首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Noise-induced complete synchronization and frequency synchronization in coupled spiking and bursting neurons are studied firstly. The effects of noise and coupling are discussed. It is found that bursting neurons are easier to achieve firing synchronization than spiking ones, which means that bursting activities are more important for information transfer in neuronal networks. Secondly, the effects of noise on firing synchronization in a noisy map neuronal network are presented. Noise-induced synchronization and temporal order are investigated by means of the firing rate function and the order index. Firing synchronization and temporal order of excitatory neurons can be greatly enhanced by subthreshold stimuli with resonance frequency. Finally, it is concluded that random perturbations play an important role in firing activities and temporal order in neuronal networks.  相似文献   

2.
As important as the intrinsic properties of an individual nervous cell stands the network of neurons in which it is embedded and by virtue of which it acquires great part of its responsiveness and functionality. In this study we have explored how the topological properties and conduction delays of several classes of neural networks affect the capacity of their constituent cells to establish well-defined temporal relations among firing of their action potentials. This ability of a population of neurons to produce and maintain a millisecond-precise coordinated firing (either evoked by external stimuli or internally generated) is central to neural codes exploiting precise spike timing for the representation and communication of information. Our results, based on extensive simulations of conductance-based type of neurons in an oscillatory regime, indicate that only certain topologies of networks allow for a coordinated firing at a local and long-range scale simultaneously. Besides network architecture, axonal conduction delays are also observed to be another important factor in the generation of coherent spiking. We report that such communication latencies not only set the phase difference between the oscillatory activity of remote neural populations but determine whether the interconnected cells can set in any coherent firing at all. In this context, we have also investigated how the balance between the network synchronizing effects and the dispersive drift caused by inhomogeneities in natural firing frequencies across neurons is resolved. Finally, we show that the observed roles of conduction delays and frequency dispersion are not particular to canonical networks but experimentally measured anatomical networks such as the macaque cortical network can display the same type of behavior.  相似文献   

3.
Excitement and synchronization of electrically and chemically coupled Newman-Watts (NW) small-world neuronal networks with a short-term synaptic plasticity described by a modified Oja learning rule are investigated. For each type of neuronal network, the variation properties of synaptic weights are examined first. Then the effects of the learning rate, the coupling strength and the shortcut-adding probability on excitement and synchronization of the neuronal network are studied. It is shown that the synaptic learning suppresses the over-excitement, helps synchronization for the electrically coupled network but impairs synchronization for the chemically coupled one. Both the introduction of shortcuts and the increase of the coupling strength improve synchronization and they are helpful in increasing the excitement for the chemically coupled network, but have little effect on the excitement of the electrically coupled one.  相似文献   

4.
Microbial fuel cells for biosensor applications   总被引:1,自引:0,他引:1  
  相似文献   

5.
Porous gold surfaces for biosensor applications   总被引:1,自引:0,他引:1  
The sensitivity of optical biosensors where the detection takes place on a planar gold surface can be improved by making the surface porous. The porosity allows a larger number of ligands per surface area resulting in larger optical shifts when interacting with specifically binding analyte molecules. The porous gold was deposited as a thin layer on a planar gold surface by electrochemical deposition in a solution of tetrachloroaurate and lead acetate. A protein, streptavidin, was adsorbed into the formed porous layer and the time course of the adsorption was monitored by in-situ ellipsometry. When the porous layer was 500 nm in thickness a six-fold increase of the ellipsometric response was obtained compared with a planar gold surface. The dependency of porosity and layer thickness was explained with a mathematical model of the gold/porous gold/protein/solution system.  相似文献   

6.
In recent years, the use of acetylcholinesterases (AChEs) in biosensor technology has gained enormous attention, in particular with respect to insecticide detection. The principle of biosensors using AChE as a biological recognition element is based on the inhibition of the enzyme's natural catalytic activity by the agent that is to be detected. The advanced understanding of the structure-function-relationship of AChEs serves as the basis for developing enzyme variants, which, compared to the wild type, show an increased inhibition efficiency at low insecticide concentrations and thus a higher sensitivity. This review describes different expression systems that have been used for the production of recombinant AChE. In addition, approaches to purify recombinant AChEs to a degree that is suitable for analytical applications will be elucidated as well as the various attempts that have been undertaken to increase the sensitivity of AChE to specified organophosphates and carbamates using side-directed mutagenesis and employing the enzyme in different assay formats.  相似文献   

7.
By taking advantages of the main features of the microelectrode array (MEA) technology (i.e. multisite recordings, stable and long-term coupling with the biological preparation), we analyzed the changes in activity patterns induced by applying specific substances to dissociated cortical neurons from rat-embryos (E18). Data were recorded simultaneously from 60 electrodes, and the electrophysiological behavior was investigated during the third week in vitro, both at the spike and burst level. The analysis of the electrophysiological activity modulation, by applying agonists of the ionotropic glutamate receptors at low (i.e. 0.2-1-5 microM) and high (i.e. 50-100 microM) concentrations, is presented. Preliminary results show that the dynamics of the in vitro cortical neurons is very sensitive to pharmacological manipulation of the glutamatergic transmission and the effects on the network behavior are strictly dependent from the drug concentration. In particular, the addition of a high-dose of agonist determined a global and irreversible depression of the network activity, while, in the low-concentration case, the electrophysiological behavior showed different results, depending on the type of receptor involved. From these observations, we are encouraged to think of a more engineered system, based on in vitro cortical neurons, as a novel sensitive system for drug (pre)-screening and neuropharmacological evaluations.  相似文献   

8.
In this study we present the results obtained from efforts to stabilize the inherently unstable m-AChE in nanoporous materials, for the development of biosensors with increased operational stability. Based on existing theoretical models, the entrapment of proteins into relatively small rigid cages drastically increases the stability of these proteins, as this is manifested by their decreased tendency to unfold. The use of two different meso/nanomaterials for the immobilization of the m-AChE shows that there is both a decrease in the leaching of the protein from the biosensor membrane to the test solution, as well as a drastic increase in the operational stability of the resulting biosensor.  相似文献   

9.
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.  相似文献   

10.
11.
A sensitive NO2- biosensor that is based on bacterial reduction of NO2- to N2O and subsequent detection of the N2O by a built-in electrochemical N2O sensor was developed. Four different denitrifying organisms lacking NO3- reductase activity were assessed for use in the biosensor. The relevant physiological aspects examined included denitrifying characteristics, growth rate, NO2- tolerance, and temperature and salinity effects on the growth rate. Two organisms were successfully used in the biosensor. The preferred organism was Stenotrophomonas nitritireducens, which is an organism with a denitrifying pathway deficient in both NO3- and N2O reductases. Alternatively Alcaligenes faecalis could be used when acetylene was added to inhibit its N2O reductase. The macroscale biosensors constructed exhibited a linear NO2- response at concentrations up to 1 to 2 mM. The detection limit was around 1 microM NO2-, and the 90% response time was 0.5 to 3 min. The sensor signal was specific for NO2-, and interference was observed only with NH2OH, NO, N2O, and H2S. The sensor signal was affected by changes in temperature and salinity, and calibration had to be performed in a system with a temperature and an ionic strength comparable to those of the medium analyzed. A broad range of water bodies could be analyzed with the biosensor, including freshwater systems, marine systems, and oxic-anoxic wastewaters. The NO2- biosensor was successfully used for long-term online monitoring in wastewater. Microscale versions of the NO2- biosensor were constructed and used to measure NO2- profiles in marine sediment.  相似文献   

12.
《Biosensors》1989,4(6):349-359
The chemical modification of cellulose acetate by acylation of the C-2 position produces a membrane that is more hydrophobic and biocompatible. The efficacy of this membrane in biosensor applications is compared with the unmodified cellulose acetate membrane.  相似文献   

13.
The ability to create biocompatible well-controlled membranes has been an area of great interest over the last few years, particularly for biosensor applications. The present study describes the fabrication and characterization of novel nanoporous micromachined membranes that exhibit selective permeability and low biofouling. Results indicate that such membranes can be fabricated with uniform pore sizes capable of the simultaneous exclusion of albumin and diffusion of glucose. Compared to polymeric membranes of similar pore size, micromachined silicon membranes allowed more than twice the amount of glucose diffusion after 240 min and complete albumin exclusion. Moreover, membranes exhibit no morphological change or degradability in the presence of biological proteins and fluids at 37 degrees C. The results point to the potential of using such membranes for implantable biosensor applications. With monodisperse pores sizes as small as 10 nm, these membranes offer advantages in their reproducibility, stability, and ability to be integrated in silicon-based biosensing technology.  相似文献   

14.
We developed a multicellular model characterized by a high degree of heterogeneity to investigate possible mechanisms that underlie circadian network synchronization and rhythmicity in the suprachiasmatic nucleus (SCN). We populated a two-dimensional grid with 400 model neurons coupled via γ-aminobutyric acid (GABA) and vasoactive intestinal polypeptide (VIP) neurotransmitters through a putative Ca2+ mediated signaling cascade to investigate their roles in gene expression and electrical firing activity of cell populations. As observed experimentally, our model predicted that GABA would affect the amplitude of circadian oscillations but not synchrony among individual oscillators. Our model recapitulated experimental findings of decreased synchrony and average periods, loss of rhythmicity, and reduced circadian amplitudes as VIP signaling was eliminated. In addition, simulated increases of VIP reduced periodicity and synchrony. We therefore postulated a physiological range of VIP within which the system is able to produce sustained and synchronized oscillations. Our model recapitulated experimental findings of diminished amplitudes and periodicity with decreasing intracellular Ca2+ concentrations, suggesting that such behavior could be due to simultaneous decrease of individual oscillation amplitudes and population synchrony. Simulated increases in Cl levels resulted in increased Cl influx into the cytosol, a decrease of inhibitory postsynaptic currents, and ultimately a shift of GABA-elicited responses from inhibitory to excitatory. The simultaneous reduction of IPSCs and increase in membrane resting potential produced GABA dose-dependent increases in firing rates across the population, as has been observed experimentally. By integrating circadian gene regulation and electrophysiology with intracellular and intercellular signaling, we were able to develop the first (to our knowledge) multicellular model that allows the effects of clock genes, electrical firing, Ca2+, GABA, and VIP on circadian system behavior to be predicted.  相似文献   

15.
To overcome logistical difficulties with current designs of cell- or tissue-based biosensors which have individual cells or tissue slices immobilized on membranes or microelectrode arrays, we have proposed a system that uses three-dimensional cultures of neural cells immobilized in hydrogel matrices. In this design, immobilized cells would be maintained in a reservoir and then transferred to a detector platform when needed for analysis. The development of such a system relies upon a renewable supply of cells and the ability to culture cells for long periods of time in three-dimensions while maintaining their physiological function. To investigate the ability to culture neural cells in 3D matrices, embryonic rat cortical neurons and astrocytes were immobilized by matrix entrapment in a novel sugar poly(acrylate) hydrogel and collagen gels. The sugar poly(acrylate) hydrogel does not appear to support neural cell growth as a result of a lack of cell adherence, small pore size and, possibly, harshness of synthesis conditions. In contrast, collagen gels support the growth of cortical neurons, astrocytes, as well as neural progenitor cells. Evidence is also presented from immunocytochemistry and patch-clamp measurements which shows that neural progenitor cells proliferate in culture and can be induced to differentiate into neural cell types. Thus, they potentially represent a renewable cell source.  相似文献   

16.
PhotoMEA is a biosensor useful for the analysis of an in vitro neuronal network, fully based on optical methods. Its function is based on the stimulation of neurons with caged glutamate and the recording of neuronal activity by Voltage-Sensitive fluorescent Dyes (VSD). The main advantage is that it will be possible to stimulate even at sub-single neuron level and to record with high resolution the activity of the entire network in the culture. A large-scale view of neuronal intercommunications offers a unique opportunity for testing the ability of drugs to affect neuronal properties as well as alterations in the behaviour of the entire network. The concept and a prototype for validation is described here in detail.  相似文献   

17.
Au nanocrystals with different morphologies were prepared and used for enzyme-free electrochemical biosensor applications. To investigate the electrocatalytic properties of Au nanocrystals as a function on their morphologies, Au nanocrystals, Au nanospheres (NSs) on silica, Au NSs, and Au nanorods (NRs) with aspect ratios of 1:3 and 1:5, were coated on the screen printed electrodes and further measure the amperometric responses to hydrogen peroxide via three-electrode system. The electrodes modified with Au nanocrystals showed biosensing properties without any enzyme being attached or immobilized at their surface. The hydrogen peroxide detection limits of the biosensors with Au NSs, Au NRs (1:3), and Au NRs (1:5) were 6.48, 8.65, and 9.38 μM (S/N = 3), respectively. The biosensors with Au NSs, Au NRs (1:3), and Au NRs (1:5) showed the sensitivities of 11.13, 54.53, and 58.51 μA/mM, respectively. These results indicate that morphologies of Au nanocrystals significantly influence the sensitivity of the biosensors. In addition, the enzyme-free biosensors with Au nanocrystals were stable for 2 months. Au nanocrystal-based enzyme-free system, which is proposed in this study, can be used as a platform for various electrochemical biosensors.  相似文献   

18.
Attention selectively enhances the influence of neuronal responses conveying information about relevant sensory attributes. Accumulating evidence suggests that this selective neuronal modulation relies on rhythmic synchronization at local and long-range spatial scales: attention selectively synchronizes the rhythmic responses of those neurons that are tuned to the spatial and featural attributes of the attended sensory input. The strength of synchronization is thereby functionally related to perceptual accuracy and behavioural efficiency. Complementing this synchronization at a local level, attention has recently been demonstrated to regulate which locally synchronized neuronal groups phase-synchronize their rhythmic activity across long-range connections. These results point to a general computational role for selective synchronization in dynamically controlling which neurons communicate information about sensory inputs effectively.  相似文献   

19.
Muscle-powered, biological, microelectro-mechanical system is promising for actuator and biosensor applications. Functional conjugation between the cells, tissues, and biomolecules to the microdevice is crucial for this application. Bioprinting as an enabling technology possesses the advantages of high throughput, digital control, and highly accurate delivery of various biological factors to the desired locations for numerous applications such as 3D tissue fabrication. We have now evaluated the feasibility of the precise placement of mouse myoblasts onto micro-sized cantilevers. The evenly aligned printed cells fused with each other and formed mature myotubes after only 4 days. In contrast, it took more than 14 days for randomly deposited cells to do so. The printed myotubes were functional and responded to the electrical stimulation synchronously. Furthermore, the integrated Bio-MEMS device responded to the chemical stimulation spontaneously which demonstrated the potential as a functional biosensor. The contractility of the system was recovered quickly after the removal of the chemical stimulation, which indicated the flexibility of this system and the recycling potential.  相似文献   

20.
We have developed a portable biosensing device based on genetically engineered bioluminescent (BL) cells. Cells were immobilized on a 4 × 3 multiwell cartridge using a new biocompatible matrix that preserved their vitality. Using a fiber optic taper, the cartridge was placed in direct contact with a cooled CCD sensor to image and quantify the BL signals. Yeast and bacterial cells were engineered to express recognition elements, whose interaction with the analyte led to luciferase expression, via reporter gene technology. Three different biosensors were developed. The first detects androgenic compounds using yeast cells carrying a green-emitting P. pyralis luciferase regulated by the human androgen receptor and a red mutant of the same species as internal vitality control. The second biosensor detects two classes of compounds (androgens and estrogens) using yeast strains engineered to express green-or red-emitting mutant firefly luciferases in response to androgens or estrogens, respectively. The third biosensor detects lactose analogue isopropyl β-d-1-thiogalactopyranoside using two E. coli strains. One strain exploits the lac operon as recognition element for the expression of P. pyralis luciferase. The other strain serves as a vitality control expressing Gaussia princeps luciferase, which requires a different luciferin substrate. The immobilized cells were stable for up to 1 month. The analytes could be detected at nanomolar levels with good precision and accuracy when the specific signal was corrected using the internal vitality control. This portable device can be used for on-site multiplexed bioassays for different compound classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号