首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclei isolated from differentiated normal liver, moderately differentiated Hepatoma 5123 and poorly differentiated Novikoff hepatoma have been compared with respect to ATP-dependence of messenger-like RNA release and resistance to lysis (DNA release) in a cell-free system containing homologous cytosol. The release of RNA from the nuclei of liver, Hepatoma 5123D and the Novikoff hepatoma was totally ATP-dependent, partially ATP-dependent and ATP-independent, repectively. The sensitivity of the nuclear RNA transport in the presence of ATP to beryllium nitrate, an inhibitor of a nuclear pore phosphatase, paralleled their ATP-dependence. Although RNA release from the nuclei of both liver and Novikoff hepatoma has an absolute requirement for cytosol proteins, the structural integrity of liver, but not Novikoff hepatoma nuclei in the presence of ATP, is dependent on macromolecules in the cytosol.  相似文献   

2.
The ability of cloned Rous sarcoma virus (RSV) DNA encoding the v-src oncogene to neoplastically transform normal, diploid Syrian hamster embryo (SHE) cells was examined. Transfection of RSV DNA into early passage SHE cells resulted in a low but significant number of tumors when treated cells were injected into nude mice. Tumors formed with a low frequency (two tumors out of ten sites injected) and only after a long latency period (14 weeks). In contrast to the normal SHE cells, several different carcinogen-induced preneoplastic immortal SHE cell lines were highly susceptible to transformation by the v-src oncogene to the neoplastic phenotype. Tumors formed with high efficiency and a short latency period (less than 3 weeks). Further studies were performed to determine the basis for the inefficient transformation of the normal SHE cells. NeoR clones isolated after cotransfection of SHE cells with pSV2-neo and RSV DNAs were neither morphologically altered nor immortal and did not contain detectable levels of the v-src gene product. These results suggest that neoplastic transformation by v-src DNA in the normal cells is initially suppressed. However, cells from a v-src-induced tumor expressed v-src RNA, and antibody to v-src protein precipitated from the tumor cells a 60,000-molecular-weight protein which displayed protein kinase activity. Karyotypic analyses confirmed that the tumor was derived from Syrian hamster cells and suggested that it was clonal in nature. These results indicate that the v-src oncogene was primarily responsible for neoplastic transformation of SHE cells. In contrast to the results with the v-src oncogene, our previous studies showed that v-Ha-ras oncogene alone is unable to induce neoplastic transformation of SHE cells. Furthermore, the v-myc oncogene was able to compliment v-Ha-ras to neoplastically transform SHE cells, while cotransfection with v-src plus v-myc did not increase the incidence of tumors.  相似文献   

3.
The normal shape of the erythrocytes of the bivalves known as blood clams is maintained by a marginal band (MB) of microtubules. When hemolymph (or "blood") is withdrawn from the animal, its erythrocytes change, within minutes, from the normal smooth-surfaced, flattened ellipsoids (N-cells) to spheroids with folded surfaces (X-cells). This alteration can be prevented by rapidly diluting the hemolymph with physiological medium, yielding N-cells for use in studying the transformation to X-cells. Bioassays showed that shape transformation was induced by a hemolymph activity (Hx) and was a function, in part, of cell responsiveness to this activity. Eventually the shape of the cells spontaneously returned to normal, at a rate dependent upon the concentration of the cells and of Hx; recovery was correlated with loss of Hx. The X-cells contained an intact but highly deformed MB, but this was not the effector of the transformation. Erythrocytes made to lack MBs still changed shape, although they did not recover as completely as did the MB-containing controls. When clams were cooled before hemolymph was withdrawn, the concentration of Hx was reduced. Hx was retained after dialysis of hemolymph, and initial filtration and chromatography indicated that its Mr was greater than 500,000. Shape transformation was blocked by EGTA, by serine protease inhibitors, and by sodium azide; the last indicates ATP-dependence. Although the mechanism responsible for shape transformation remains to be determined, the data suggest that the change is triggered by a coagulation-related activity in response to the removal of hemolymph from the animal.  相似文献   

4.
5.
Enhanced Virus Transformation of Hamster Embryo Cells In Vitro   总被引:3,自引:1,他引:2       下载免费PDF全文
Since transformation of hamster cells in vitro by simian virus 40 (SV40) is a rare event in a homogeneously infected cell population, physiochemical studies of the events of virus transformation are difficult. Similarly, other deoxyribonucleic acid-containing oncogenic viruses produce transformed-cell foci in vitro with low efficiency. Sublethal doses of X-ray irradiation, as well as preincubation of hamster embryo cells with the radiomimetic analogue, 5-iododeoxyuridine, markedly sensitized hamster embryo cells to SV40 in vitro. Agents were used at dosages which neither produced lethality nor caused neoplastic transformation in the absence of virus. Embryo cells maintained in vitro for long periods of time became increasingly more sensitive to SV40 transformation. Radiation also stimulated transformation by adenovirus 31. Delay in the addition of virus to preirradiated cells reduced the susceptibility to transformation by SV40 which was observed for cells infected immediately after irradiation, suggesting that radiation repair mechanisms or, possibly, release from radiation-induced "mitotic delay" may interfere with the process of neoplastic conversion by SV40.  相似文献   

6.
7.
Other investigators have demonstrated by transfer of medium from irradiated cells and by irradiation with low-fluence alpha particles or microbeams that cells do not have to be directly exposed to ionizing radiation to be detrimentally affected, i.e. bystander effects. In this study, we demonstrate by transfer of medium from X-irradiated human CGL1 hybrid cells that the killing of bystander cells reduces the plating efficiency of the nonirradiated CGL1 cells by 33 +/- 6%. In addition, we show that the amount of cell death induced by bystander effects is not dependent on X-ray dose, and that the induction of apoptosis does not appear to be responsible for the cell death. Furthermore, we found that the reduction in plating efficiency in bystander cells is evident for over 18 days, or 22 cell population doublings, after medium transfer, despite repeated refeeding of the cell cultures. Finally, we report the novel observation that bystander effects induced by the transfer of medium from irradiated cells can induce neoplastic transformation. Exposing unirradiated CGL1 cells to medium from cells irradiated with 5 or 7 Gy increased the frequency of neoplastic transformation significantly from 6.3 x 10(-6) in unirradiated controls to 2.3 x 10(-5) (a factor of nearly four). We conclude that the bystander effect induces persistent, long-term, transmissible changes in the progeny of CGL1 cells that result in delayed death and neoplastic transformation. The data suggest that neoplastic transformation in bystander cells may play a significant role in radiation-induced neoplastic transformation at lower doses of X rays.  相似文献   

8.
Apoptosis after the loss of cell anchorage--"anoikis"--plays an important role in the life cycle of adherent cells. Furthermore, loss of anchorage dependency is believed to be a critical step in metastatic transformation. The aim of this study was to further characterize the sequence of intracellular events during anoikis in a nontransformed population of human intestinal epithelial cells (IECs). Purified human IECs were kept in suspension to induce anoikis in over 90% of IECs within 3 h. Two initiator caspases, caspase-2 and -9, are activated within 15 min, followed by the hierarchical activation of downstream caspases within 1 h. The activation of the caspase FLICE (caspase-8) does not contribute to the initiation of anoikis, and massive release of cytochrome c from mitochondria cannot be detected before 60 min, indicating that cytochrome c release does not play a role during initiation of anoikis. This study delineates the signaling cascade during anoikis of nontransformed cells. Future studies may identify alterations of this cascade in neoplastic cells, thereby possibly gaining insight into carcinogenesis and metastatic transformation.  相似文献   

9.
K Olden  K M Yamada 《Cell》1977,11(4):957-969
The major cell surface glycoprotein of cultured chick embryo fibroblasts (CSP, a LETS protein) is substantially decreased after neoplastic transformation. We investigated the regulation of this glycoprotein by determining the kinetics of CSP biosynthesis, transit to the cell surface, and degradation before and after transformation by Rous sarcoma virus. CSP synthesis, as measured by immunoprecipitation after pulse-labeling with 14C-leucine, is decreased 3–6 fold after transformation by the Bryan high titer, Schmidt-Ruppin and temperature-sensitive ts68 and T5 strains of Rous sarcoma virus. Steady state quantities of CSP in intracellular pools are also decreased 4–5 fold after transformation. However, the rate at which newly synthesized CSP is processed and exported to the cell surface is similar before and after transformation.Degradation and release of CSP from cells were measured after labeling for 24 hr. The half-life of CSP on normal cells is 36 hr and is decreased to 16–26 hr after transformation. The absolute amount of intact CSP released into the culture medium is decreased 3 fold after transformation; these amounts, however, represent losses of approximately 20 and 40% of the total CSP synthesized by normal and transformed cells, respectively. These results indicate that the major mechanism for the decrease in CSP after transformation is reduction in its biosynthesis, although increased degradation and loss from the cell surface also contribute significantly. These changes can account for the observed 5–6 fold decreases in cell-associated CSP after transformation of chick embryo fibroblasts.  相似文献   

10.
11.
12.
We have measured gamma-ray-induced neoplastic transformation in C3H10T1/2 mouse embryo cells irradiated at an average 10 cGy/day throughout the useful life span of these cells for transformation studies. At cumulative total doses of 50, 150, 300, and 450 cGy, samples of cells were assayed for cell survival and neoplastic transformation with or without the administration of 0.1 micrograms/ml of 12-O-tetradecanoylphorbol-13-acetate (TPA) starting 24 h after the irradiation. The results indicate that, at a dose rate of 10 cGy/day, the rate of induction of neoplastic transformation is reduced by a factor of thirteen compared to that at 100 cGy/min. Still, frequencies above the background level are observed. These results are consistent with previous data which, at 144 cGy/day (0.1 cGy/min), showed that radiation-induced initiation events could be repaired during exposure, thus reducing the frequency of transformation from that observed at 100 cGy/min [A. Han et al., Cancer Res. 40, 3328-3332 (1980)]. Although the addition of TPA after the delivery of a particular dose at 10 cGy/day produced a significant increase in the frequency of neoplastic transformation, the degree of enhancement was less than after higher-dose-rate exposures [C.K. Hill et al., Radiat. Res. 109, 347-351 (1987)]. These results indicate that during 7 weeks of exposure, the repair of radiation-induced initiation was extensive but not complete, and suggest that a significant part of the damage persists which can be promoted by TPA. These observations support the inference that initiation and promotion are not tightly coupled and are probably independent processes.  相似文献   

13.
The present work consists in a quantitative cytospectrophotometric investigation of the cytoplasmic hyperbasophilia that characterizes the foci of neoplastic transformation and the tumor cells in rats fed hepatocarcinogens. It reveals that the increase in the dye-binding capacity shown by the cytoplasmic RNA of these cell populations results primarily form a qualitative alteration which raises the affinity for basic dyes by a factor of nearly 2, and also to a change in concentration due to volumetric changes which may again double the staining intensity of these hepatocytes. This phenomenon of hyperbasophilia differs radically from the weak variations in basophilia observed in normal regenerating liver and in hyperplastic liver parenchyma of rats fed the carcinogenic diet in which cases the changes appear to be related mainly to de nova RNA synthesis. Biochemical assays on cellular fractions indicate that the ribosomes are the organelles responsible for the hyperbasophilic properties that hepatocytes acquire in areas of neoplastic transformation.  相似文献   

14.
Summary Normal quiescent lymphocytes regulate their ribosome content by selectively degrading newly synthesized 18S ribosomal RNA. Unlike actively dividing HeLa cells, lymphocytes retain 18 S ribosomal RNA in the nucleus after synthesis instead of immediately transporting it to the cytoplasm. Subcellular fractionation of the highly differentiated human neoplastic lymphocyte RPMI-8226 reveals that this cell line also retains 18 S ribosomal RNA in the nucleus, a trait not displayed by the less differentiated human lymphoblastoid cell line RPMI-4265. These observations suggest that neoplastic cells can be phenotypically characterized by their ribosomal RNA processing patterns.Operated by Union Carbide Corporation with the Department of Energy  相似文献   

15.
The effects of aphidicolin and beta Ara A on radiation sensitivity were evaluated in terms of cell killing, recovery, and neoplastic transformation in the C3H10T-1/2 cell system. When cells were held in plateau phase, recovery of potentially lethal damage (PLD) and potentially transforming damage (PTD) occurred. The addition of beta Ara A resulted in reduced PLD recovery for both the survival and neoplastic transformation end points. The addition of aphidicolin did not affect recovery of PLD or PTD. These data show that the inhibition of polymerase alpha by aphidicolin does not affect recovery of damage leading to cell death or neoplastic transformation. However, the inhibition of both polymerase alpha and beta by beta Ara A resulted in inhibition of recovery of damage leading to both cell death and neoplastic transformation. These data indicated that polymerase beta may be involved in both PLD and PTD recovery.  相似文献   

16.
The mitochondrial degradosome (mtEXO), the main RNA-degrading complex of yeast mitochondria, is composed of two subunits: an exoribonuclease encoded by the DSS1 gene and an RNA helicase encoded by the SUV3 gene. We expressed both subunits of the yeast mitochondrial degradosome in Escherichia coli, reconstituted the complex in vitro and analyzed the RNase, ATPase and helicase activities of the two subunits separately and in complex. The results reveal a very strong functional interdependence. For every enzymatic activity, we observed significant changes when the relevant protein was present in the complex, compared to the activity measured for the protein alone. The ATPase activity of Suv3p is stimulated by RNA and its background activity in the absence of RNA is reduced greatly when the protein is in the complex with Dss1p. The Suv3 protein alone does not display RNA-unwinding activity and the 3' to 5' directional helicase activity requiring a free 3' single-stranded substrate becomes apparent only when Suv3p is in complex with Dss1p. The Dss1 protein alone does have some basal exoribonuclease activity, which is not ATP-dependent, but in the presence of Suv3p the activity of the entire complex is enhanced greatly and is entirely ATP-dependent, with no residual activity observed in the absence of ATP. Such absolute ATP-dependence is unique among known exoribonuclease complexes. On the basis of these results, we propose a model in which the Suv3p RNA helicase acts as a molecular motor feeding the substrate to the catalytic centre of the RNase subunit.  相似文献   

17.
Expression of the retroviral vector Neor myeloproliferative sarcoma virus (MPSV), which contains the v-mos oncogene and the neomycin resistance gene, leads to neoplastic transformation of mouse fibroblasts. Murine recombinant gamma interferon (IFN-gamma) could revert the neoplastic properties of established Neor MPSV-transformed cell lines to an apparently untransformed phenotype. In the presence of IFN-gamma, the Neor MPSV transformants showed a greater than 97% reduction of cloning efficiency in soft agar, strongly reduced proliferative capacity, and morphological changes. The IFN-gamma-induced phenotypic reversion was preceded by a rapid and selective reduction of all retroviral RNA species, apparently due to IFN-gamma action on the long terminal repeat of Neor MPSV. The mRNA levels of cellular genes either remained unaffected (beta-actin) or were even enhanced (H-2) in IFN-gamma-treated Neor MPSV-transformed cells. Upon removal of IFN-gamma, retroviral gene expression was fully recovered and a gradual reappearance of the transformed phenotype of these cells within 3 weeks was noted. These data show that IFN-gamma can cause a virtually complete, but reversible, inhibition of v-mos-induced neoplastic properties in transformed fibroblasts by selective down regulation of retroviral RNA levels.  相似文献   

18.
The immortalized human breast epithelial MCF-10F cell line, although estrogen receptor alpha negative, develops cell proliferating activities and invasiveness indicative of neoplastic transformation, after treatment with 17-beta-estradiol (E-2). These effects are similar to those produced by benzo[a]pyrene (BP). Since we have previously reported changes in the nuclear parameters accompanying BP-induced tumorigenesis in MCF-10F cells, we have examined whether similar alterations occur in E-2-treated cells. We therefore studied DNA amounts and other nuclear parameters in Feulgen-stained MCF-10F cells after treatment with various concentrations of E-2, BP, the estrogen antagonist ICI 182,780, and E-2 in the presence of ICI 182,780. E-2 caused a certain loss of DNA and changes in the nuclear size and chromatin supraorganization of MCF-10F cells. Many of these changes were similar to those produced by BP and were indicative of neoplastic transformation. More intense chromatin remodelling was seen with 70 nM E-2. Since these changes were not abrogated totally or partially by ICI 182,780, the neoplastic transformation of MCF-10F cells stimulated by E-2 involved a process that was independent of estrogen alpha-receptors. The changes produced by ICI 182,780 alone were attributed to effects other than its well-known anti-estrogenic activity.  相似文献   

19.
Many high-throughput small RNA next-generation sequencing protocols use 5′ preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter''s 5′ end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5′ adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3′ blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3′ ends to be 5′ adenylylated at >90% efficiency.  相似文献   

20.
The release of the ribonucleic acid (RNA)-containing phage MS2 from Escherichia coli is accompanied by cellular lysis at 37 C, whereas at 30 C phage are released from intact cells. Chloramphenicol or rifampin prevents the release of progeny phage particles at both temperatures. Neither drug causes an immediate cessation of phage release and after inhibition of protein synthesis by chloramphenicol phage release proceeds for about 17 min at 37 C and about 35 min at 30 C. Rifampin does not inhibit phage release from mutant cells possessing a rifampin-resistant deoxyribonucleic acid-dependent RNA polymerase. The results indicate that a short-lived host-controlled protein(s) is essential for the release of RNA phage particles at both temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号