首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerous studies have examined wound healing and tissue repair after a complete tissue rupture and reported provisional matrix and scar tissue formation in the injury gap. The initial phases of the repair are largely mediated by the coagulation response and a principally extrinsic inflammatory response followed by type III collagen deposition to form scar tissue that may be later remodeled. In this study, we examine subfailure (Grade II sprain) damage to collagenous matrices in which no gross tissue gap is present and a localized concentration of provisional matrix or scar tissue does not form. This results in extracellular matrix remodeling that relies heavily upon type I collagen, and associated proteoglycans, and less heavily on type III scar tissue collagen. For instance, following subfailure tissue damage, collagen I and III expression was suppressed after 1 day, but by day 7 expression of both genes was significantly increased over controls, with collagen I expression significantly larger than type III expression. Concurrent with increased collagen expression were significantly increased expression of the collagen fibrillogenesis supporting proteoglycans fibromodulin, lumican, decorin, the large aggregating proteoglycan versican, and proteases cathepsin K and L. Interestingly, this remodeling process appears intrinsic with little or no inflammation response as damaged tissues show no changes in macrophage or neutrophils levels following injury and expression of the inflammatory markers, tumor necrosis factor-alpha and tartrate-resistant acid phosphatase were unchanged. Hence, since inflammation plays a large role in wound healing by inducing cell migration and proliferation, and controlling extracellular matrix scar formation, its absence leaves fibroblasts to principally direct tissue remodeling. Therefore, following a Grade II subfailure injury to the collagen matrix, we conclude that tissue remodeling is fibroblast-mediated and occurs without scar tissue formation, but instead with type I collagen fibrillogenesis to repair the tissue. As such, this system provides unique insight into acute tissue damage and offers a potentially powerful model to examine fibroblast behavior.  相似文献   

2.
Wound healing consists of an orderly progression of events that re-establish the integrity of the damaged tissue. Several natural products have been shown to accelerate the healing process. The present investigation was undertaken to determine the role of curcumin on changes in collagen characteristics and antioxidant property during cutaneous wound healing in rats. Full-thickness excision wounds were made on the back of rat and curcumin was administered topically. The wound tissues removed on 4th, 8th and 12th day (post-wound) were used to analyse biochemical and pathological changes. Curcumin increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and type III collagen content of wound tissues. Curcumin treated wounds were found to heal much faster as indicated by improved rates of epithelialisation, wound contraction and increased tensile strength which were also confirmed by histopathological examinations. Curcumin treatment was shown to decrease the levels of lipid peroxides (LPs), while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), activities were significantly increased exhibiting the antioxidant properties of curcumin in accelerating wound healing. Better maturation and cross linking of collagen were observed in the curcumin treated rats, by increased stability of acid-soluble collagen, aldehyde content, shrinkage temperature and tensile strength. The results clearly substantiate the beneficial effects of the topical application of curcumin in the acceleration of wound healing and its antioxidant effect. Both the authors have contributed equally towards this paper.  相似文献   

3.
Wound healing is a finely controlled biological process involving a series of complex cellular interactions. Following inflammation, the wound bed matrix is gradually replaced by granulation tissue followed by the long slow process where collagen accumulates and restores tensile strength. The studies revealed that human granulation tissue varied in many aspects in comparison with normal skin. In granulation tissue the molecular organization of collagen showed an increased amount of type III collagen resembling embryonic tissue. The presence of type V collagen with three distinct chains was the characteristic feature of granulation tissue. The physicochemical properties of collagen extracted from granulation tissue showed the influence of proteoglycans during collagen aggregation and these proteoglycans from the major non-collagenous proteins during the proliferative phase of healing.  相似文献   

4.
Summary The injury of dental pulp tissue, following caries, is accompanied by the deposit of a typical hard scar tissue known as reparative dentine which should be regarded as the mineralization of a new organic matrix. Highly purified antibodies were used in combination with immunoperoxidase or immunogold technique at the ultrastructural level to reveal the distribution and synthesis of types I and III collagen and fibronectin elaborated by typical matrix-forming cells in the new tissue.Specific immunoperoxidase labelling, on demineralized teeth, clearly demonstrated that type I collagen represents the main type of collagen (88%). It is associated with bundles of fine striated fibrils of type III collagen and in close vicinity with fibronectin and constituted, at least, the new organic matrix of reparative dentine.Immunogold staining gave precise localization mainly over Golgi apparatus for the 3 components, thus suggesting that the cells concerned should not be considered as new odontoblasts but rather as pulpal cells in the process of differentiation participating in the formation of new dentine. Moreover, these events are very similar to those observed during wound healing in other tissues.  相似文献   

5.
The injury of dental pulp tissue, following caries, is accompanied by the deposit of a typical hard scar tissue known as reparative dentine which should be regarded as the mineralization of a new organic matrix. Highly purified antibodies were used in combination with immunoperoxidase or immunogold technique at the ultrastructural level to reveal the distribution and synthesis of types I and III collagen and fibronectin elaborated by typical matrix-forming cells in the new tissue. Specific immunoperoxidase labelling, on demineralized teeth, clearly demonstrated that type I collagen represents the main type of collagen (88%). It is associated with bundles of fine striated fibrils of type III collagen and in close vicinity with fibronectin and constituted, at least, the new organic matrix of reparative dentine. Immunogold staining gave precise localization mainly over Golgi apparatus for the 3 components, thus suggesting that the cells concerned should not be considered as new odontoblasts but rather as pulpal cells in the process of differentiation participating in the formation of new dentine. Moreover, these events are very similar to those observed during wound healing in other tissues.  相似文献   

6.
Previous data from spaceflight studies indicate that injured muscle and bone heal slowly and abnormally compared with ground controls, strongly suggesting that ligaments or tendons may not repair optimally as well. Thus the objective of this study was to investigate the biochemical and molecular gene expression of the collagen extracellular matrix in response to medial collateral ligament (MCL) injury repair in hindlimb unloaded (HLU) rodents. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing (Amb-healing), and HLU-healing groups. Amb- and HLU-healing animals underwent bilateral surgical transection of their MCLs, whereas control animals were subjected to sham surgeries. All surgeries were performed under isoflurane anesthesia. After 3 wk or 7 wk of HLU, rats were euthanized and MCLs were surgically isolated and prepared for molecular or biochemical analyses. Hydroxyproline concentration and hydroxylysylpyridinoline collagen cross-link contents were measured by HPLC and showed a substantial decrement in surgical groups. MCL tissue cellularity, quantified by DNA content, remained significantly elevated in all HLU-healing groups vs. Amb-healing groups. MCL gene expression of collagen type I, collagen type III, collagen type V, fibronectin, decorin, biglycan, lysyl oxidase, matrix metalloproteinase-2, and tissue inhibitor of matrix metalloproteinase-1, measured by real-time quantitative PCR, demonstrated differential expression in the HLU-healing groups compared with Amb-healing groups at both the 3- and 7-wk time points. Together, these data suggest that HLU affects dense fibrous connective tissue wound healing and confirms previous morphological and biomechanical data that HLU inhibits the ligament repair processes.  相似文献   

7.
Effect of two calcium channel blockers (CCBs) nifedipine and amlodipine, was studied on normal and steroid depressed wound healing in albino rats, using the dead space wound model. The drugs enhanced normal healing as evidenced by increase in tensile strength of 10 days old granulation tissue. There was neither a significant change in the hydroxyproline level (or collagen) nor a change in the glycosaminoglycan content in granulation tissue. However, lysyloxidase level was increased significantly. The increase in tensile strength could thus be attributed to better cross-linking and maturation of collagen rather than collagen synthesis per se. The drugs were also able to overcome steroid depressed wound healing. It is likely that the prohealing effects may be related to the improved antioxidant status too, since superoxide dismutase levels were observed to be higher in the CCB- treated animals.  相似文献   

8.
Efficacy of Butea monosperma on dermal wound healing in rats   总被引:2,自引:0,他引:2  
Wound healing occurs as a fundamental response to tissue injury. Several natural products have been shown to accelerate the healing process. The present investigation was undertaken to determine the efficacy of topical administration of an alcoholic bark extract of Butea monosperma (B. monosperma) on cutaneous wound healing in rats. Full-thickness excision wounds were made on the back of rat and B. monosperma extract was administered topically. The granulation tissue formed on days 4, 8, 12 and 16 (post-wound) was used to estimate total collagen, hexosamine, protein, DNA and uronic acid. The extract increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and total collagen content of granulation tissues. The extract treated wounds were found to heal much faster as indicated by improved rates of epithelialization and wound contraction, also confirmed by histopathological examinations. Also, the tensile strength of drug-treated wounds was increased significantly. In addition, we show that B. monosperma possesses antioxidant properties, by its ability to reduce lipid peroxidation. The results clearly substantiate the beneficial effects of the topical application of B. monosperma in the acceleration of wound healing.  相似文献   

9.
Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early wound healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target.  相似文献   

10.
11.
The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules with unprocessed N-propeptides are present in the extracellular matrix of adult human and bovine articular cartilages as covalently cross-linked polymers extensively cross-linked to type II collagen. Cross-link analyses revealed that telopeptides from both N and C termini of type III collagen were linked in the tissue to helical cross-linking sites in type II collagen. Reciprocally, telopeptides from type II collagen were recovered cross-linked to helical sites in type III collagen. Cross-linked peptides were also identified in which a trifunctional pyridinoline linked both an α1(II) and an α1(III) telopeptide to the α1(III) helix. This can only have arisen from a cross-link between three different collagen molecules, types II and III in register staggered by 4D from another type III molecule. Type III collagen is known to be prominent at sites of healing and repair in skin and other tissues. The present findings emphasize the role of type III collagen, which is synthesized in mature articular cartilage, as a covalent modifier that may add cohesion to a weakened, existing collagen type II fibril network as part of a chondrocyte healing response to matrix damage.  相似文献   

12.
Tissue remodeling is known to play important roles in wound healing. Although Rac1 is reported to be one of the key signaling molecules in cutaneous wound healing process, the exact mechanisms of Rac1-mediated tissue remodeling is still unknown. This study investigated the role of Rac1 in the regulation of extracellular matrix in cultured human dermal fibroblasts obtained by skin biopsy from three healthy donors. Protein levels of type I collagen in cultured human fibroblasts were increased by the treatment with Rac1 inhibitor NSC23766 in a dose-dependent manner. However, the mRNA levels of α2(I) collagen was not altered by the inhibitor. On the other hand, by the addition of inhibitor, half-lives of type I collagen protein were increased and MMP1 levels were reduced. These data suggest that blockade of Rac1 signaling results in accumulation of type I collagen due to decreased collagenase activity. This study also suggests that controlling Rac1 signaling is a new therapeutic approach to chronic/untreatable ulcer.  相似文献   

13.
The development of stem cell technology in combination with advances in biomaterials has opened new ways of producing engineered tissue substitutes. In this study, we investigated whether the therapeutic potential of an acellular porous scaffold made of type I collagen can be improved by the addition of a powerful trophic agent in the form of mesenchymal stromal cells conditioned medium (MSC‐CM) in order to be used as an acellular scaffold for skin wound healing treatment. Our experiments showed that MSC‐CM sustained the adherence of keratinocytes and fibroblasts as well as the proliferation of keratinocytes. Moreover, MSC‐CM had chemoattractant properties for keratinocytes and endothelial cells, attributable to the content of trophic and pro‐angiogenic factors. Also, for the dermal fibroblasts cultured on collagen scaffold in the presence of MSC‐CM versus serum control, the ratio between collagen III and I mRNAs increased by 2‐fold. Furthermore, the gene expression for α‐smooth muscle actin, tissue inhibitor of metalloproteinase‐1 and 2 and matrix metalloproteinase‐14 was significantly increased by approximately 2‐fold. In conclusion, factors existing in MSC‐CM improve the colonization of collagen 3D scaffolds, by sustaining the adherence and proliferation of keratinocytes and by inducing a pro‐healing phenotype in fibroblasts.  相似文献   

14.
The effects of epidermal growth factor (EGF) on granulation-tissue formation and collagen-gene expression were studied in experimental sponge-induced granulomas in rats. After daily administration of 5 micrograms of EGF into the sponge, total RNA was extracted from the ingrown granulation tissue at days 4 and 7 and analysed by Northern hybridization for the contents of mRNAs for types I and III procollagens. EGF treatment increased procollagen mRNA, particularly at day 4. To determine whether this elevation was due to increased proliferation of collagen-producing fibroblasts or to activation of collagen-gene expression in these cells, fibroblast cultures were started from granulation tissue and treated with EGF. These experiments confirmed that EGF is a potent mitogen for granuloma fibroblasts in a dose-dependent manner. The effect of EGF treatment on radioactive hydroxyproline production in cultured cells was inhibitory. The decreased rate of collagen synthesis was also indicated by decreased amounts of procollagen mRNAs. The results suggest that the stimulation of wound healing and collagen production by EGF is due to increased fibroblast proliferation, and not to increased expression of type I and III procollagen genes.  相似文献   

15.
Ethanolic extract of leaves of O. sanctum was investigated for normal wound healing and dexamethasone depressed healing using incision, excision and dead space wound models in albino rats. The extract of O. sanctum significantly increased the wound breaking strength in incision wound model. The extract treated wounds were found to epithelialize faster and the rate of wound contraction was significantly increased as compared to control wounds. Significant increase in wet and dry granulation tissue weight, granulation tissue breaking strength and hydroxyproline content in dead space wound model was observed. The extract significantly decreased the antihealing activities of dexamethasone in all the wound models. The results indicated that the leaf extract promotes wound healing significantly and able to overcome the wound healing suppressing action of dexamethasone. Histological examination of granulation tissue to determine the pattern of lay-down for collagen confirmed the results.  相似文献   

16.
Fetal tissue repair occurs without acute inflammation, prominent fibroplasia, or marked neovascularization. The fetal wound extracellular matrix is rich in hyaluronic acid (HA), while collagen is deposited in an organized normal dermal pattern. In various biologic systems, including regeneration and development, the controlled accumulation and subsequent degradation of hyaluronic acid is associated with distinct cellular and matrix events. Therefore, it is hypothesized that the abundance of hyaluronic acid in fetal wounds may influence cellular and/or matrix events such that tissue repair is highly organized and adult-like scarring does not occur. To test this hypothesis, the hyaluronic acid content of fetal rabbit wounds was reduced by specific degradation with Streptomyces hyaluronidase. Control wounds were treated with either enzyme buffer (n = 12) or denatured enzyme solution (n = 8) and exhibited a normal fetal healing response with scattered peripheral fibroblasts, a matrix of hyaluronic acid, and no infiltrating collagen. In marked contrast, the hyaluronidase-treated wounds (n = 14) demonstrated increased fibroblast infiltration, collagen deposition, and capillary formation. A significant reduction in the hyaluronic acid content of the hyaluronidase-treated wounds was confirmed biochemically. Since the degradation of hyaluronic acid resulted in an altered healing response, this study demonstrates that hyaluronic acid affects the cellular and matrix events in fetal healing and may be partially responsible for the unique qualities of this regenerative repair process.  相似文献   

17.
Summary. The factors participating to the wound healing are complex and still obscure. Among these factors, epidermal growth factor (EGF) and histamine by increasing reepithelization and reparation tissue strength via enhancing collagen deposition to the wound site have a beneficial effect. This study was performed to investigate the effect of EGF dosage forms on the histamine content of the experimentally induced wound and some wound healing criters in the mice.Histological investigation of reepithelization, wound tensile strength for healing and collagen maturation, and histamine levels were assessed in the present study. Thirty two mice were divided into control, and EGF treated groups. Controls included three subgroups; untreated (n=5), 0.9% NaCl applied (n=5), and gel applied (n=5). Experimental groups were treated with two forms of EGF; EGF, solution form in 0.9% NaCl (n=5) and the gel form in 0.2% w/w in carbopol 940 (n=7). The discrepancy between these forms were evaluated. This evaluation was done by the application of two forms of EGF for 15 days on experimentally induced wound healing.Gel form of EGF by sustained release from bioadhesive polymer is found to be more effective than the soluble form, on the healing of the wound, by acceleration of reepithelization and increment of wound tensile strength. The tensile strength of the wound indicates the rate of repair and collagen maturation. It has been observed that when physiological saline and carbopol 940 exposed to incision without EGF causes a significant increase in tissue histamine content.According to the results of the present investigation; the histamine content is found to be decreased by EGF gel dosage form treatment, therefore preventing abnormal collagen formation has a beneficial effect on wound healing.  相似文献   

18.
19.
Control of tissue composition and organization will be a key feature in the development of successful products through tissue engineering. However, the mechanism of collagen fibril formation, growth, and organization is not yet fully understood. In this study we have examined collagen fibril formation in a wound healing model in which the newly formed fibrils were kept distinct from preexisting tissue through use of a porous tubular biomaterial implant. Samples were examined after 4, 6, 14, and 28 days by light microscopy, in situ hybridization, and immunofluorescence microscopy. These showed a normal wound healing response, with significant collagen formation at 14 and 28 days. Individual collagen fibrils were isolated from these samples by gentle extraction in a gentamicin-containing buffer which allowed extraction of a large proportion of intact fibrils. Examination by transmission electron microscopy showed that approximately 80% of the intact fibrils showed a single polarity reversal, with both ends of each fibril comprising collagen amino-terminal domains; the remaining fibrils had no polarity reversal. All fibrils had similar diameters at both time points. Immunoelectron microscopy showed that all labeled fibrils contained both type I and III collagens. These data indicate that this wound healing model provides a system in which collagen fibril formation can be readily followed.  相似文献   

20.
Significant degenerative changes were observed in the kidney tissue of untreated neonatal streptozotocin (n0STZ)-induced type-II diabetic rats. These degenerative changes were diminished in the kidney tissue of diabetic animals given glibenclamide and Aloe leaf gel and pulp extracts. Kidney lipid peroxidation levels were increased in diabetic rats compared to healthy rats; these levels were higher in rats treated with glibenclamide than in those which received Aloe extracts. Serum urea and creatinine levels were higher in diabetic rats in comparison to healthy rats. The administration of Aloe gel extract and glibenclamide decreased serum urea and creatinine levels in comparison to diabetic controls. Only A. vera leaf gel extract showed improvement both in histological and biochemical parameters suggesting a protective effect of A. vera on mild damage caused by type-II diabetes on kidney tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号