首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic activities of rate limiting enzymes in fatty acid and cholesterol synthesis and cholesterol degradation were determined in lean and obese LA/N-cp rats. The hepatic activities of acetyl-CoA carboxylase and fatty acid synthetase, the key enzymes of fatty acid synthesis and 3-hydroxy-3-methylglutaryl coenzyme A reductase (the rate limiting enzyme in cholesterol synthesis), were increased 2-fold in the obese rats as compared with their lean littermates. In contrast, the activity of cholesterol 7alpha-hydroxylase, the rate limiting enzyme of cholesterol degradation to bile acids, was significantly decreased by 28% in the obese group as compared with the control group. Significantly, compared with the control group, the obese animals exhibited similar magnitudes of differences in the activities of the above enzymes even when they were pair-fed with the control animals. Thus these differences in the obese group are not due to hyperphagia but possibly to hypersecretion of the lipogenic hormone, insulin in this strain. These results indicate that the LA/N-cp obese rat has twice the capacity to synthesize body fat and cholesterol but has a reduced capacity to degrade the cholesterol, leading to increased accumulation of cholesterol and fat.  相似文献   

2.
Hepatocytes were isolated at specified times from livers of diabetic and insulin-treated diabetic rats during the course of a 48-h refeeding of a fat-free diet to previously fasted rats. The rates of synthesis of fatty acid synthetase and acetyl-CoA carboxylase in the isolated cells were determined as a function of time of refeeding by a 2-h incubation with l-[U-14C]leucine. Immunochemical methods were employed to determine the amount of radioactivity in the fatty acid synthetase and acetyl-CoA carboxylase proteins. The amount of radioactivity in the fatty acid synthetase synthesized by the isolated cells was also determined following enzyme purification of the enzyme to homogeneity. Enzyme activities of the fatty acid synthetase and acetyl-CoA carboxylase in the cells were measured by standard procedures. The results show that isolated liver cells obtained from insulintreated diabetic rats retain the capacity to synthesize fatty acid synthetase and acetyl-CoA carboxylase. The rate of synthesis of the fatty acid synthetase in the isolated cells was similar to the rate found in normal refed animals in in vivo experiments [Craig et al. (1972) Arch. Biochem. Biophys. 152, 619–630; Lakshmanan et al. (1972) Proc. Nat. Acad. Sci. USA69, 3516–3519]. In addition the relative rate of synthesis of fatty acid synthetase was stimulated greater than 20-fold in the diabetic animals treated with insulin. Immunochemical assays, when compared with enzyme activities, indicated the presence of an immunologically reactive, but enzymatically inactive, form or “apoenzyme” for both the fatty acid synthetase and acetyl-CoA carboxylase. The synthesis of these immunoreactive and enzymatically inactive species of protein, as well as the synthesis of the “holoenzyme” forms of both enzymes, requires insulin.  相似文献   

3.
Data are presented which indicate that the transition of acetyl-CoA carboxylase between the active polymeric and inactive protomeric conformations defined for the purified enzyme also occurs with the enzyme in vivo, depends upon the nutritional state of the animal, and is an important physiological phenomenon in the acute regulation of liver fatty acid synthesis. This conclusion utilized the observation that the protomeric form of purified acetyl-CoA carboxylase is inactivated by the binding of avidin to the biotinyl prosthetic group; the catalytically active filamentous form of the enzyme is resistant to avidin. Acetyl-CoA carboxylase activity was 75% avidin-resistant (polymeric) in the liver of meal-fed rats that had completed the consumption of a high glucose meal. This avidin resistance gradually decreased to 20% during the 21-h interval between meals. Peak resistance to avidin of liver carboxylase was attained within 30 min of initiating meal ingestion. The rise in carboxylase resistance to avidin could not be mimicked by insulin injection alone, but could be greatly attenuated by the addition of fat to the glucose meal. The amount of avidin-resistant acetyl-CoA carboxylase was closely associated with the concentration of hepatic malonyl-CoA and the subsequent rate of fatty acid synthesis.  相似文献   

4.
The effect of vasopressin on the short-term regulation of fatty acid synthesis was studied in isolated hepatocytes from rats fed ad libitum. Vasopressin stimulates fatty acid synthesis by 30-110%. This increase is comparable with that obtained with insulin. Angiotensin also stimulates fatty acid synthesis, whereas phenylephrine does not. The dose-response curve for vasopressin-stimulated lipogenesis is similar to the dose-response curve for glycogenolysis and release of lactate plus pyruvate. Vasopression also stimulates acetyl-CoA carboxylase activity in a dose-dependent manner. Vasopressin does not relieve glucagon-inhibited lipogenesis, whereas insulin does. The action of vasopressin on hepatic lipogenesis is decreased, but not suppressed, in Ca2+-depleted hepatocytes. The results suggest that vasopressin acts on lipogenesis by increasing availability of lipogenic substrate (lactate + pyruvate) and by activating acetyl-CoA carboxylase.  相似文献   

5.
We have previously shown that bolus intravenous administration of tumor necrosis factor (TNF) to normal rats results in a rapid (within 90 min) stimulation of hepatic fatty acid synthesis, which is sustained for 17 hr. We now demonstrate that TNF stimulates fatty acid synthesis by several mechanisms. Fatty acid synthetase and acetyl-CoA carboxylase (measured after maximal stimulation by citrate) were not higher in livers from animals that had been treated with TNF 90 min before study compared to controls. In contrast, 16 hr after treatment with TNF, fatty acid synthetase was slightly elevated (35%) while acetyl-CoA carboxylase was increased by 58%. To explain the early rise in the hepatic synthesis of fatty acids, we examined the regulation of acetyl-CoA carboxylase. The acute increase in fatty acid synthesis was not due to activation of acetyl-CoA carboxylase by change in its phosphorylation state (as calculated by the ratio of activity in the absence and presence of 2 mM citrate). However, hepatic levels of citrate, an allosteric activator of acetyl-CoA carboxylase, were significantly elevated (51%) within 90 min of TNF treatment. TNF also induces an acute increase (within 90 min) in the plasma levels of free fatty acids. However, hepatic levels of fatty acyl-CoA, which can inhibit acetyl-CoA carboxylase, did not rise 90 min following TNF treatment and were 35% lower than in control livers by 16 hr after TNF. These data suggest that TNF acutely regulates hepatic fatty acid synthesis in vivo by raising hepatic levels of citrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Regulation of some lipogenic enzyme gene expression by clofibrate was studied in rat white and brown adipose tissue. In white adipose tissue the drug administration for 14 days to rats resulted in the increase in acetyl-CoA carboxylase, ATP-citrate lyase, and glucose 6-phosphate dehydrogenase mRNA levels. Opposing effect of clofibrate on the acetyl-CoA carboxylase, ATP-citrate lyase, and glucose 6-phosphate dehydrogenase mRNA levels was found in brown adipose tissue. These data indicate a tissue specificity of clofibrate action on lipogenic enzyme gene expression. The results presented in this paper provide further evidence that hypolipidaemia caused by the treatment with clofibrate cannot be related to the inhibition of fatty acid synthesis in white adipose tissue in rat.  相似文献   

7.
Fatty acid synthesis was studied in freshly isolated type II pneumocytes from rabbits by 3H2O and (U-14C)-labeled glucose, lactate and pyruvate incorporation and the activity of acetyl-CoA carboxylase. The rate of lactate incorporation into fatty acids was 3-fold greater than glucose incorporation; lactate incorporation into the glycerol portion of lipids was very low but glucose incorporation into this fraction was approximately equal to incorporation into fatty acids. The highest rate of de novo fatty acid synthesis (3H2O incorporation) required both glucose and lactate. Under these circumstances lactate provided 81.5% of the acetyl units while glucose provided 5.6%. Incubations with glucose plus pyruvate had a significantly lower rate of fatty acid synthesis than glucose plus lactate. The availability of exogenous palmitate decreased de novo fatty acid synthesis by 80% in the isolated cells. In a cell-free supernatant, acetyl-CoA carboxylase activity was almost completely inhibited by palmitoyl-CoA; citrate blunted this inhibition. These data indicate that the type II pneumocyte is capable of a high rate of de novo fatty acid synthesis and that lactate is a preferred source of acetyl units. The type II pneumocyte can rapidly decrease the rate of fatty acid synthesis, probably by allosteric inhibition of acetyl-CoA carboxylase, if exogenous fatty acids are available.  相似文献   

8.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

9.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

10.
B Quistorff  N Katz  L A Witters 《Enzyme》1992,46(1-3):59-71
Lipid metabolism appears to be less zonated than carbohydrate and protein metabolism. Studies on the zonation of lipid metabolism have been centered in particular on fatty acid synthesis which, according to the concept of metabolic zonation, should be a predominantly perivenous process while fatty acid oxidation should be periportal. There are, however, conflicting data on the activity gradients of lipogenic enzymes as well as measurements of actual synthesis of fatty acid and very low density lipoprotein. Data obtained by microdissection show a 1.5- to 2-fold higher activity of acetyl-CoA carboxylase and citrate lyase in the perivenous zone in agreement with measurements of the actual rate of fatty acid synthesis in preparations of hepatocyte, enriched in periportal or perivenous cells. On the other hand, results obtained with the dual-digitonin-pulse perfusion technique demonstrate the opposite gradient in the form of a 2- to 3-fold higher specific activity of acetyl-CoA carboxylase in the periportal zone based on measurements of the acetyl-CoA carboxylase protein proper. This specific activity gradient, which applies to male and not female rats, disappears almost completely in the fasted-refed animal, were lipogenesis is strongly induced. In this review we attempt to rationalize these discrepancies in the results as methodological differences which in particular apply to the following parameters: (1) expression of results (reference substance); (2) selectivity of zonal sampling, and (3) differences in methodology of acetyl-CoA carboxylase measurements. It is concluded that these factors could account for the discrepancies, but further studies, in particular on the zonation acetyl-CoA carboxylase mRNA, are required in order to further understand the zonation of lipid metabolism and its possible role in the metabolic regulation of the liver.  相似文献   

11.
Abstract— C-6 glial cells in culture were utilized to define the role of glucocorticoid in the regulation of palmitic acid synthesis and the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase. Particular emphasis was given to fatty acid synthetase which exhibited more than a 50% reduction in specific activity when cells were exposed to hydrocortisone (10 μg/ml) for 1 week. Coordinate changes in acetyl-CoA carboxylase activity and in palmitic acid (and sterol) synthesis from acetate accompanied the alterations in fatty acid synthetase. Immunochemical techniques were utilized to show that the decrease in synthetase activity involved an alteration in enzyme content, not in catalytic efficiency. The changes in content of fatty acid synthetase were caused by alterations in enzyme synthesis. Glucocorticoids may regulate fatty acid synthetase in C-6 glial cells by a mechanism similar to that suggested for adipose tissue. The inhibition of palmitic acid synthesis may be relevant to other effects of glucocorticoids on developing brain.  相似文献   

12.
Administration of estradiol-17 beta to male Xenopus laevis evokes the proliferation of the endoplasmic reticulum and the Golgi apparatus and the synthesis and secretion by the liver of massive amounts of the egg yolk precursor phospholipoglycoprotein, vitellogenin. We have investigated the effects of estrogen on three key regulatory enzymes in lipid biosynthesis, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the major regulatory enzyme in cholesterol and isoprenoid synthesis, and acetyl-CoA carboxylase and fatty acid synthetase, which regulate fatty acid biosynthesis. HMG-CoA reductase activity and cholesterol synthesis increase in parallel following estrogen administration. Reductase activity in estrogen stimulated Xenopus liver cells peaks at 40-100 times the activity observed in control liver cells. The increased rate of reduction of HMG-CoA to mevalonic acid is not due to activation of pre-existing HMG-CoA reductase by dephosphorylation, as the fold induction is unchanged when reductase from control and estrogen-stimulated animals is fully activated prior to assay. The estrogen-induced increase of fatty acid synthesis is paralleled by a 16- to 20-fold increase of acetyl-CoA carboxylase activity, indicating that estrogen regulates fatty acid synthesis at the level of acetyl-CoA carboxylase. Fatty acid synthetase activity was unchanged during the induction of fatty acid biosynthesis by estrogen. The induction of HMG-CoA reductase and of acetyl-CoA carboxylase by estradiol-17 beta provides a useful model for regulation of these enzymes by steroid hormones.  相似文献   

13.
Administration of triamcinolone or dexamethasone to rats led to a prompt, marked and persistent rise in liver acetyl-CoA carboxylase activity. The activity of fatty acid synthetase increased to a lesser extent and after a more prolonged glucocorticoid treatment, whereas the changes in that of NADP-malate dehydrogenase and ATP-citrate lyase were not appreciable. The overall channeling of [1-14-C]acetyl-CoA to fatty acids was enhanced. The triamcinolone effect on acetyl-CoA carboxylase activity appeared to be dependent on the coincident hyperinsulinemia since it was not obtained in alloxan-diabetic rats, whereas the alanine-aminotransferase-inducing effect of this hormone was additive to that of insulin deficiency. In adipose tissue triamcinolone treatment caused a reduction in the activity of all lipogenesis enzymes and blunted their response to insulin administration. The antagonism of glucocorticoids toward insulin, selectively modulating the responses of the insulin-sensitive enzymes in liver and adipose tissue is discussed. The rise in hepatic lipogenic capacity, through the retention of the ability of insulin to induce acetyl-CoA carboxylase, may be physiologically important in restraining the ketogenesis from acetyl-CoA despite the increased fat utilization during glucocorticoid excess.  相似文献   

14.
Coordinate control of rat liver lipogenic enzymes by insulin   总被引:4,自引:0,他引:4  
Recent evidence has established that insulin is required for the dietary induction of rat liver fatty acid synthetase [Proc. Nat. Acad. Sci. USA69, 3516 (1972)]. Since other hepatic lipogenic enzymes as well as fatty acid synthetase exhibit coordinate adaptation to nutritional changes [Advan. Enzyme Regul.10, 187(1972)], the role of insulin in the dietary induction of these enzymes has been investigated. When a high-carbohydrate, fat-free diet was fed to diabetic rats previously fasted for 48 hr, insulin was shown to be required for the dietary induction of acetyl-CoA carboxylase, citrate cleavage enzyme, malic enzyme, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, fatty acid synthetase, and glucokinase. Activity of serine dehydrase, selected as a model gluconeogenic enzyme, was increased in diabetic rats, whereas insulin treatment reduced the activity of this enzyme during the course of refeeding. The behavior of serine dehydrase was consistent with its gluconeogenic role. The activity of the cytosol isocitrate dehydrogenase did not change during refeeding in the diabetic or insulin-treated diabetic rat. Glucagon, the physiological antagonist of insulin, inhibited the increase in activity of each of the lipogenic enzymes requiring insulin for induction. Our results indicate that insulin is required for the coordinate regulation of the lipogenic enzymes of mammalian liver.  相似文献   

15.
16.
1. Measurements have been made of the activities of acyl-CoA dehydrogenase, enoyl-CoA hydratase, beta-hydroxyacyl-CoA dehydrogenase and ketothiolase in the livers of rats treated for either 12hr. or 3 days with pituitary growth hormone. 2. There was a significant increase in the activity of acyl-CoA dehydrogenase in rats treated with the hormone for 3 days. 3. Measurements were also made of the lipogenic enzymes acetyl-CoA carboxylase and palmitate synthase in the livers of similarly treated animals. 4. There was a depression of the activity of both enzymes after 12hr. treatment and a further decline after 3 days. 5. The results are discussed in relation to the known increase in the rate of fatty acid oxidation and inhibition of fatty acid synthesis in rats treated with growth hormone.  相似文献   

17.
The activities of lipogenic enzymes, such as acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase, and glycerolipid synthesis increased significantly in mammary explants of 11-day-pseudopregnant rabbits in response to prolactin, in the presence of near-physiological concentrations of insulin and corticosterone in culture. Increasing the concentration of progesterone in culture resulted in suppression of glycerolipid synthesis and activities of acetyl-CoA carboxylase and fatty acid synthetase, but not the pentose phosphate dehydrogenases. However, at near-physiological concentration of progesterone, only acetyl-CoA carboxylase activity was decreased. Injection of prolactin intraductally into 11-day-pseudopregnant rabbits stimulated glycerolipid synthesis, fatty acid synthesis and enzymes involved in fatty acid synthesis, after 3 days. Intraductal injection of progesterone separately or together with prolactin had no significant effect on basal or stimulated lipogenesis in mammary glands. Intramuscular injection of progesterone at 10 mg/day did not suppress fatty acid synthesis stimulated when prolactin was injected intraductally, but a significant inhibition was observed at a higher dose (80 mg/day).  相似文献   

18.
Acetyl-CoA Carboxylase 1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, the committed step of de novo fatty acid synthesis. As a master regulator of lipid synthesis, acetyl-CoA carboxylase 1 has been proposed to be a therapeutic target for numerous metabolic diseases. We have shown that acetyl-CoA carboxylase 1 activity is reduced in the absence of the lysine acetyltransferase NuA4 in Saccharomyces cerevisiae. This change in acetyl-CoA carboxylase 1 activity is correlated with a change in localization. In wild-type cells, acetyl-CoA carboxylase 1 is localized throughout the cytoplasm in small punctate and rod-like structures. However, in NuA4 mutants, acetyl-CoA carboxylase 1 localization becomes diffuse. To uncover mechanisms regulating acetyl-CoA carboxylase 1 localization, we performed a microscopy screen to identify other deletion mutants that impact acetyl-CoA carboxylase 1 localization and then measured acetyl-CoA carboxylase 1 activity in these mutants through chemical genetics and biochemical assays. Three phenotypes were identified. Mutants with hyper-active acetyl-CoA carboxylase 1 form 1 or 2 rod-like structures centrally within the cytoplasm, mutants with mid-low acetyl-CoA carboxylase 1 activity displayed diffuse acetyl-CoA carboxylase 1, while the mutants with the lowest acetyl-CoA carboxylase 1 activity (hypomorphs) formed thick rod-like acetyl-CoA carboxylase 1 structures at the periphery of the cell. All the acetyl-CoA carboxylase 1 hypomorphic mutants were implicated in sphingolipid metabolism or very long-chain fatty acid elongation and in common, their deletion causes an accumulation of palmitoyl-CoA. Through exogenous lipid treatments, enzyme inhibitors, and genetics, we determined that increasing palmitoyl-CoA levels inhibits acetyl-CoA carboxylase 1 activity and remodels acetyl-CoA carboxylase 1 localization. Together this study suggests yeast cells have developed a dynamic feed-back mechanism in which downstream products of acetyl-CoA carboxylase 1 can fine-tune the rate of fatty acid synthesis.  相似文献   

19.
The zonal distribution within rat liver of acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthase, the principal enzymes of fatty acid synthesis, was investigated by using dual-digitonin-pulse perfusion. Analysis of enzyme mass by immunoblotting revealed that, in normally feeding male rats, the periportal/perivenous ratio of acetyl-CoA carboxylase mass was 1.9. The periportal/perivenous ratio of ATP citrate-lyase mass was 1.4, and fatty acid synthase exhibited the largest periportal/perivenous mass gradient, having a ratio of 3.1. This pattern of enzyme distribution was observed in male rats only; in females, the periportal/perivenous ratio of enzyme mass was nearly equal. The periportal/perivenous gradients for acetyl-CoA carboxylase, ATP citrate-lyase and fatty acid synthase observed in fed (and fasted) males were abolished when animals were fasted (48 h) and refed (30 h) with a high-carbohydrate/low-fat diet. As determined by enzyme assay of eluates obtained from the livers of normally feeding male rats, there is also periportal zonation of acetyl-CoA carboxylase activity, expressed either as units per mg of eluted protein or units per mg of acetyl-CoA carboxylase protein, suggesting the existence of gradients in both enzyme mass and specific activity. From these results, we conclude that the enzymes of fatty acid synthesis are zonated periportally in the liver of the normally feeding male rat.  相似文献   

20.
The influence of training on fatty acid and glyceride synthesis by liver and adipose tissue homogenates of young and old Fischer-344 rats was examined. Four groups of rats (10 animals/group) were studied: young untrained, young trained, old untrained, and old trained. Training of each group was for 10 wk at 75% maximal O2 uptake. Young rats were killed at 6 mo of age and old rats were killed at 27 mo of age. Fatty acid synthesis was assessed by measuring the activities of acetyl-CoA carboxylase, fatty acid synthase, ATP citrate-lyase, "malic" enzyme, and glucose-6-phosphate dehydrogenase. Glyceride synthesis was evaluated by determining the rate of incorporation of [14C]glycerol 3-phosphate into lipids. In addition, lipoprotein lipase activity was measured in acetone-ether powders of adipose tissue from the four groups of rats. In liver, training had no effect on fatty acid or glyceride synthesis in either group. However, aging caused a significant decrease in the activities of four of the lipogenic enzymes but had no effect on glyceride synthesis. Training caused an increase in fatty acid synthase and glyceride synthesis in adipose tissue, and aging decreased lipoprotein lipase activity. It was concluded that training enhances the synthetic capacity of lipids by adipose tissue but that aging had a more profound effect in that the activities of the enzymes involved in these processes were lower in the old rats. Furthermore, the decreased activity of lipoprotein lipase in the older rats may explain the higher plasma triglyceride levels that were observed in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号