首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated uninucleate microspores of tomato,Lycopersicon esculentum Mill, were cultured in defined, liquid nutritive media. The microspores developed to haploid embryoids with or without an attached suspensor or into calli with compactly or loosely arranged cells.  相似文献   

2.
Papaya (Carica papaya L.) anther containing microspores in tetrad to early-binucleate stages were successfully cultured on 1/2 strength MS salts and vitamins with full strength Na-Fe-EDTA supplemented with 2 mg/l NAA, 1 mg/l BA and 6% sucrose for callus initiation and formation. Highest frequencies of callus induction were obtained when anthers at the uninucleate stage were cultured in the dark. Haploid plantlets and pollen-derived embryoids were obtained from anthers cultured at the uninucleate stage on solidified MS medium containing 3% sucrose without any growth regulators under a low light intensity (1,500 lux). Large quantities of embryoids were obtained when the original embryoids were transferred to MS medium with 3% sucrose and no growth regulators. Cytology of root tips of embryoid-derived plants confirmed the haploid chromosome number of 9 indicating that the embryoids originated from pollen.Abbreviations MS Murashige and Skoog (1962) - MAA naphthaleneacetic acid - BA 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

3.
Summary The yield of pollen embryoids from cultured Hevea anthers was increased 4 fold by optimizing the proportion of ammonium nitrate to potassium nitrate in the dedifferentiation medium. For optimal differentiation of pollen embryoids, kinetin, 2,4-D and -naphtalene acetic acid are required. Anther culture for 50 days on the dedifferentiation medium is a prerequisite for the selective development of calli and embryoids from microspores.The determination of chromosome numbers in embryoids, plantlets and regenerated trees reveals that they originate from (poly)haploid pollen grains (n=2x=18). Aneuploid, triploid (3x=27) and tetraploid (4x=36) cells were encountered in increasing frequencies as the embryoids and plants developed. A few haploid cells with 9 chromosomes were consistently observed. Buds from shoots with mixoploid chromosome numbers can be grafted and the change in the chromosome constitution of the developing new shoots followed.  相似文献   

4.
Somatic embryogenesis and subsequent diploid plants have been obtained from anthers of Vitis vinifera Cabernet-Sauvignon, a cultivar so far considered as recalcitrant to in vitro regeneration. Anthers enclosing microspores near the first pollen mitosis were found to be the most responsive. However, from a practical point of view anther length proved to be an easier criterium for determining the optimal physiological anther stage. Calli derived from the anther somatic tissues produced embryoids only when cultured on a medium supplemented with casein hydrolysate. Glutamine and adenine were found to stimulate this embryoid production. Evidence is presented that early removal of cotyledons increases the frequency of normal development of embryoids into plantlets.Abbreviations MS Murashige and Skoog medium (1962) - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphtaleneacetic acid - BA 6-benzylaminopurine  相似文献   

5.
6.
7.
The obtaining of calluses and plantlets from cultured wheat anthersat the stages from pollen mother cell to trinucleate microspore has been reported previously. Haploids as well as diploids existed among the regenerated plantlets derivedfrom anthers at these stages. Present paper reports the study on androgenesis patter-ns of cultured anthers at meiosis, tetrad, early mid- and late uninucleate and trinucleate stage. Cytological evidence of pollen-origin of calluses produced by anthers atthese stages was given. Observation showed that meiosis of wheat anthers was able tocomplete under culture conditions, resulting in releasing microspores, from which multinucleate and multicellular pollen grains formed. In meiosis anthers, abnormal cells,including syncytium and two kinds of binueleate calls were sometimes observed. Theymight be products of abnormal meiosis and abnormal development of tapetum cells. Itwas noted that failure and/or uncomplction of forming callus wall and/or pollen wallin in vitro anthers at meiosis, tetrad and early uninucleate stage occured often. Itmight lead to the low frequency of callus induction. Mature wheat anthers (trinucleate stage) contained both normal and abnormal pollen grains (pollen dimorphism); onlythe abnormal pollen grains developed into embryoids while all the normai trinucleatepollen grains degenerated rapidly. However, the date of the frequency of equal divisionof microspores suggested that abnormal pollen (N pollen, small pollen) could not be theonly source of androgenic pollens in cultured anthers at late uninucleate and other earlier stages.  相似文献   

8.
Androgenesis is an important technique to generate double haploid plants. Anther and microspore cultures are the methods to induce haploid embryogenesis. For culture initiation, it is necessary to select anthers with the appropriate developmental stage of microspores. For lupins, limited reports about the establishment of initial cultures for androgenesis are available. In this study, different parameters of anther culture of three genotypes of Lupinus angustifolius were investigated. For all genotypes, a considerable correlation was observed between the buds and the anthers, depending on their location in the inflorescences. Buds from the central segment of inflorescences had yellowish green anthers that contained the maximum number of microspores at uninucleate stage. Cytological investigation shows that the anthers containing these microspores were the most responsive to induction. Two types of developmental pathways were observed for microspores. In case of cold pre-treated and untreated inflorescences, microspores developed into multicellular and embryo-like structures, respectively. Effects of different factors showed significant differences among: genotypes, pre-treatment, growth regulators (GRs) and genotypes × GRs interaction. Among three genotypes, Emir showed the highest number of multicellular and embryo-like structures on MS medium + 2.0 mg/l 2,4 D + 0.5 mg/l Kinetin (Kin). For all genotypes, anthers produced calli on MS medium containing 2.0 mg/l 2,4 D + 0.5 mg/l Kin. These calli continued their growth on regeneration medium (MS + 2.0 mg/l BA + 0.5 mg/l NAA) and produced roots. Taken together, these results provide a good basis for further research towards the development of haploid plants for L. angustifolius.  相似文献   

9.
Globular embryoids were continually produced in anther cultures of tobacco (Nicotiana tabacum L. cv. Samsun) from the pool of resting microspores if the iron-free medium was used. The supplement of iron stopped the development of fresh early embryoids still inducing continual conversion of the resting globular embryoids into torpedo-shaped embryoids, and into haploid plants. Globular embryoids in the anthers responded to the iron supply even after eight months’ cultivation on iron-free media. Isolated embryoids showed the same response. Haploid plants were regenerated from the anthers on the minimal medium consisting of agar, sucrose, iron and distilled water. Iron requirements of preglobular, globular and postglobular embryoids are discussed.  相似文献   

10.
Twenty varieties of rice were assessed for the ability of theirpollen to give rise to ombryoids and haploid plantlets in antherculture. There were wide differences in response between thevarieties, a primitive cultivar from Assam being the most responsive.Only anthers containing uninucleate microspores showed differentiationof pollen embryoids. It appeared that during the initial stagesof development the embryoids were attached to the wall of theanthors by a suspensor-like attachment. Genotypic differences,besides several other factors, have a definite role in shiftingthe normal course of development of the pollen.  相似文献   

11.
Summary The influence of donor plant growth environment, microspore development stage, culture media and incubation conditions on microspore embryogenesis was studied in three Indian B. juncea varieties. The donor plants were grown under varying environments: field conditions, controlled conditions, or a combination of the two. The correlation analysis between the bud size and microspore development stage revealed that the bud size is an accurate marker for donor plants grown under controlled conditions, however, the same does not hold true for the field-grown plants. The buds containing late uninucleate microspores collected from plants grown under normal field conditions up to bolting stage and then transferred to controlled environment were observed to be most responsive with genotypic variability ranging from 10 to 35 embryos per Petri dish, irrespective of the other factors. NLN medium containing 13% sucrose was found to be most suitable for induction of embryogenesis The fortification of this medium with activated charcoal, polyvinylpyrrolidone, colchicine, or growth regulators (6-benzylaminopurine and 1-naphthaleneacetic acid) was observed to be antagonistic for microspore embryogenesis, while silver nitrate (10 μM) had a significant synergistic effect. A post-culture high-temperature incubation of microspores at 32.5±1°C for 10–15 d was found most suitable for high-frequency production of microspore embryos. The highest frequency of microspore embryogenesis (78 embryos per Petri dish) was observed from the late uninucleate microspores (contained in bud sizes 3.1–3.5 nm irrespective of genotype) cultured on NLN medium containing 13% sucrose and silver nitrate (10 μM), and incubated at 32.5°C for 10–15 d.  相似文献   

12.
Abstract

Considerations about our anther cultures of cultivated plants. – One of the main activities performed at the Casaccia Nuclear Centre, in the framework of a contract between CNEN and the European Communities, centers on the induction of haploid plants by anther culture and the subsequent chromosome doubling in order to obtain completely homozygous diploid plants. In tobacco, it is now possible to obtain haploid plants from any cultivar; we perform in vitro culture of internodes from which homozygous diploid plants are regenerated, taking advantage of natural phenomenon of endopolyploidy. In order to try to generalize this method of producing haploid plants in other plant species, we are studying the mechanism involved in haploid embryogenesis which occurs in vitro in the microspores. Datura, Nicotiana and Atropa are among the genera in which a direct embryogenesis from the microspore is observed; it is interesting to note that all three genera belong to the family Solanaceae and are very rich in alkaloids. In almost all the other cases of in vitro induction of haploids, microspores produce calli from which plantlets can be differentiated, but this way of plant regeneration is less interesting because only few plantlets are obtained and it is not sure that each haploid comes from a single microspore. We examined the factors which could influence the transformation of microspores into embryoids in tobacco, namely: the developmental stage of microspore, the degeneration of tapaetal cells, the genotype of microspore, the composition of cultural media, the physiological conditions of the plant from which the anthers were taken. From a practical point of view, it would be desirable to have informations on methods giving a maximum number of haploid plants from one embryogenic anther and the greatest number of embryogenic anthers from the cultured anthers. Our recent experiments on anther culture in liquid shaken medium have yielded good results (about 7,000 embryoids from 25 embryogenic anthers). Further, we are conducting several experiments in order to synchronize the development of the microspores in the anthers; to this end, we analyse the effect of cold treatment, ionizing radiation and gravity force. Experiments are being performed with other cultivated species, beside tobacco, in order to solve some problems of plant breeding more easily and quickly through haploidy. With the aim of introducing, in cultivated tomato, some desirable characters from the wild species, Lycopersicum peruvianum, (self-incompatibility, disease resistance, simultaneous flowering), we have obtained the interspecific hybrid through in vitro culture of young embryos. Haploid production from this hybrid could allow to quickly obtain various genetic recombinations from these two species. For this purpose we are carrying out anther cultures as well as single microspore cultures. In rice, strawberry and L. peruvianum, several diploid and tetraploid plantlets were obtained from our anther cultures. Work is in progress to ascertain the mode of their origin.  相似文献   

13.
Anthers with the filament of lily (Lilium davidii var. Willmottiae (Wilson) Roffill) were cultured on modified MS medium. Supplemented with different concentrations and compatible ratios of growth hormones (Z 2 mg/L,or 2,4-D 2 mg/L + KT 2mg/L, or 2,4-D 4mg/L+ 6 BA 2 mg/L). At this time the pollen grains in the anthers were at the late uninueleate stage. Anther cultures were incubated at 25—27 ℃, and illuminated with daylight of about 800–1200 lx. After 30 days, the calli or embryoids were produced from anthers. The frequency of the calli or embryoids induction was 8.89%. After transfer eventually to the differentiation medium, these calli or embryoids developed into plantlets in 70 days. Among the root tips of regenerated plantlets haploid, diploid and aneuploid cells were found, but the haploid cells were produced in about 86.4% of the root tips. It is quite evident that haploid plantlets are derived from the pollen grains.  相似文献   

14.
结球甘蓝游离小孢子胚胎发生   总被引:12,自引:0,他引:12  
以结球甘蓝品种“强夏”为材料进行游离小孢子培养,对与胚胎发生关系密切的因子进行探讨。研究结果表明,在盛花前期取材最适宜;单核晚期至双核期的小孢子才能发育成胚状体;含17%蔗糖的培养液在培养初期有利于小孢子存活;培养3d后胚胎诱导则以14%蔗糖浓度为最好;高浓度(17%)蔗糖培养3d后添加低浓度(11%)蔗糖培养液能大大提高胚胎发生能力,比一直在14%蔗糖培养液培养的提高282.4%,比更新培养液培养的提高126.1%。  相似文献   

15.
Summary Rice (Oryza sativa L., 2n=24) anthers containing microspores in the early-uninucleate to first-mitosis stages were induced successfully to develop into plants in vitro through an intermediary step of callus formation. Callus initiation occurred with highest frequency in anthers containing mid-uninucleate microspores. The callus derived from different stages of microspore development differed in the potential to differentiate into plants. The plants regenerated from pollen callus were predominantly haploid or diploid; polyploid and aneuploid plants were relatively infrequent. The first division of the uninucleate microspores was asymmetrical, resulting in the formation of large vegetative and small generative nuclei. The vegetative nucleus divided repeatedly and assumed the major role in the formation of callus, whereas the generative nucleus degenerated rapidly. Simultaneous division of the two nuclei was observed in a few pollen grains. Nuclear fusion during the very initial stages of pollen development was postulated to account for the occurrence of the diploid and polyploid plants. This work was supported by the National Science Council, Republic of China.  相似文献   

16.
The inherent potential to produce plants from microspores or immature pollen exists naturally in many plant species. Some genotypes in hexaploid wheat (Triticum aestivum L.) also exhibit the trait for androgenesis. Under most circumstances, however, an artificial manipulation, in the form of physical, physiological and/or chemical treatment, need to be employed to switch microspores from gametophytic development to a sporophytic pathway. Induced embryogenic microspores, characterized by unique morphological features, undergo organized cell divisions and differentiation that lead to a direct formation of embryoids. Embryoids `germinate' to give rise to haploid or doubled haploid plants. The switch from terminal differentiation of pollen grain formation to sporophytic development of embryoid production involves a treatment that halts gametogenesis and initiates sporogenesis showing predictable cellular and molecular events. In principle, the inductive treatments may act to release microspores from cell cycle control that ensures mature pollen formation hence overcome a developmental block to embryogenesis. Isolated microspore culture, genetic analyses, and studies of cellular and molecular mechanisms related to microspore embryogenesis have yielded useful information for both understanding androgenesis and improving the efficiency of doubled haploid production. The precise mechanisms for microspore embryogenesis, however, must await more research.  相似文献   

17.
Uninucleate microspores of Triticum aestivum cv. Pavon can be induced in vitro to alter their development to produce embryoids rather than pollen. Microspores expressed their embryogenic capacity through one of two division pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen grain. Here the generative cell detached from the intine, migrated to a central position in the pollen grain, and underwent a second haploid mitosis as the vegetative cell divided to give rise to the embryoid. In the second pathway, the first division was symmetric and both nuclei divided repeatedly to form the embryoid. This comparative analysis of normal pollen ontogeny and induced embryogenesis provided no evidence for the existence of predetermined embryogenic microspores in vitro or in vivo. Instead, microspores are induced at the time of culture, and embryogenesis involves continued metabolic activity associated with the gradual cessation of the gametophytic pathway and a redifferentiation into the sporophytic pathway. In conjunction with a previous study, it appears that embryogenic induction of wheat microspores involves switching off gametophytic genes and derepressing sporophytic genes.  相似文献   

18.
High percentages of micro-calli and micro-derived embryos were produced from isolated asparagus microspores at late uninucleate stage on MS liquid medium supplemented with 1.0 mg l–1 2,4-D and 0.5 mg l–1 BA. Two types of calli, namely compact callus (CC) and loose callus (LC), were found. Plantlets were regenerated via organogenesis, when these calli were transferred onto MS solid medium supplemented with 1.0 mg l–1 BA and 0.2 mg l–1 IBA 6 weeks. Embryos were produced from liquid cultured microspores, or from solid cultured micro-calli. The frequencies of haploid plant production from organogenesis and embryogenesis were compared. Effects of plant growth regulators on callus production, plantlet regeneration, and haploid plant production were tested. The combination of BA 1.0 mg l–1 and IBA 0.2 mg l–1 resulted the highest precentage of haploid plant production (7.7% from CC, 4.3% from LC).Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IBA 3-indolybutyric acid - BA 6-binzyladinine - NAA naphtalene acetic acid - MS Murashige and Skoog  相似文献   

19.
Homozygous genotypes are valuable for genetic and genomic studies in higher plants. However, obtaining homozygous perennial plants using conventional breeding techniques is currently a challenge because of a long juvenile period, high heterozygosity and the substantial inbreeding depression. In vitro androgenesis has been used to develop haploid and doubled haploid plants. In this study, we report the regeneration of doubled haploid lines of Valencia sweet orange cv. Rohde Red (Citrus sinensis [L.] Osbeck) via anther culture. Anthers at the uninucleate stage were induced and two embryogenic calli were obtained that further regenerated to embryoids (2/400). Plantlets were obtained after transferring the embryoids to a shoot regeneration medium, but were short-lived. Ploidy analysis via both flow cytometry and chromosome counting verified that these two lines were diploids. Additionally, 43 simple sequence repeat (SSR) markers which showed to be heterozygous in the Valencia sweet orange donor line confirmed homozygosity and doubled haploids in the anther-derived lines. Furthermore, analysis of the doubled haploids via cleaved amplified polymorphic sequence (CAPS) markers and target region sequencing confirmed the allelic state of two genes (LCYE and LCYB) involved in the carotenoid biosynthesis of sweet oranges.  相似文献   

20.
辣椒游离小孢子细胞团培养的胚状体形成   总被引:2,自引:0,他引:2  
从预培养15天后的花药中机械游离小孢子及其细胞团,经28℃液体悬浮暗培养.30天后,获得了自球形期胚到子叶期胚发育程度不等的各类胚状体。从12个花药中可以形成高达22个胚状体,且子叶期胚的比例约为23%。显微镜检表明,这些胚状体来自游离的小孢子细胞.经核的对称分裂形成多核细胞或者早期形成多细胞团,最后经细胞的分裂分化形成。胚状体体表具毛,活力有差异。在适当培养基上,具活力的鱼雷期及子叶期胚状体均能发育成正常植株。7℃、32℃、35℃8天的胁迫处理均能诱导小孢子胚状体发生。但花药培养中7℃、35℃处理下的出胚率较32℃下高,而游离小孢子细胞团培养中以35℃、32℃下较好。7℃处理下获得的胚状体数很少.对产生这种现象的原因进行了探讨。出胚率在基因型间,不同胁迫处理温度间表现明显差异。而在温度处理的不同天数间差异不明显。流式细胞仪对再生株真叶的DNA含量分析表明.获得的再生株中具有单倍体、双单倍体以及单倍一双倍嵌合体植株。本结果为进一步开展辣椒雄性生殖途径的胚状体发育研究。提高辣椒成熟胚状体的频率提供了实验体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号