首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hydrolysis of phenolic compounds using an immobilized and highly active and stable derivative of laccase from Trametes versicolor is presented. The enzyme was immobilized on aldehyde supports. For this, the enzyme was enriched in amino groups by chemical modification of its carboxyl groups. The aminated enzyme was immobilized with a high recovered activity (over 60%). Aldehyde derivatives were more stable than soluble or aminated-soluble enzyme and the reference derivatives after incubation in different inactivating conditions (high temperatures, different pH values or presence of organic cosolvents). The most stable derivative was obtained immobilizing the chemically aminated enzyme at pH 10 on aldehyde supports with a stabilization factor approximately 280 fold after incubation at pH 7 and 55 °C. In addition, it was possible to prepare immobilized derivatives with a maximal enzyme loading of 60 mg g?1 of support. This derivative could be reused for 10 reaction cycles with negligible lost of activity.  相似文献   

2.
In this work, an active phytase concentrated extract from soybean sprout was immobilized on a polymethacrylate-based polymer Sepabead EC-EP which is activated with epoxy groups. The immobilized enzyme exhibited an activity of 0.1 U/g of carrier and activity yield of 64.7%. The optimum temperature and pH for the activity of both free and immobilized enzymes were found as 60 °C and pH 5.0, respectively. The immobilized enzyme was more stable than free enzyme in the range of pH 3.0–8.0 and more than 70% of the original activity was recovered. Both the enzymes completely retained nearly about 84% of their original activity at 65 °C. The Km and Vmax values were measured as 5 mM and 0.63 U/mg for free enzyme and 12.5 mM and 0.71 U/mg for immobilized enzyme, respectively. Free and immobilized soybean sprout phytase enzymes were also used in the biodegradation of soymilk phytate. The immobilized enzyme hydrolysed 92.5% of soymilk phytate in 7 h at 60 °C, as compared with 98% hydrolysis observed for the native enzyme over the same period of time. The immobilization procedure on Sepabead EC-EP is very cheap and also easy to carry out, and the features of the immobilized enzyme are very attractive that the potential for practical application is considerable.  相似文献   

3.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

4.
A protein extract containing ficin was immobilized on glyoxyl agarose at pH 10 and 25 °C. The free enzyme remained fully active after 24 h at pH 10. However the enzyme immobilized on the support retained only 30% of the activity after this time using a small substrate. After checking the stability of ficin preparations obtained after different enzyme-support multi-interaction times, it was found that it reached a maximum at 3 h (40-folds more stable than the free enzyme at pH 5). The immobilized enzyme was active in a wide range of pH (e.g., retained double activity at pH 10 than the free enzyme) and temperatures (e.g., at 80 °C retained three-folds more activity than the free enzyme). The activity versus casein almost matched the results using the small substrate (60%) at 55 °C. However, in the presence of 2 M of urea, it became three times more active than the free enzyme. The immobilized enzyme could be reused five cycles at 55 °C without losing activity.  相似文献   

5.
Barley α-amylase has been immobilized on silica particles with diameters between 0.5 and 10 μm using a covalent binding method. Immobilization procedures were adjusted to optimize enzyme activity. The effects of product inhibition, thermal stability and operational stability have been determined. The feasibility of using the immobilized enzyme to hydrolyze wheat starch particles at temperatures below the gelatinization temperature (<55 °C) was proven. The optimal conditions for the hydrolysis were found to be: pH 4.5, 40 °C, calcium ion concentration 0.002 M and immobilized enzyme loading of 30 mg/ml. At these conditions, the immobilized enzyme was able to hydrolyze wheat starch particles at concentrations as high as 100 mg/ml with a final conversion of 90% after 24 h of operation. Maltose and glucose were found to inhibit the immobilized enzyme in a similar manner as reported previously using soluble enzyme. Although the thermostability of the immobilized enzyme was superior to the soluble enzyme, the immobilized enzyme degraded at the same rate as the soluble enzyme during cold wheat starch hydrolysis (operational stability unchanged). Model equations are presented for product inhibition, hydrolysis kinetics and enzyme degradation. Using best-fit parameters, the equations are shown to fit the experimental data well.  相似文献   

6.
To improve the thermostability of Trichoderma reesei xylanase 2 (Xyn2), the thermostabilizing domain (A2) from Thermotoga maritima XynA were engineered into the N-terminal region of the Xyn2 protein. The xyn2 and hybrid genes were successfully expressed in Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from S. cerevisiae (α-factor). The transformants expressed the hybrid gene produced clearly increased both the thermostability and substrate-binding capacity compared to the corresponding strains expressed the native Xyn2 gene. The activity of the hybrid enzyme was highest at 65 °C that was 10 °C higher than the native Xyn2. The hybrid enzyme was stable at 60 °C and retained more than 85% of its activity after 30-min incubation at this temperature. The hybrid enzyme was highly specific toward xylan and analysis of the products from birchwood xylan degradation confirmed that the enzyme was an endo-xylanase with xylobiose and xylotriose as the main degradation products. These attributes should make it an attractive applicant for various applications. Our results also suggested that the N-terminal domain A2 is responsible for both the thermostability and substrate-binding capacity of T. maritima XynA.  相似文献   

7.
A gene encoding α-l-arabinofuranosidase (abfA) from Aspergillus niveus was identified, cloned, and successfully expressed in Aspergillus nidulans. Based on amino acid sequence comparison, the 88.6 kDa enzyme could be assigned to the GH family 51. The characterization of the purified recombinant AbfA revealed that the enzyme was active at a limited pH range (pH 4.0–5.0) and an optimum temperature of 70 °C. The AbfA was able to hydrolyze arabinoxylan, xylan from birchwood, debranched arabinan, and 4-nitrophenyl arabinofuranoside. Synergistic reactions using both AbfA and endoxylanase were also assessed. The highest degree of synergy was obtained after the sequential treatment of the substrate with endoxylanase, followed by AbfA, which was observed to release noticeably more reducing sugars than that of either enzyme acting individually. The immobilization of AbfA was performed via ionic adsorption onto various supports: agarose activated by polyethyleneimine polymers, cyanogen bromide activated Sepharose, DEAE-Sepharose, and Sepharose-Q. The Sepharose-Q derivative remained fully active at pH 5 after 360 min at 60 °C, whereas the free AbfA was inactivated after 60 min. A synergistic effect of arabinoxylan hydrolysis by AbfA immobilized in Sepharose-Q and endoxylanase immobilized in glyoxyl agarose was also observed. The stabilization of arabinofuranosidases using immobilization tools is a novel and interesting topic.  相似文献   

8.
A xylanase-producing, Gram-positive, aerobic, and spore-forming bacterium was isolated from a soil sample collected from Jeju Island and was classified as a novel subspecies of Streptomyces thermocarboxydus on the basis of 16S rRNA gene sequence similarity, the results of DNA–DNA hybridization analysis, and phenotypic characteristics. The novel strain was named as S. thermocarboxydus subsp. MW8 (=KCTC29013 = DSM52054). This strain produced extracellular xylanase. Xylanase from the strain was purified to homogeneity and had an apparent molecular weight of 52 kDa. The NH2-terminal sequence (Ala-Glu-Ile-Arg-Leu) was distinct from those of previously reported xylanases. The purified xylanase produced xylobiose as the end-product of birchwood xylan hydrolysis. The Km and Vmax values of the purified xylanase on birchwood xylan were 1.71 mg/ml and 357.14 U/mg, respectively. The optimum pH and temperature for the enzyme were found to be 7.0 and 50 °C, respectively, and the enzyme exhibited significant heat stability. In addition, the enzyme was active over broad pH ranges: 84% of the maximum activity at pH 5.0, 84–88% at pH 6.0, 88% at pH 8.0, and 75–81% (pH 9.0). These enzymatic properties may be very useful for use in bio-industrial applications.  相似文献   

9.
A xylanase gene (xyl11B) was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris. xyl11B, with a 66-bp intron, encodes a mature protein of 219 residues with highest identity (57.1%) to the Trichoderma reesei xylanase of glycoside hydrolase family 11. The purified recombinant XYL11B was acidophilic, exhibiting maximum activity at pH 2.6 and 65 °C. The enzyme was also thermostable, pH stable, and was highly resistant to both pepsin and trypsin, suggesting good performance in the digestive tract as a feed supplement to improve animal nutrition. The activity of XYL11B was enhanced by most metal ions but was inhibited weakly by Hg2+, Pb2+and Cu2+, which strongly inhibit many other xylanases. The specific activity of XYL11B for oat spelt xylan substrate was 2049 U mg?1. The main hydrolysis products of xylan were xylose and xylobiose.  相似文献   

10.
An investigation was conducted on the production of β-galactosidase (β-gal) by different strains of Kluyveromyces, using lactose as a carbon source. The maximum enzymatic activity of 3.8 ± 0.2 U/mL was achieved by using Kluyveromyces lactis strain NRRL Y1564 after 28 h of fermentation at 180 rpm and 30 °C. β-gal was then immobilized onto chitosan and characterized based on its optimal operation pH and temperature, its thermal stability and its kinetic parameters (Km and Vmax) using o-nitrophenyl β-d-galactopyranoside as substrate. The optimal pH for soluble β-gal activity was found to be 6.5 while the optimal pH for immobilized β-gal activity was found to be 7.0, while the optimal operating temperatures were 50 °C and 37 °C, respectively. At 50 °C, the immobilized enzyme showed an increased thermal stability, being 8 times more stable than the soluble enzyme. The immobilized enzyme was reused for 10 cycles, showing stability since it retained more than 70% of its initial activity. The immobilized enzyme retained 100% of its initial activity when it was stored at 4 °C and pH 7.0 for 93 days. The soluble β-gal lost 9.4% of its initial activity when it was stored at the same conditions.  相似文献   

11.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

12.
《Process Biochemistry》2010,45(10):1730-1737
An aerobic xylanolytic Gracilibacillus sp. TSCPVG growing at moderate to extreme salinity (1–30%) and neutral to alkaline pH (6.5–10.5) was isolated from the salt fields near Sambhar district of Rajasthan, India. β-xylanase (18.44 U/ml) and β-xylosidase (1.01 U/ml) were produced in 60 h in the GSL-2 mineral base medium with additions of (in g/l) Birchwood xylan (7.5), yeast extract (10.0), tryptone (8.0), proline (2.0), thiamine (2.0), Tween-40 (2.0) and NaCl (35) at pH 7.5, 30 °C and 180 rpm. The β-xylanase was active within a broad salinity range (0–30% NaCl), pH (5.0–10.5) and temperature (50–70 °C). It exhibited maximal activity with 3.5% NaCl, pH 7.5 at 60 °C. It was extremely halotolerant retaining more than 80% of activity at 0 and 30% NaCl and alkali-tolerant retaining 76% of activity at pH 10.5. The acetone precipitated xylanase was highly stable (100%) at variable salinities of 0–30% NaCl, pH of 5.0–10.5 and temperatures of 0–60 °C for 48 h. HPLC analysis showed xylose, arabinose and xylooligosaccharides as hydrolysis products of xylan. This is the first report on hemi-cellulose degrading halo-alkali-thermotolerant enzyme from a moderately halophilic Gram-positive Gracilibacillus species.  相似文献   

13.
Racemic DL-tert-leucine (DL-Tle) was resolved to obtain enantiopure L-Tle through enantioselective hydrolysis of its N-phenylacetyl derivative with immobilized penicillin G acylase (PGA). The effects of pH, reaction temperature, substrate concentration and reaction time on the reaction were investigated. The reaction was conveniently carried out at 0.4 M substrate concentration in water at pH 8.0 and 30 °C. Under the optimized reaction conditions, L-Tle was obtained in an enantiopure form (>99% ee) with 45.8% substrate conversion after 4 h. The thermal stability and operational stability of immobilized PGA were examined. Furthermore, the preparation of L-Tle was successfully performed in a recirculating packed bed reactor (RPBR) system and immobilized PGA exhibited a long-term stability for 51 days with a slight decrease of activity. The isolated D-enantiomer was racemized at 160 °C for 15 min and reused as substrate. The results obtained clearly demonstrated a potential for industrial application of immobilized PGA in the preparation of L-Tle through enantioselective hydrolysis of its N-phenylacetyl derivative.  相似文献   

14.
Maltase from Bacillus licheniformis KIBGE-IB4 was immobilized within calcium alginate beads using entrapment technique. Immobilized maltase showed maximum immobilization yield with 4% sodium alginate and 0.2 M calcium chloride within 90.0 min of curing time. Entrapment increases the enzyme–substrate reaction time and temperature from 5.0 to 10.0 min and 45 °C to 50 °C, respectively as compared to its free counterpart. However, pH optima remained same for maltose hydrolysis. Diffusional limitation of substrate (maltose) caused a declined in Vmax of immobilized enzyme from 8411.0 to 4919.0 U ml?1 min?1 whereas, Km apparently increased from 1.71 to 3.17 mM ml?1. Immobilization also increased the stability of free maltase against a broad temperature range and enzyme retained 45% and 32% activity at 55 °C and 60 °C, respectively after 90.0 min. Immobilized enzyme also exhibited recycling efficiency more than six cycles and retained 17% of its initial activity even after 6th cycles. Immobilized enzyme showed relatively better storage stability at 4 °C and 30 °C after 60.0 days as compared to free enzyme.  相似文献   

15.
《Process Biochemistry》2014,49(4):637-646
In this study, Purolite® A109, polystyrenic macroporous resin, was used as immobilization support due to its good mechanical properties and high particle diameter (400 μm), which enables efficient application in enzyme reactors due to lower pressure drops. The surface of support had been modified with epichlorhydrine and was tested in lipase immobilization. Optimized procedure for support modification proved to be more efficient than conventional procedure for hydroxy groups (at 22 °C for 18 h), since duration of procedure was shortened to 40 min by performing modification at 52 °C resulting with almost doubled concentration of epoxy groups (563 μmol g−1). Lipase immobilized on epoxy-modified support showed significantly improved thermal stability comparing to both, free form and commercial immobilized preparation (Novozym® 435). The highest activity (47.5 IU g−1) and thermal stability (2.5 times higher half-life than at low ionic strength) were obtained with lipase immobilized in high ionic strength. Thermal stability of immobilized lipase was further improved by blocking unreacted epoxy groups on supports surface with amino acids. The most efficient was treatment with phenylalanine, since in such a way blocked immobilized enzyme retained 65% of initial activity after 8 h incubation at 65 °C, while non-blocked derivative retained 12%.  相似文献   

16.
The soluble lipase from Pseudomonas fluorescens (PFL) forms bimolecular aggregates in which the hydrophobic active centers of the enzyme monomers are in close contact. This bimolecular aggregate could be immobilized by multipoint covalent linkages on glyoxyl supports at pH 8.5. The monomer of PFL obtained by incubation of the soluble enzyme in the presence of detergent (0.5% TRITON X-100) could not be immobilized under these conditions. The bimolecular aggregate has two amino terminal residues in the same plane. A further incubation of the immobilized derivative under more alkaline conditions (e.g., pH 10.5) allows a further multipoint attachment of lysine (Lys) residues located in the same plane as the amino terminal residues. Monomeric PFL was immobilized at pH 10.5 in the presence of 0.5% TRITON X-100. The properties of both PFL derivatives were compared. In general, the bimolecular derivatives were more active, more selective and more stable both in water and in organic solvents than the monomolecular ones. The bimolecular derivative showed twice the activity and a much higher selectivity (100 versus 20) for the hydrolysis of R,S-2-hydroxy-4-phenylbutyric acid ethyl ester (HPBEt) in aqueous media at pH 5.0 compared to the monomeric derivative. In experiments measuring thermal inactivation at 75 °C, the bimolecular derivative was 5-fold more stable than the monomeric derivative (and 50-fold more stable than a one-point covalently immobilized PFL derivative), and it had a half-life greater than 4 h. In organic solvents (cyclohexane and tert-amyl alcohol), the bimolecular derivative was much more stable and more active than the monomeric derivative in catalyzing the transesterification of olive oil with benzyl alcohol.  相似文献   

17.
A novel method was developed for the immobilization of glucoamylase from Aspergillus niger. The enzyme was immobilized onto polyglutaraldehyde-activated gelatin particles in the presence of polyethylene glycol and soluble gelatin, resulting in 85% immobilization yield. The immobilized enzyme has been fully active for 30 days. In addition, the immobilized enzyme retained 90 and 75% of its activity in 60 and 90 days, respectively. The enzyme optimum conditions were not affected by immobilization and the optimum pH and temperature for free and immobilized enzyme were 4 and 65 °C, respectively. The kinetic parameters for the hydrolysis of maltodextrin by free and immobilized glucoamylase were also determined. The Km values for free and immobilized enzyme were 7.5 and 10.1 g maltodextrin/l, respectively. The Vmax values for free and immobilized enzyme were estimated as 20 and 16 μmol glucose/(min μl enzyme), respectively. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes.  相似文献   

18.
An industrial enzyme, alkaline serine endopeptidase, was immobilized on surface modified SBA-15 and MCF materials by amide bond formation using carbodiimide as a coupling agent. The specific activities of free enzyme and enzyme immobilized on SBA-15 and MCF were studied using casein (soluble milk protein) as a substrate. The highest activity of free enzyme was obtained at pH 9.5 while this value shifted to pH 10 for SBA-15 and MCF immobilized enzyme. The highest activity of immobilized enzymes was obtained at higher temperature (60 °C) than that of the free enzyme (55 °C). Kinetic parameters, Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax), were calculated as Km = 13.375, 11.956, and 8.698 × 10?4 mg/ml and Vmax = 0.156, 0.163 and 0.17 × 10?3 U/mg for the free enzyme and enzyme immobilized on SBA-15 and MCF, respectively. The reusability of immobilized enzyme showed 80% of the activity retained even after 15 cycles. Large pore sized MCF immobilized enzyme was found to be more promising than the SBA-15 immobilized enzyme due to the availability of larger pores of MCF, which offer facile diffusion of substrate and product molecules.  相似文献   

19.
A cellulase free thermostable xylanase from Streptomyces sp. CS428 was isolated from a Korean soil sample, purified by single-step chromatography, and biochemically characterized. The extracellular xylanase was purified 26 fold with a 55% yield by CM Trisacryl cation exchange chromatography. The molecular mass of the enzyme (Xyn428) was approximately 37 kDa. Xyn428 was found to be stable over a broad pH range (4 to ~13.6) and to 50 °C and have an optimum temperature of 80 °C. Xyn428 had Km and Vmax values of 102.3 ± 1.2 mg/mL and 3225.4 ± 15 mmol/min mg, respectively, when beechwood xylan was used as substrate. N-terminal sequence of Xyn428 was INRTDHNENSYLEIHNNEAR. CS428 was grown on different agro waste xylan and produced 4197.1 U/mL of xylanase activity in 36 h of cultivation in wheat bran without supplements. Xyn428 activity was inhibited by Tris salt at concentrations above 20 mM, and produced xylose and xylobiose as major products. It was found to degrade agro waste materials by small unit of enzyme (20 U/g) as shown by electron microscopy. As being simple in purification, thermo tolerant, pH stability in broad range and ability to produce xylooligosaccharides show that Xyn428 has potential applications in industries as a biobleaching agent and for xylooligosaccharides production.  相似文献   

20.
In this work, the hydrolysis kinetics of lactose by Aspergillus oryzae β-galactosidase was studied using the ionic exchange resin Duolite A568 as a carrier. The enzyme was immobilized using a β-galactosidase concentration of 16 g/L in pH 4.5 acetate buffer and an immobilization time of 12 h at 25 ± 0.5 °C. Next, the immobilized β-galactosidase was crosslinked using glutaraldehyde concentration of 3.5 g/L for 1.5 h. The influence of lactose concentration was studied for a range of 5–140 g/L, and the Michaelis–Menten model was fitted well to the experimental results with Vm and Km values of 0.71 U and 35.30 mM, respectively. The influence of the product galactose as an inhibitor on the hydrolysis reaction was studied. The model that was best fitted to the experimental results was the competitive inhibition by galactose with Vm, Km and Ki values of 0.77 U, 35.30 mM and 27.44 mM, respectively. The influence of temperature on the enzymatic activity of the immobilized enzyme was studied in the range of 10–80 °C, in which the temperature of the maximum activity was 60 °C, with an activation energy of 5.32 kcal/mol of lactose, using an initial concentration of lactose of 50 g/L in a pH 4.5 sodium acetate buffer solution. The thermal stability of the immobilized biocatalyst was determined to be in the range 55–65 °C. The first-order model described well the kinetics of thermal deactivation for all the temperatures studied. The activation energy of thermal deactivation from immobilized biocatalyst was 66.48 kcal/mol with a half-life of 8.9 h at 55 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号