首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
PcsB of Streptococcus pneumoniae is an essential hydrolase involved in the separation of dividing cells. In this study, it was found that PcsB localizes to the plasma membrane and is released into the growth environment, yet it is detectable on the pneumococcal surface by flow cytometry analysis. High temperature and osmolarity led to upregulation of pcsB expression.  相似文献   

5.
6.
Cell division is a dynamic process ending by separation of the daughter cells. This final step requires the cleavage of the murein septum synthetized during cell division. In Streptococcus thermophilus, cse plays an important role in cell separation. Cse protein contains, at its N-terminal end, a signal peptide and a putative LysM motif suggesting that it is secreted and able to bind to the cell wall. Furthermore, the C-terminus of Cse carries a putative cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain conferring to the protein a potential catalytic activity. To gain insight into the role of Cse in the cell division process, in silico analysis of the Firmicutes proteins displaying CHAP-related domain was undertaken. This work allowed us to distinguish and characterize within the Firmicutes the 2 families of proteins (CHAP and NlpC/p60) belonging to the CHAP superfamily. These 2 families regroup mainly peptidoglycan hydrolases. Data from the literature indicate that NlpC/p60 and CHAP proteins cleave distinct peptidoglycan bonds. Among the enzymes characterized within the Firmicutes, NlpC/p60 proteins are gamma-D-glutamate-meso-diaminopimelate muropeptidase. Instead, CHAP enzymes involved in cell separation are N-acetylmuramoyl-L-alanine amidase and CHAP lysins have endopeptidase activity.  相似文献   

7.
The Streptococcus agalactiae bacteriophage B30 endolysin contains three domains: cysteine, histidine-dependent amidohydrolase/peptidase (CHAP), Acm glycosidase, and the SH3b cell wall binding domain. Truncations and point mutations indicated that the Acm domain requires the SH3b domain for activity, while the CHAP domain is responsible for nearly all the cell lysis activity.  相似文献   

8.
Cell division and cell wall synthesis are closely linked complex phenomena and play a crucial role in the maintenance and regulation of bacterial virulence. Eukaryotic-type Ser/Thr kinases reported in prokaryotes, including that in group A Streptococcus (GAS) (Streptococcus pyogenes Ser/Thr kinase (SP-STK)), regulate cell division, growth, and virulence. The mechanism of this regulation is, however, unknown. In this study, we demonstrated that SP-STK-controlled cell division is mediated under the positive regulation of secretory protein that possesses a cysteine and histidine-dependent aminohydrolases/peptidases (CHAP) domain with functionally active cell wall hydrolase activity (henceforth named as CdhA (CHAP-domain-containing and chain-forming cell wall hydrolase). Deletion of the CdhA-encoding gene resulted in severe cell division and growth defects in GAS mutants. The mutant expressing the truncated CdhA (devoid of the CHAP domain), although displayed no such defects, it became attenuated for virulence in mice and highly susceptible to cell wall-acting antibiotics, as observed for the mutant lacking CdhA. When CdhA was overexpressed in the wild-type GAS as well as in heterologous strains, Escherichia coli and Staphylococcus aureus, we observed a distinct increase in bacterial chain length. Our data reveal that CdhA is a multifunctional protein with a major function of the N-terminal region as a cell division plane-recognizing domain and that of the C-terminal CHAP domain as a virulence-regulating domain. CdhA is thus an important therapeutic target.  相似文献   

9.
The Streptococcus agalactiae bacteriophage B30 endolysin contains three domains: cysteine, histidine-dependent amidohydrolase/peptidase (CHAP), Acm glycosidase, and the SH3b cell wall binding domain. Truncations and point mutations indicated that the Acm domain requires the SH3b domain for activity, while the CHAP domain is responsible for nearly all the cell lysis activity.  相似文献   

10.
MreC and MreD, along with the actin homologue MreB, are required to maintain the shape of rod-shaped bacteria. The depletion of MreCD in rod-shaped bacteria leads to the formation of spherical cells and the accumulation of suppressor mutations. Ovococcus bacteria, such as Streptococcus pneumoniae, lack MreB homologues, and the functions of the S. pneumoniae MreCD (MreCD(Spn)) proteins are unknown. mreCD are located upstream from the pcsB cell division gene in most Streptococcus species, but we found that mreCD and pcsB are transcribed independently. Similarly to rod-shaped bacteria, we show that mreCD are essential in the virulent serotype 2 D39 strain of S. pneumoniae, and the depletion of MreCD results in cell rounding and lysis. In contrast, laboratory strain R6 contains suppressors that allow the growth of ΔmreCD mutants, and bypass suppressors accumulate in D39 ΔmreCD mutants. One class of suppressors eliminates the function of class A penicillin binding protein 1a (PBP1a). Unencapsulated Δpbp1a D39 mutants have smaller diameters than their pbp1a(+) parent or Δpbp2a and Δpbp1b mutants, which lack other class A PBPs and do not show the suppression of ΔmreCD mutations. Suppressed ΔmreCD Δpbp1a double mutants form aberrantly shaped cells, some with misplaced peptidoglycan (PG) biosynthesis compared to that of single Δpbp1a mutants. Quantitative Western blotting showed that MreC(Spn) is abundant (≈8,500 dimers per cell), and immunofluorescent microscopy (IFM) located MreCD(Spn) to the equators and septa of dividing cells, similarly to the PBPs and PG pentapeptides indicative of PG synthesis. These combined results are consistent with a model in which MreCD(Spn) direct peripheral PG synthesis and control PBP1a localization or activity.  相似文献   

11.
细菌双组分调节系统,或称之为双组分信号转导系统,是细菌感应外界多变环境,维持自身存活和生长繁衍的重要感应系统.在这些调节系统中,最早发现于枯草芽孢杆菌的VicRK(YycFG)系统因与细胞存活密切相关而倍受关注.该系统存在于少数低G+C含量的革兰氏阳性菌中,包括金黄色葡萄球菌和肺炎链球菌等致病菌,高度保守.许多证据显示,VicRK(YycFG)具有调控细胞壁合成与代谢、胞膜完整、细胞分裂、脂类代谢、多糖合成与被膜形成以及细菌毒力等多种功能,参与细胞的生长、分裂与感染.该系统异常可导致细菌生活力严重下降,甚至死亡,因而成为防治该类病原菌的重要靶标.  相似文献   

12.
13.
Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show that YycFG is a regulator of cell wall metabolism. We have identified five new members of the YycFG regulon: YycF activates expression of yvcE, lytE and ydjM and represses expression of yoeB and yjeA. YvcE(CwlO) and LytE encode endopeptidase-type autolysins that participate in peptidoglycan synthesis and turnover respectively. We show that a yvcE lytE double mutant strain is not viable and that cells lacking LytE and depleted for YvcE exhibit defects in lateral cell wall synthesis and cell elongation. YjeA encodes a peptidoglycan deacetylase that modifies peptidoglycan thereby altering its susceptibility to lysozyme digestion and YdjM is also predicted to have a role in cell wall metabolism. A genetic analysis shows that YycFG essentiality is polygenic in nature, being a manifestation of disrupted cell wall metabolism caused by aberrant expression of a number of YycFG regulon genes.  相似文献   

14.
Cell separation is dependent on cell wall hydrolases that cleave the peptidoglycan shared between daughter cells. In Streptococcus thermophilus , this step is performed by the Cse protein whose depletion resulted in the formation of extremely long chains of cells. Cse, a natural chimeric enzyme created by domain shuffling, carries at least two important domains for its activity: the LysM expected to be responsible for the cell wall-binding and the CHAP domain predicted to contain the active centre. Accordingly, the localization of Cse on S. thermophilus cell surface has been undertaken by immunogold electron and immunofluorescence microscopies using of antibodies raised against the N-terminal end of this protein. Immunolocalization shows the presence of the Cse protein at mature septa. Moreover, the CHAP domain of Cse exhibits a cell wall lytic activity in zymograms performed with cell walls of Micrococcus lysodeikticus , Bacillus subtilis and S. thermophilus . Additionally, RP-HPLC analysis of muropeptides released from B. subtilis and S. thermophilus cell wall after digestion with the CHAP domain shows that Cse is an endopeptidase. Altogether, these results suggest that Cse is a cell wall hydrolase involved in daughter cell separation of S. thermophilus .  相似文献   

15.
The isolation of a Streptococcus thermophilus CNRZ368 mutant displaying a long-chain phenotype allowed us to identify the cse gene (for cellular segregation). The N terminus of Cse exhibits high similarity to Streptococcus agalactiae surface immunogenic protein (SIP), while its C terminus exhibits high similarity to S. thermophilus PcsB. In CNRZ368, deletion of the entire cse open reading frame leads to drastic lengthening of cell chains and altered colony morphology. Complementation of the Deltacse mutation with a wild-type allele restored both wild-type phenotypes. The central part of Cse is a repeat-rich region with low sequence complexity. Comparison of cse from CNRZ368 and LMG18311 strains reveals high variability of this repeat-rich region. To assess the impact of this central region variability, the central region of LMG18311 cse was exchanged with that of CNRZ368 cse. This replacement did not affect chain length, showing that divergence of the central part does not modify cell segregation activity of Cse. The structure of the cse locus suggests that the chimeric organization of cse results from insertion of a duplicated sequence deriving from the pcsB 3' end into an ancestral sip gene. Thus, the cse locus illustrates the module-shuffling mechanism of bacterial gene evolution.  相似文献   

16.
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.  相似文献   

17.
A novel cell wall hydrolase encoded by the murA gene of Listeria monocytogenes is reported here. Mature MurA is a 66-kDa cell surface protein that is recognized by the well-characterized L. monocytogenes-specific monoclonal antibody EM-7G1. MurA displays two characteristic features: (i) an N-terminal domain with homology to muramidases from several gram-positive bacterial species and (ii) four copies of a cell wall-anchoring LysM repeat motif present within its C-terminal domain. Purified recombinant MurA produced in Escherichia coli was confirmed to be an authentic cell wall hydrolase with lytic properties toward cell wall preparations of Micrococcus lysodeikticus. An isogenic mutant with a deletion of murA that lacked the 66-kDa cell wall hydrolase grew as long chains during exponential growth. Complementation of the mutant strain by chromosomal reintegration of the wild-type gene restored expression of this murein hydrolase activity and cell separation levels to those of the wild-type strain. Studies reported herein suggest that the MurA protein is involved in generalized autolysis of L. monocytogenes.  相似文献   

18.
Streptococcus agalactiae (Group B streptococcus, GBS) is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC) is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta –hemolytic streptococci.  相似文献   

19.
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells.  相似文献   

20.
The antibacterial effect of lemongrass oil, obtained from the aerial part of Cymbopogon citratus, on cells of Escherichia coli was investigated by electron microscopy and by measuring cell wall formation. Two strains of E. coli K-12 were used, one of which required diaminopimelic acid in the growth medium for its murein formation. Lemongrass oil was found to elicit morphological changes like filamentation, inhibition of septum formation, spheroplast formation, production of 'blisters', 'bulges' or mesosomes, as well as lysis and development of abnormally shaped cells. The incorporation of radioactively labelled diaminopimelic acid into the cell wall murein of strain W7, was inhibited by lemongrass oil in a dose dependent way. The sequence of changes induced by lemongrass oil on bacterial cell morphology and also its interference with murein synthesis in E. coli cells were interpreted to involve the penicillin binding proteins PBP 2 and PBP 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号