45 × 0.75 m) of horizontal cross sections at 3 depths and 3 dates were obtained by using the model for a plant population. Actual root maps were obtained in a deep, barrier-free clay-loamy soil by digging pits, preparing selected horizontal planes and recording root contacts on plastic sheets.Results showed that both the number of cross-sections of axile roots, and their spatial distribution characterized with the R-index value of Clark and Evans (1954), were correctly accounted for by the model at all dates and depths. The number of cross-sections of laterals was also correctly predicted. However, laterals were more clustered around axile roots on simulated root maps than on observed root maps. Although slight discrepancies appeared between simulated and observed root maps in this respect, it was concluded that the model correctly accounted for the general colonization pattern of the soil volume by roots under a maize crop.  相似文献   

11.
Plants depend on gravity to provide the constant landmark for downward root growth and upward shoot growth. The phytohormone auxin and its cell‐to‐cell transport machinery are central determinants ensuring gravitropic growth. Statolith sedimentation toward gravity is sensed in specialized cells. This positional cue is translated into the polar distribution of PIN auxin efflux carriers at the plasma membrane, leading to asymmetric auxin distribution and consequently, differential growth and organ bending. While we have started to understand the general principles of how primary organs execute gravitropism, we currently lack basic understanding of how lateral plant organs can defy gravitropic responses. Here we briefly review the establishment of the oblique gravitropic set point angle in lateral roots and particularly discuss the emerging role of asymmetric cytokinin signaling as a central anti‐gravitropic signal. Differential cytokinin signaling is co‐opted in gravitropic lateral and hydrotropic primary roots to counterbalance gravitropic root growth.  相似文献   

12.
High neutral metallocarboxypeptidase activity (EC 3.4.17) has earlier been detected in young seedlings of rice ( Oryza sativa L.) using benzyloxycarbonyl-L-phenylalanyl-L-alanine (Z-Phe-Ala) as substrate at pH 7. This finding was confirmed, and it was observed that the activity could be assayed with higher specificity and sensitivity by using Z-Gly-Ala or Z-Gly-Phe as substrate at pH 6.5–7. No corresponding activity was detected in seedlings of barley ( Hordeum vulgare L. cv. Himalaya), oats ( Avena sativa L.) or maize ( Zea mays L.). The seedlings of the four cereals possessed similar activities of acid carboxypeptidases (EC 3.4.16; hydrolysis of Z-Phe-Ala and Z-Ala-Phe at pH 5.2 and of Z-Ala-Arg at pH 5.7). However, in endosperms of germinating rice and maize these activities were only about 1–5% of those in barley and oats. A corresponding, although less pronounced, difference was evident between the scutella of the two pairs of cereals. The possible relationship between neutral carboxypeptidase activity and ability to grow in anaerobic conditions is discussed.  相似文献   

13.
14.
Differences between observed and simulated vertical root maps were studied in an attempt to evaluate the predictive ability of a simulation model of root system architecture under field conditions on mature plants, and to identify avenues for improvement. Some methodological problems associated with root mapping in the field are considered with a sensitivity analysis.Comparisons were made on a maize crop (early maturing hybrid F1 cultivar Dea) 15 days after silking. Four vertical root maps, perpendicular to the row and midway between two successive plants, were observed. Simulated root maps for different locations along the row showed essentially the same pattern, attesting of an approximately two-dimensional distribution of the roots in such a crop. Simulation of the intesection of roots with thin layers (thickness from 0 to 20 mm) instead of a perfect plane allowed us to assess effects due to the roughness of actual trench walls, and possible artefacts in the observation of root intersections. The simulated root profiles were very sensitive to this thickness, especially in the 0–5 mm range, in both average values, and overall shape. Actual data were close to the 3 mm thick simulations. This value seems plausible under our field conditions.Differences between simulated and actual root maps were shown to be mostly accounted for by the variations in soil bulk density. Thus, this environmental parameter appears as the most important one to include into the model for improving its predictions.  相似文献   

15.
He  Yong  Liao  Hong  Yan  Xiaolong 《Plant and Soil》2003,248(1-2):247-256
A localized supply of phosphorus may affect root morphology and architecture, and thereby affect phosphorus uptake by rice plants. In the present study, we attempted to test this hypothesis using two rice cultivars representing upland and lowland ecotypes grown in specially designed split and stratified soil cultures with a low-phosphorus red soil. Our data indicate that a localized supply of phosphorus increased both total root length and root fineness, particularly in the high-phosphorus zone. In split culture, plants roots tended to preferentially grow on the high-phosphorus zone, with about 70–75% of the total root length allocated to the high-phosphorus compartment. The total root length on the high-phosphorus side in the split-phosphorus treatment was significantly longer than that in the homogenously high-phosphorus treatment, implying that a phosphorus-deficiency signal from the low-phosphorus side may stimulate the growth of the roots located in the high-phosphorus zone. In stratified soil culture, changes in root morphology and architecture were also observed as indicated by increased total root length, root fineness and relative root allocation in the high-phosphorus layers, again suggesting altered root morphology and preferential root proliferation in the high-phosphorus regions. The induced changes in root morphology and architecture by localized phosphorus supply may have both physiological significance and practical implications in that plants can meet the demand for phosphorus with parts of the roots reaching the high-phosphorus zone, hence localized fertilization methods such as side dressing or banded application of phosphorus fertilizers may both minimize phosphorus fixation by the soil and increase phosphorus uptake efficiency from the fertilizers.  相似文献   

16.
Hairy roots of maize were induced by infecting 15-d calli with Agrobacterium rhizogenes. The hairy roots cultured in hormone-free media showed the vigorous growth and typical hairy root features. The regenerated plants were produced from hairy roots in MS media supplemented with 1.6 mg/L ZT and 0.4 mg/L NAA. The PCR-Southern hybridization demonstrated that T-DNA had been integrated into the chromosome of regenerated plants. These authors contributed equally to this work.  相似文献   

17.
Smith  D.M. 《Plant and Soil》2001,229(2):295-304
Previous theoretical research has suggested that lengths of tree roots can be estimated on the basis of their branching characteristics, if branching has a fractal pattern that is independent of root diameter. This theory and its underlying assumptions was tested for Grevillea robusta trees at a site in Kenya by comparing estimates of root length from conventional soil coring and the output of a fractal branching algorithm. The trees were in a 4-year-old stand established on a 3 × 4 m planting grid. Root lengths (L r) in four units of the planting grid were estimated by soil coring. Branching characteristics determined by examination of 32 excavated roots from 16 trees were: The number of branches at each branching point; the length of links between branching points (L l); the diameter of root tips; and parameters which describe the change in diameter at each branching point. Each was found to be independent of root size. These data were used to parameterise a branching algorithm, which was then used to estimate numbers of root links in the four grid units (n l) from root diameters at the bases of the four trees at the corners of each unit. Root lengths, from L r = n1 L1, severely underestimated L r. This discrepancy probably resulted from inaccuracy in the parameterisation of the branching algorithm, as output from the algorithm was very sensitive to small changes in parameter values. Use of fractal branching rules alone to estimate roots length does not appear possible unless the algorithm is calibrated to adjust for errors in parameter estimation. Calibration can be achieved by calculation of an 'effective link length', L eff 1, from L r/n l, where L r is measured by a reference method such as soil coring.  相似文献   

18.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

19.
Before the late 1980s, although the majority of Agrobacterium-mediated gene transfer experiments have been performed with A. tumefaciens[1―3], some work has also been done with its close relative, Agro-bacterium rhizogene. It has been considered that onl…  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号