首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pakhomov AA  Martynov VI 《Biochemistry》2007,46(41):11528-11535
The red fluorescence of a Discosoma coral protein is the result of an additional autocatalytic oxidation of a green fluorescent protein (GFP)-like chromophore. This reaction creates an extra pi-electron conjugation by forming a C=N-C=O substituent. Here we show that the red fluorescence of a protein from Zoanthus sp. 2 (z2FP574) arises from a coupled oxidation-decarboxylation of Asp-66, the first amino acid of the chromophore-precursory DYG sequence. Comparative mutagenesis of highly homologous green (zFP506) and red (z2FP574) fluorescent proteins from Zoanthus species reveals that an aspartate at position 66 is critical for the development of red fluorescence. The maturation kinetics of wild-type z2FP574 and the zFP506 N66D mutant indicates that the "green" GFP-like form is the actual intermediate in producing the red species. Furthermore, via maturation kinetics analysis of zFP506 N66D, combined with mass spectrometry, we determined that the oxidation-decarboxylation of Asp-66 occurs without detectable intermediate products. According to mass spectral data, the minor "red" chromophore of the z2FP574 D66E mutant appears to be oxidized and completely decarboxylation deficient, indicating that the side chain length of acidic amino acid 66 is critical in controlling efficient oxidation-decarboxylation. Substitutions with aspartate at the equivalent positions of a Condylactis gigantea purple chromoprotein and Dendronephthya sp. green fluorescent protein imply that additional oxidation of a GFP-like structure is a prerequisite for chromophore decarboxylation. In summary, these results lead to a mechanism that is related to the chemistry of beta-keto acid decarboxylation.  相似文献   

2.
Much effort has been dedicated to the design of significantly red shifted variants of the green fluorescent protein (GFP) from Aequoria victora (av). These approaches have been based on classical engineering with the 20 canonical amino acids. We report here an expansion of these efforts by incorporation of an amino substituted variant of tryptophan into the "cyan" GFP mutant, which turned it into a "gold" variant. This variant possesses a red shift in emission unprecedented for any avFP, similar to "red" FPs, but with enhanced stability and a very low aggregation tendency. An increasing number of non-natural amino acids are available for chromophore redesign (by engineering of the genetic code) and enable new general strategies to generate novel classes of tailor-made GFP proteins.  相似文献   

3.
A number of recently cloned chromoproteins homologous to the green fluorescent protein show a substantial bathochromic shift in absorption spectra. Compared with red fluorescent protein from Discosoma sp. (DsRed), mutants of these so-called far-red proteins exhibit a clear red shift in emission spectra as well. Here we report that a far-red chromoprotein from Goniopora tenuidens (gtCP) contains a chromophore of the same chemical structure as DsRed. Denaturation kinetics of both DsRed and gtCP under acidic conditions indicates that the red form of the chromophore (absorption maximum at 436 nm) converts to the GFP-like form (384 nm) by a one-stage reaction. Upon neutralization, the 436-nm form of gtCP, but not the 384-nm form, renaturates instantly, implying that the former includes a chromophore in its intact state. gtCP represents a single-chain protein and, upon harsh denaturing conditions, shows three major bands in SDS/PAGE, two of which apparently result from hydrolysis of an acylimine C=N bond. Instead of having absorption maxima at 384 nm and 450 nm, which are characteristic for a GFP-like chromophore, fragmented gtCP shows a different spectrum, which presumably corresponds to a 2-keto derivative of imidazolidinone. Mass spectra of the chromophore-containing peptide from gtCP reveal an additional loss of 2 Da relative to the GFP-like chromophore. Tandem mass spectrometry of the chromopeptide shows that an additional bond is dehydrogenated in gtCP at the same position as in DsRed. Altogether, these data suggest that gtCP belongs to the same subfamily as DsRed (in the classification of GFP-like proteins based on the chromophore structure type).  相似文献   

4.
Mutants of Discosoma red fluorescent protein with a GFP-like chromophore   总被引:3,自引:0,他引:3  
The green fluorescent protein (GFP)-homologous red fluorescent protein (RFP) from Discosoma (drFP583) which emits bright red fluorescence peaking at 583 nm is an interesting novel genetic marker. We show here that RFP maturation involves a GFP-like fluorophore which can be stabilized by point mutations selected from a randomly mutated expression library. By homology modeling, these point mutations cluster near the imidazolidinone ring of the chromophore. Exciting the GFP-like absorption band in the mutant proteins produces both green and red fluorescence. Upon unfolding and heating, the absorption spectrum of the RFP chromophore slowly becomes similar to that of the GFP chromophore. This can be interpreted as a covalent modification of the GFP chromophore in RFP that appears to occur in the final maturation step.  相似文献   

5.
The gene, pixJ1 (formerly pisJ1), is predicted to encode a phytochrome-like photoreceptor that is essential for positive phototaxis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 [Yoshihara et al. (2000) Plant Cell Physiol. 41: 1299]. The PixJ1 protein was overexpressed as a fusion with a poly-histidine tag (His-PixJ1) and isolated from Synechocystis cells. A zinc-fluorescence assay suggested that a linear tetrapyrrole was covalently attached to the His-PixJ1 protein as a chromophore. His-PixJ1 showed novel photoreversible conversion between a blue light-absorbing form (Pb, lambdaAmax=425-435 nm) and a green light-absorbing form (Pg, lambdaAmax=535 nm). Dark incubation led Pg to revert to Pb, indicative of stability of the Pb form in darkness. Red or far-red light irradiation, which is effective for photochemical conversion of the known phytochromes, produced no change in the spectra of Pb and Pg forms. Site-directed mutagenesis revealed that a Cys-His motif in the second GAF domain of PixJ1 is responsible for binding of the chromophore. Possible chromophore species are discussed with regard to the novel photoconversion spectrum.  相似文献   

6.
To better understand the diverse mechanisms of spectral tuning operational in fluorescent proteins (FPs), we determined the 2.1-Å X-ray structure of dsFP483 from the reef-building coral Discosoma. This protein is a member of the cyan class of Anthozoa FPs and exhibits broad, double-humped excitation and absorbance bands, with a maximum at 437-440 nm and a shoulder at 453 nm. Although these features support a heterogeneous ground state for the protein-intrinsic chromophore, peak fluorescence occurs at 483 nm for all excitation wavelengths, suggesting a common emissive state. Optical properties are insensitive to changes in pH over the entire range of protein stability. The refined crystal structure of the biological tetramer (space group C2) demonstrates that all protomers bear a cis-coplanar chromophore chemically identical with that in green fluorescent protein (GFP). To test the roles of specific residues in color modulation, we investigated the optical properties of the H163Q and K70M variants. Although absorbance bands remain broad, peak excitation maxima are red shifted to 455 and 460 nm, emitting cyan light and green light, respectively. To probe chromophore ground-state features, we collected Raman spectra using 752-nm excitation. Surprisingly, the positions of key Raman bands of wild-type dsFP483 are most similar to those of the neutral GFP chromophore, whereas the K70M spectra are more closely aligned with the anionic form. The Raman data provide further evidence of a mixed ground state with chromophore populations that are modulated by mutation. Possible internal protonation equilibria, structural heterogeneity in the binding sites, and excited-state proton transfer mechanisms are discussed. Structural alignments of dsFP483 with the homologs DsRed, amFP486, and zFP538-K66M suggest that natural selection for cyan is an exquisitely fine-tuned and highly cooperative process involving a network of electrostatic interactions that may vary substantially in composition and arrangement.  相似文献   

7.
The diverse biochemical and photophysical properties of fluorescent proteins (FPs) have enabled the generation of a growing palette of colors, providing unique opportunities for their use in a variety of modern biology applications. Modulation of these FP characteristics is achieved through diversity in both the structure of the chromophore as well as the contacts between the chromophore and the surrounding protein barrel. Here we review our current knowledge of blue, green, and red chromophore formation in permanently emitting FPs, photoactivatable FPs, and fluorescent timers. Progress in understanding the interplay between FP structure and function has allowed the engineering of FPs with many desirable features, and enabled recent advances in microscopy techniques such as super-resolution imaging of single molecules, imaging of protein dynamics, photochromic FRET, deep-tissue imaging, and multicolor two-photon microscopy in live animals.  相似文献   

8.
A coral fluorescent protein from Trachyphyllia geoffroyi, Kaede, possesses a tripeptide of His62-Tyr63-Gly64, which forms a chromophore with green fluorescence. This chromophore's fluorescence turns red following UV light irradiation. We have previously shown that such photoconversion is achieved by a formal beta-elimination reaction, which results in a cleavage of the peptide bond found between the amide nitrogen and the alpha-carbon at His62. However, the stereochemical arrangement of the chromophore and the precise structural basis for this reaction mechanism previously remained unknown. Here, we report the crystal structures of the green and red form of Kaede at 1.4 A and 1.6 A resolutions, respectively. Our structures depict the cleaved peptide bond in the red form. The chromophore conformations both in the green and red forms are similar, except a well-defined water molecule in the proximity of the His62 imidazole ring in the green form. We propose a molecular mechanism for green-to-red photoconversion, which is assisted by the water molecule.  相似文献   

9.
A water-soluble yellow protein, previously discovered in the purple photosynthetic bacterium Ectothiorhodospira halophila, contains a chromophore which has an absorbance maximum at 446 nm. The protein is now shown to be photoactive. A pulse of 445-nm laser light caused the 446-nm peak to be partially bleached and red-shifted in a time less than 1 microsecond. The intermediate thus formed was subsequently further bleached in the dark in a biphasic process occurring in approximately 20 ms. Finally, the absorbance of native protein was restored in a first-order process occurring over several seconds. These kinetic processes are remarkably similar to those of sensory rhodopsin from Halobacterium, and to a lesser extent bacteriorhodopsin and halorhodopsin; although these proteins are membrane-bound, they have absorbance maxima at about 570 nm, and they cycle more rapidly. In attempts to remove the chromophore for identification, it was found that a variety of methods of denaturation of the protein caused transient or permanent conversion to a form which has an absorbance maximum near 340 nm. Thus, by analogy to the rhodopsins, the absorption at 446 nm in the native protein appears to result from a 106-nm red shift of the chromophore induced by the protein. Acid denaturation followed by extraction with organic solvents established that the chromophore could be removed from the protein. It is not identical with all-trans-retinal and remains to be identified, although it could still be a related pigment. The E. halophila yellow protein has a circular dichroism spectrum which indicates little alpha-helical secondary structure (19%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The genetically encoded voltage indicators ArcLight and its derivatives mediate voltage-dependent optical signals by intermolecular, electrostatic interactions between neighboring fluorescent proteins (FPs). A random mutagenesis event placed a negative charge on the exterior of the FP, resulting in a greater than 10-fold improvement of the voltage-dependent optical signal. Repositioning this negative charge on the exterior of the FP reversed the polarity of voltage-dependent optical signals, suggesting the presence of “hot spots” capable of interacting with the negative charge on a neighboring FP, thereby changing the fluorescent output. To explore the potential effect on the chromophore state, voltage-clamp fluorometry was performed with alternating excitation at 390 nm followed by excitation at 470 nm, resulting in several mutants exhibiting voltage-dependent, ratiometric optical signals of opposing polarities. However, the kinetics, voltage ranges, and optimal FP fusion sites were different depending on the wavelength of excitation. These results suggest that the FP has external, electrostatic pathways capable of quenching fluorescence that are wavelength specific. One mutation to the FP (E222H) showed a voltage-dependent increase in fluorescence when excited at 390 nm, indicating the ability to affect the proton wire from the protonated chromophore to the H222 position. ArcLight-derived sensors may therefore offer a novel way to map how conditions external to the β-can structure can affect the fluorescence of the chromophore and transiently affect those pathways via conformational changes mediated by manipulating membrane potential.  相似文献   

11.
mPlum is a far‐red fluorescent protein with emission maximum at ~650 nm and was derived by directed evolution from DsRed. Two residues near the chromophore, Glu16 and Ile65, were previously revealed to be indispensable for the far‐red emission. Ultrafast time‐resolved fluorescence emission studies revealed a time dependent shift in the emission maximum, initially about 625 nm, to about 650 nm over a period of 500 ps. This observation was attributed to rapid reorganization of the residues solvating the chromophore within mPlum. Here, the crystal structure of mPlum is described and compared with those of two blue shifted mutants mPlum‐E16Q and ‐I65L. The results suggest that both the identity and precise orientation of residue 16, which forms a unique hydrogen bond with the chromophore, are required for far‐red emission. Both the far‐red emission and the time dependent shift in emission maximum are proposed to result from the interaction between the chromophore and Glu16. Our findings suggest that significant red shifts might be achieved in other fluorescent proteins using the strategy that led to the discovery of mPlum.  相似文献   

12.
Green fluorescent protein (GFP)-like proteins have been studied with the aim of developing fluorescent proteins. Since the property of color variation is understudied, we isolated a novel GFP-like chromoprotein from the carpet anemone Stichodactyla haddoni, termed shCP. Its maximum absorption wavelength peak (λ max) is located at 574 nm, resulting in a purple color. The shCP protein consists of 227 amino acids (aa), sharing 96 % identity with the GFP-like chromoprotein of Heteractis crispa. We mutated aa residues to examine any alteration in color. When E63, the first aa of the chromophore, was replaced by serine (E63S), the λ max of the mutated protein shCP-E63S was shifted to 560 nm and exhibited a pink color. When Q39, T194, and I196, which reside in the surrounding 5 Å of the chromophore’s microenvironment, were mutated, we found that (1) the λ max of the mutated protein shCP-Q39S was shifted to 518 nm and exhibited a red color, (2) shCP-T194I exhibited a purple-blue color, and (3) an additional mutation at I196H of the mutated protein shCP-E63L exhibited green fluorescence. In contrast, when the aa located neither at the chromophore nor within its microenvironment were mutated, the resultant proteins shCP-L122H, -E138G, -S137D, -T95I, -D129N, -T194V, -E138Q, -G75E, -I183V, and -I70V never altered their purple color, suggesting that mutations at the shCP chromophore and the surrounding 5 Å microenvironment mostly control changes in color expression or cause fluorescence to develop. Additionally, we found that the cDNAs of shCP and its mutated varieties are faithfully and stably expressed both in Escherichia coli and zebrafish embryos.  相似文献   

13.
Proteins homologous to Green Fluorescent Protein (GFP) are widely used as genetically encoded fluorescent labels. Many developments of this technology were spurred by discoveries of novel types of GFP-like proteins (FPs) in nature. Here we report two proteins displaying primary structures never before encountered in natural FPs: they consist of multiple GFP-like domains repeated within the same polypeptide chain. A two-domain green FP (abeGFP) and a four-domain orange-fluorescent FP (Ember) were isolated from the siphonophore Abylopsis eschscholtzii and an unidentified juvenile jellyfish (order Anthoathecata), respectively. Only the most evolutionary ancient domain of Ember is able to synthesize an orange-emitting chromophore (emission at 571 nm), while the other three are purely green (emission at 520 nm) and putatively serve to maintain the stability and solubility of the multidomain protein. When expressed individually, two of the green Ember domains form dimers and the third one exists as a monomer. The low propensity for oligomerization of these domains would simplify their adoption as in vivo labels. Our results reveal a previously unrecognized direction in which natural FPs have diversified, suggesting new avenues to look for FPs with novel and potentially useful features.  相似文献   

14.
Despite their similar fold topologies, anthozoan fluorescent proteins (FPs) can exhibit widely different optical properties, arising either from chemical modification of the chromophore itself or from specific interactions of the chromophore with the surrounding protein moiety. Here we present a structural and spectroscopic investigation of the green FP asFP499 from the sea anemone Anemonia sulcata var. rufescens to explore the effects of the protein environment on the chromophore. The optical absorption and fluorescence spectra reveal two discrete species populated in significant proportions over a wide pH range. Moreover, multiple protonation reactions are evident from the observed pH-dependent spectral changes. The x-ray structure of asFP499, determined by molecular replacement at a resolution of 1.85 A, shows the typical beta-barrel fold of the green FP from Aequorea victoria (avGFP). In its center, the chromophore, formed from the tripeptide Gln(63)-Tyr(64)-Gly(65), is tightly held by multiple hydrogen bonds in a polar cage that is structurally quite dissimilar to that of avGFP. The x-ray structure provides interesting clues as to how the spectroscopic properties are fine tuned by the chromophore environment.  相似文献   

15.
Fluorescent proteins are now widely used in fluorescence microscopy as genetic tags to any protein of interest. Recently, a new fluorescent protein, Kaede, was introduced, which exhibits an irreversible color shift from green to red fluorescence after photoactivation with lambda = 350-410 nm and, thus, allows for specific cellular tracking of proteins before and after exposure to the illumination light. In this work, the dynamics of this photoconversion reaction of Kaede are studied by fluorescence techniques based on single-molecule spectroscopy. By fluorescence correlation spectroscopy, fast flickering dynamics of the chromophore group were revealed. Although these dynamics on a submillisecond timescale were found to be dependent on pH for the green fluorescent Kaede chromophore, the flickering timescale of the photoconverted red chromophore was constant over a large pH range but varied with intensity of the 488-nm excitation light. These findings suggest a comprehensive reorganization of the chromophore and its close environment caused by the photoconversion reaction. To study the photoconversion in more detail, we introduced a novel experimental arrangement to perform continuous flow experiments on a single-molecule scale in a microfluidic channel. Here, the reaction in the flowing sample was induced by the focused light of a diode laser (lambda = 405 nm). Original and photoconverted Kaede protein were differentiated by subsequent excitation at lambda = 488 nm. By variation of flow rate and intensity of the initiating laser we found a reaction rate of 38.6 s(-1) for the complete photoconversion, which is much slower than the internal dynamics of the chromophores. No fluorescent intermediate states could be revealed.  相似文献   

16.
Phosphorylation and dephosphorylation of proteins were investigated in guard-cell protoplasts from Vicia faba L. When guard-cell protoplasts were incubated with 32Pi in the dark for 80 min, several proteins, with molecular masses of 42, 40, 34, 32, 26, and 19 kD, were phosphorylated. Illumination of the dark-adapted protoplasts with red light caused dephosphorylation of the 26-kD protein, but there was no detectable change in levels of phosphorylation in other proteins. In the dephosphorylation of the 26-kD protein, far-red light of 730 nm was most effective, but when the light was turned off, the protein was phosphorylated to the original level within 10 min. Subcellular fractionation of guard-cell protoplasts indicated that the 26-kD protein was located in the chloroplast. The migration pattern of the 26-kD protein was exactly the same as the light-harvesting Chl a/b protein complex of photosystem II (LHCPII) from Vicia mesophyll cells on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The dephosphorylated 26-kD protein was phosphorylated by adding sodium hydrosulfite, a strong reducing agent, under the far-red illumination of guard-cell protoplasts. The magnitude of dephosphorylation by red light (660 nm) was increased by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, an electron transfer inhibitor of photosystem II (PSII). Light-induced dephosphorylation was inhibited by 1 nM okadaic acid, an inhibitor of serine/threonine protein phosphatase. From these results, it is concluded that the 26-kD protein is LHCPII and that LHCPII is present mostly in the phosphorylated form in the dark and is dephosphorylated by type 2A protein phosphatase under the light absorbed by photosystem I in Vicia guard-cell protoplasts.  相似文献   

17.
18.
Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion. At physiological pH, GmKate absorbs blue light (445 nm) and emits green fluorescence (525 nm). At pH above 9.0, GmKate absorbs 598 nm light and emits 646 nm, far-red fluorescence, similar to its sequence homolog mNeptune. Based on optical spectra and crystal structures of GmKate in its green and red states, the reversible color transition is attributed to the different protonation states of the cis-chromophore, an interpretation that was confirmed by quantum chemical calculations. Crystal structures reveal potential hydrogen bond networks around the chromophore that may facilitate the protonation switch, and indicate a molecular basis for the unusual bathochromic shift observed at high pH. This study provides mechanistic insights into the color tuning of mKate variants, which may aid the development of green-to-red color-convertible fluorescent sensors, and suggests GmKate as a prototype of genetically encoded pH sensors for biological studies.  相似文献   

19.
Recent years have witnessed enormous advances in fluorescence microscopy instrumentation and fluorescent marker development. 4Pi confocal microscopy with two-photon excitation features excellent optical sectioning in the axial direction, with a resolution in the 100 nm range. Here we apply this technique to cellular imaging with EosFP, a photoactivatable autofluorescent protein whose fluorescence emission wavelength can be switched from green (516 nm) to red (581 nm) by irradiation with 400-nm light. We have measured the two-photon excitation spectra and cross sections of the green and the red species as well as the spectral dependence of two-photon conversion. The data reveal that two-photon excitation and photoactivation of the green form of EosFP can be selectively performed by choosing the proper wavelengths. Optical highlighting of small subcellular compartments was shown on HeLa cells expressing EosFP fused to a mitochondrial targeting signal. After three-dimensionally confined two-photon conversion of EosFP within the mitochondrial networks of the cells, the converted regions could be resolved in a 3D reconstruction from a dual-color 4Pi image stack.  相似文献   

20.
We found that a 65-kDa protein (p65) of Synechocystis sp. PCC 6803 is dephosphorylated in a light-dependent manner. In darkness, p65 was specifically phosphorylated and then completely dephosphorylated within 2 min upon exposure to high-intensity light. The phosphorylation of p65 recurred after 8 hours incubated in the dark following light exposure. Green (540-560 nm) and red (660 nm) light dephosphorylated p65 efficiently, with the efficiency being greater with green light. These results suggest that p65 is a novel substrate involved in the quantity and quality of light-dependent dephosphorylation in cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号