首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p38 mitogen-activated protein (MAP) kinases function in numerous signaling processes and are crucial for normal functions of cells and organisms. Abnormal p38 activity is associated with inflammatory diseases and cancers making the understanding of its activation mechanisms highly important. p38s are commonly activated by phosphorylation, catalyzed by MAP kinase kinases (MKKs). Moreover, it was recently revealed that the p38alpha is also activated via alternative pathways, which are MKK independent. The structural basis of p38 activation, especially in the alternative pathways, is mostly unknown. This lack of structural data hinders the study of p38's biology as well as the development of novel strategies for p38 inhibition. We have recently discovered and optimized a novel set of intrinsically active p38 mutants whose activities are independent of any upstream activation. The high-resolution crystal structures of the intrinsically active p38alpha mutants reveal that local alterations in the L16 loop region promote kinase activation. The L16 loop can be thus regarded as a molecular switch that upon conformational changes promotes activation. We suggest that similar conformational changes in L16 loop also occur in natural activation mechanisms of p38alpha in T-cells. Our biochemical studies reveal novel mechanistic insights into the activation process of p38. In this regard, the results indicate that the activation mechanism of the mutants involves dimerization and subsequent trans autophosphorylation on Thr180 (on the phosphorylation lip). Finally, we suggest a model of in vivo p38alpha activation induced by the L16 switch with auto regulatory characteristics.  相似文献   

2.
The MAPK family member p38 is activated in the heart after ischemia-reperfusion (I/R) injury. However, the cardioprotective vs. proapoptotic effects associated with p38 activation in the heart after I/R injury remain unresolved. Another issue to consider is that the majority of past studies have employed the rodent as a model for assessing p38's role in cardiac injury vs. protection, while the potential regulatory role in a large animal model is even more uncertain. Here we performed a parallel study in the mouse and pig to directly compare the extent of cardiac injury after I/R at baseline or with the selective p38 inhibitor SB-239063. Infusion of SB-239063 5 min before ischemia in the mouse prevented ischemia-induced p38 activation, resulting in a 25% reduction of infarct size compared with vehicle-treated animals (27.9 +/- 2.9% vs. 37.5 +/- 2.7%). In the pig, SB-239063 similarly inhibited myocardial p38 activation, but there was no corresponding effect on the degree of infarction injury (43.6 +/- 4.0% vs. 41.4 +/- 4.3%). These data suggest a difference in myocardial responsiveness to I/R between the small animal mouse model and the large animal pig model, such that p38 activation in the mouse contributes to acute cellular injury and death, while the same activation in pig has no causative effect on these parameters.  相似文献   

3.
Hemodynamic load-induced cardiac p38 mitogen-activated protein kinase (MAPK) activation was studied in normotensive control Dahl rats (n = 10) and hypertensive Dahl rats with heart failure (n = 16). The isolated heart from each animal was stretched on a Langendorff apparatus at an equivalent diastolic wall stress, and the p38-MAPK activity of the left ventricular (LV) myocardium was analyzed by immunoprecipitation-kinase assay. Compared to the control hearts, the stretch-induced p38-MAPK activities were significantly decreased, and inversely correlated with the LV diameter (r = -0.73, P < 0.01). Chronic treatment with an angiotensin II AT1-receptor antagonist, valsartan (10 mg/kg/day), ameliorated cardiac function and remodeling process in the failing hearts, which was associated with an improvement of the p38-MAPK activities. Thus, the mechano-signal transduction of p38-MAPK pathway is downregulated in the failing hearts, along with progressive ventricular remodeling. The data also suggest that the beneficial effects of the AT1-receptor antagonists are potentially mediated by the restoration of cardiac growth-related signal transduction.  相似文献   

4.
Li Y  Tollefsbol TO 《PloS one》2011,6(2):e17421
Although caloric restriction (CR) has been shown to increase lifespan in various animal models, the mechanisms underlying this phenomenon have not yet been revealed. We developed an in vitro system to mimic CR by reducing glucose concentration in cell growth medium which excludes metabolic factors and allows assessment of the effects of CR at the cellular and molecular level. We monitored cellular proliferation of normal WI-38, IMR-90 and MRC-5 human lung fibroblasts and found that glucose restriction (GR) can inhibit cellular senescence and significantly extend cellular lifespan compared with cells receiving normal glucose (NG) in the culture medium. Moreover, GR decreased expression of p16(INK4a) (p16), a well-known senescence-related gene, in all of the tested cell lines. Over-expressed p16 resulted in early replicative senescence in glucose-restricted cells suggesting a crucial role of p16 regulation in GR-induced cellular lifespan extension. The decreased expression of p16 was partly due to GR-induced chromatin remodeling through effects on histone acetylation and methylation of the p16 promoter. GR resulted in an increased expression of SIRT1, a NAD-dependent histone deacetylase, which has positive correlation with CR-induced longevity. The elevated SIRT1 was accompanied by enhanced activation of the Akt/p70S6K1 signaling pathway in response to GR. Furthermore, knockdown of SIRT1 abolished GR-induced p16 repression as well as Akt/p70S6K1 activation implying that SIRT1 may affect p16 repression through direct deacetylation effects and indirect regulation of Akt/p70S6K1 signaling. Collectively, these results provide new insights into interactions between epigenetic and genetic mechanisms on CR-induced longevity that may contribute to anti-aging approaches and also provide a general molecular model for studying CR in vitro in mammalian systems.  相似文献   

5.
6.
低剂量顺铂可通过诱导p21与p16表达而诱导肿瘤细胞早衰,但其机制不明。本研究探讨了低剂量顺铂诱导的HeLa细胞衰老过程中p21与p16的上调机制。低剂量顺铂(4 μmol/L)处理HeLa细胞后,DNA甲基转移酶DNMT1蛋白水平降低;p21与p16启动子甲基化水平降低,二者mRNA及蛋白质水平升高;顺铂对DNMT1蛋白水平的降低作用与其激活p38MAPK有关,用SB203580抑制p38MAPK可部分逆转顺铂对DNMT1蛋白水平以及p21与p16启动子甲基化的降低作用,从而部分逆转顺铂对p21与p16表达的诱导;抑制p38MAPK 也可部分逆转低剂量顺铂诱导的HeLa细胞早衰。上述结果表明,低剂量顺铂可通过p38MAPK信号通路下调p21与p16启动子甲基化水平,进而上调二者的表达。这些结果为解析低剂量顺铂诱导肿瘤细胞早衰的信号转导机制提供了实验依据。  相似文献   

7.
Tristetraprolin (TTP) is the only trans-acting factor shown to be capable of regulating AU-rich element-dependent mRNA turnover at the level of the intact animal; however, the mechanism by which TTP mediated RNA instability is unknown. Using an established model system, we performed structure/function analysis with TTP as well as examined the current hypothesis that TTP function is regulated by p38-MAPKAP kinase 2 (MK2) activation. Deletion of either the N- or C-terminal domains inhibited TTP function. Extensive mutagenesis, up to 16%, of serines and threonines, some of which were predicted to mediate proteasomal targeting, did not alter human TTP function. Mutation of the conserved MK2 phosphorylation sites enhanced human TTP function in both resting and p38-stress-activated protein kinase-MK2-activated cells. However, p38-stress-activated protein kinase-MK2 activation did not alter the activity of either wild-type or mutant TTP. TTP localized to the stress granules, with arsenite treatment reducing this localization. In contrast, arsenite treatment enhanced stress granule localization of the MK2 mutant, consistent with the involvement of additional pathways regulating this event. Finally, we determined that, in response to LPS stimulation, human TTP moves onto the polysomes, and this movement occurs in the absence of 14-3-3. Taken together, these data indicate that, although p38 activation alters TTP entry into the stress granule, it does not alter TTP function. Moreover, the interaction of TTP with 14-3-3, which may limit entry into the stress granule, is not involved in the downstream message stabilization events.  相似文献   

8.
Mitogen-activated protein (MAP) kinases compose a family of serine/threonine kinases that function in many signal transduction pathways and affect various cellular phenotypes. Despite the abundance of available data, the exact role of each MAP kinase is not completely defined, in part because of the inability to activate MAP kinase molecules individually and specifically. Based on activating mutations found in the yeast MAP kinase p38/Hog1 (Bell, M., Capone, R., Pashtan, I., Levitzki, A., and Engelberg, D. (2001) J. Biol. Chem. 276, 25351-25358), we designed and constructed single and multiple mutants of human MAP kinase p38alpha. Single (p38D176A, p38F327L, and p38F327S) and subsequent double (p38D176A/F327L and p38D176A/F327S) mutants acquired high intrinsic activity independent of any upstream regulation and reached levels of 10 and 25%, respectively, in reference to the dually phosphorylated wild type p38alpha. The active p38 mutants have retained high specificity toward p38 substrates and were inhibited by the specific p38 inhibitors SB-203580 and PD-169316. We also show that similar mutations can render p38gamma active as well. Based on the available structures of p38 and ERK2, we have analyzed the p38 mutants and identified a hydrophobic core stabilized by three aromatic residues, Tyr-69, Phe-327, and Trp-337, in the vicinity of the L16 loop region. Upon activation, a segment of the L16 loop, including Phe-327, becomes disordered. Structural analysis suggests that the active p38 mutants emulate the conformational changes imposed naturally by dual phosphorylation, namely, destabilization of the hydrophobic core. Essentially, the hydrophobic core is an inherent stabilizer that maintains low basal activity level in unphosphorylated p38.  相似文献   

9.
p38 is a member of the mitogen-activated protein kinase (MAPK) family of serine/threonine kinases, which is activated by cellular stressors and has been shown to be a critical enzyme in the synthesis and action of proinflammatory cytokines, tumor necrosis factor-a (TNF-alpha) and interleukin-1beta (IL-1beta). A group of pyridinyl imidazole compounds such as SB202190 have been identified as selective inhibitors of p38 that bind directly to the ATP pocket of the enzyme. These compounds inhibit the p38 kinase activity, block TNF-alpha and IL-1beta secretion both in vivo and in vitro and are found to be effective in animal models of arthritis, bone resorption, and endotoxin shock. We postulated that other classes of compounds capable of competing the binding of pyridinyl imidazole with p38 enzyme could have efficacy in the treatment of inflammatory diseases. Therefore, a simple and robust assay was developed to measure the ability of small molecules to inhibit the binding of tritium-labeled pyridinyl imidazole, SB202190, to recombinant p38 kinase. For assay development, the human p38 gene was cloned in baculovirus and then expressed in insect cells. Tritiated SB202190 was synthesized and used as the p38 ligand for a competitive filter binding assay. This assay has been used successfully to screen both synthetic and combinatorial chemical libraries for other classes of p38 kinase inhibitors.  相似文献   

10.
We examined the signaling mechanisms involved in the differentiation-inducing activity of lupeol toward B16 2F2 melanoma cells. alpha-Melanocyte stimulating hormone (alpha-MSH), forskolin and dibutyryl cAMP, which are believed to be cAMP-elevating agents and analogues, enhanced lupeol-induced B16 2F2 cell differentiation. However, H89, an inhibitor of protein kinase A, completely abolished B16-2F2 cell differentiation induced by lupeol. Furthermore, we studied the role of mitogen-activated protein kinases (MAPKs) in lupeol-induced B16 2F2 cell differentiation. U0126, an inhibitor of MAPK kinases, induced B16 2F2 cell differentiation and enhanced the cell differentiation induced by lupeol. However, SB203580, a selective inhibitor of p38 MAPK, completely blocked lupeol-induced B16 2F2 cell differentiation. Western blot analysis revealed that 10 microM lupeol transiently elevated the level of phosphorylation of p38 MAPK. The phosphorylation of p38 MAPK was detected on the addition of 1 microM lupeone, another lupane triterpene, but was not induced by 1 microM lupeol. These results suggested that lupeol induced B16 2F2 cell differentiation through activation of p38 MAPK, and that the structural differences at C-3 of lupane triterpenes played an important role in the activation of p38 MAPK.  相似文献   

11.
12.
Smalley K  Eisen T 《FEBS letters》2000,476(3):198-202
Activation of p38 or p44/42 mitogen-activated protein (MAP) kinases has been shown to trigger differentiation in a number of cell types. The present study has investigated the roles of these kinases in the alpha-melanocyte stimulating hormone (alpha-MSH)-induced melanogenic and proliferative responses in B16 melanoma cells. Treatment of cells with alpha-MSH led to the time-dependent phosphorylation of both p38 and p44/42 MAP kinases. However, only inhibition of p38 MAP kinase activity with SB 203580 blocked both the alpha-MSH-induced melanogenic and anti-proliferative effects. It therefore appears that activation of the p38 pathway can promote melanogenesis and inhibit growth of B16 melanoma cells.  相似文献   

13.
Since the identification of the p38 mitogen-activated protein kinase (MAPK) as a key signal-transducing molecule in the expression of the proinflammatory cytokine tumor necrosis factor (TNF) more than 10 years ago, huge efforts have been made to develop inhibitors of p38 MAPK with the intent to modulate unwanted TNF activity in diseases such as autoimmune diseases or sepsis. However, despite some anti-inflammatory effects in animal models, no p38 MAPK inhibitor has yet demonstrated clinical efficacy in human autoimmune disorders. One possible reason for this paradox might relate to the fact that the p38 MAPK signaling cascade is involved in the functional regulation of several different cell types that all contribute to the complex pathogenesis of human autoimmune diseases. In particular, p38 MAPK has a multifaceted role in CD4 T cells that have been implicated in initiating and driving sustained inflammation in autoimmune diseases, such as rheumatoid arthritis or systemic vasculitis. Here we review recent advances in the understanding of the role of the p38 MAPK signaling cascade in CD4 T cells and the consequences that its inhibition provokes in T cell functions in vitro and in vivo. These new data suggest that p38 MAPK inhibitors may elicit several unwanted effects in human autoimmune diseases but may be useful for the treatment of allergic disorders.  相似文献   

14.
15.
16.
17.
Polycyclic aromatic hydrocarbons (PAHs) such as 3-methylcholanthrene (MC) cause untoward effects including carcinogenesis. Here we investigated the effect of MC on apoptosis. MC induced apoptosis, preceded by serine 15 phosphorylation and accumulation of p53. MC failed to cause apoptosis in p53-deficient MG63 cells, whereas ectopic expression of p53 in MG63 cells restored the response to MC. Therefore, MC-induced apoptosis was dependent on p53. MC also activated p38 mitogen-activated protein kinase (MAPK) at 16-24 h. Accumulation of p53 and p53 phosphorylated at serine 15 was not changed by SB203580, a specific inhibitor of p38 MAPK or overexpression of a dominant negative mutant of p38 MAPK at 8 h after MC treatment, whereas the accumulation was suppressed at 24 h. These results suggest that MC induces accumulation and phosphorylation of p53 via a p38 MAPK-independent (early) and p38 MAPK-dependent (late) pathway. SB203580 repressed MC-induced apoptosis. MC induced p38 MAPK activation in p53 expressing cells but not in p53-deficient cells, indicating that the p38 MAPK activation was dependent on early p53 activation. The current study shows that both p53 and p38 MAPK activation are required for MC-induced apoptosis and provides a novel model of a functional regulation between p53 and p38 MAPK in chemical stress-induced apoptosis.  相似文献   

18.
19.
20.
Focal adhesion kinase (FAK) is a non‐receptor protein tyrosine kinase that regulates cell adhesion, proliferation and differentiation. In the present study, a rat model of high fat diet‐induced hypercholesterolaemia was established to investigate the involvement of FAK in lipid disorder‐related kidney diseases. We showed focal fusion of podocyte foot process that occurred at as early as 4 weeks in rats consuming high fat diet, preceding the onset of proteinuria when aberrant phosphorylation of FAK was found. These abnormalities were ameliorated by dietary intervention of TAE226, a reported inhibitor of FAK. FAK is also an adaptor protein initiating cascades of intracellular signals including c‐Src, Rho GTPase and mitogen‐activated protein kinase (MAPK). P38 MAPK belongs to the latter and is centrally involved in kidney diseases. Our cell culture data revealed oxidized low‐density lipoprotein (ox‐LDL) triggered hyper‐phosphorylation of FAK and p38, ectopic expression of cellular markers (manifested as decreased WT1, podocin and NEPH1, and increased vimentin and mmp9), and re‐arrangement of F‐actin filaments with enhanced cell motility; these mutations were significantly rectified by FAK shRNA. Notably, pre‐treatment of p38 inhibitor did not alter FAK activation, albeit its deletion of p38 hyper‐activity and attenuation of cellular abnormalities, demonstrating that p38 acted as a downstream effector of FAK signalling and ox‐LDL damaged podocytes in a FAK/p38‐dependent manner. This was further identified by animal data that p38 activation was also abrogated by TAE226 treatment in hypercholesterolaemic rats, suggesting that FAK/p38 axis might also be involved in in vivo events. These findings provided a potential early mechanism of hypercholesterolaemia‐related podocyte damage and proteinuria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号